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Abstract. Phase contrast microscopy is a very popular non-invasive
technique for monitoring live cells. However, its images can be blurred if
optics are imperfectly aligned and the visualization on specimen details
can be affected by noisy background. We propose an effective algo-
rithm to refocus phase contrast microscopy images from two perspec-
tives: optics and specimens. First, given a defocused image caused by
misaligned optics, we estimate the blur kernel based on the sparse prior
of dark channel, and non-blindly refocus the image with the hyper-
Laplacian prior of image gradients. Then, we further refocus the image
contents on specimens by removing the artifacts from the background,
which provides a sharp visualization on fine specimen details. The pro-
posed algorithm is both qualitatively and quantitatively evaluated on a
dataset of 500 phase contrast microscopy images, showing its superior
performance for visualizing specimens and facilitating microscopy image
analysis.

1 Introduction

Phase contrast microscope has been widely used to visualize live cells without
staining them [1]. It yields the image intensity as a function of specimen’s optical
path length. If the phase telescope (or Bertrand lens) and substage condenser in
the optics are not properly aligned, the phase contrast image will be blurry [2]
(appears to be out of focus, as shown in Fig. 1(a)), which will make the specimens
obscure and it will be very difficult to detect the edges of the specimens and the
location of the nuclei. Moreover, the surrounding medium and the specimens may
have very similar optical path lengths, which will also increase the difficulty of
detecting the edges and the nuclei (e.g., cell A in Fig. 1(b)).

The two problems motivate us to think whether we can refocus a phase con-
trast microscopy image from two perspectives: (1) Optics: we want to estimate
a blur kernel to refocus the blurred phase contrast image due to the misaligned
optics; and (2) Specimens: we want to enhance the contrast between the speci-
mens and the background such that the background is smoothed with uniform
intensity values and the image contents are focused on specimen details only.

1.1 Related Work

The first perspective of our refocusing problem is related to single image blind
refocusing problem. In the past decade, many single image blind refocusing
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Fig. 1. (a, b) Defocused phase contrast microscopy images; (c, d) our refocused images.

methods have been proposed. Zhang and Cham correct the blurry edges to sharp
ones with the aid of a parametric edge model and then render this cue as a local
prior to ensure the sharpness of the latent image [3]. Shan et al. present a unified
probabilistic model of both blur kernel estimation and unblurred image restora-
tion, which includes a model of the spatial randomness of noise in the blurred
image and a local smoothness prior that reduces ringing artifacts [4]. Pan et al.
propose an �0-regularized prior based on intensity and gradient for single text
image deblurring [5]. Pan et al. present a blind single image deblurring method
based on the dark channel prior [6].

These general blind deblurring methods are proposed to process natural
images and do not take any special image formation process into considera-
tion. Yin et al. derive a linear imaging model for phase contrast microscopy
and try to restore the artifact-free phase contrast image with a mathematically-
derived Point Spread Function (PSF) [7]. Su et al. revisit the phase contrast
imaging model, and propose a novel restoration algorithm which can restore
phase contrast images with various phase retardations [8]. However, these two
phase contrast image restoration methods remove cell details dramatically.

1.2 Our Proposal

In this paper, we investigate a refocusing algorithm to refocus phase contrast
microscopy images (e.g., Fig. 1(c, d)). First we estimate a blur kernel for the
defocused image and refocus it from the optics perspective. Then, consider-
ing the optical properties of the phase contrast imaging system, we propose a
novel optimization method to further refocus the microscopy image on specimen
details while smoothing the background, i.e., the contrast between specimens
and background is enhanced, which provides a better visibility on specimens.

2 Methodology

In this section, we describe the two steps of our refocusing algorithm: (1) refo-
cusing a blurry phase contrast microscopy image caused by misaligned optics;
and (2) further refocusing the image on specimens only.
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2.1 Refocusing Images from the Optics Perspective

Problem Formulation: An image blurring process can be modeled as the
convolution of the focused image F with the blur kernel (or PSF) h,

I = F ⊗ h + n, (1)

where I is the defocused image, n represents the noise, and ⊗ denotes the con-
volution operator. The defocused image I here is produced from the misaligned
optics components of the phase contrast microscope, we can not use the PSF in
[7,8], which is derived based on the well-aligned phase contrast microscope.

Estimating h: Obtaining the focused image F by solving Eq. (1) is ill-posed,
since both the blur kernel h and the latent focused image F are unknown. In
order to estimate the blur kernel and get the latent focused image, we propose
to solve the following optimization problem

min
F,h

E(F, h) = min
F,h

{‖h ⊗ F − I‖22 + αρ(∇F ) + β‖h‖22 + γ‖DF ‖0}, (2)

where ∇F = (Fx, Fy) denotes all the horizontal and vertical first-order deriva-
tives, ‖ · ‖0 is the �0-norm of a matrix, ‖ · ‖2 is the Frobenius norm of a matrix,
ρ(z) = |z|0.8 is a heavy tailed function, and DF is the dark channel of F . The
first term represents the reconstruction error, the second term, also known as the
hyper-Laplacian prior, adds a constraint on image gradients which can preserve
image details better than the �1 and �0 constraints [9,10] (the hyper-Laplacian
prior models the microscopy image gradient distribution better than �1 and �0),
the third term gives a regularization constraint on the blur kernel, and the last
term denotes the sparse prior of the dark channel of the latent image [6]. α, β,
and γ are weight parameters.

The dark channel of image F is defined by min-filtering:

DF (x) = min
c

( min
y∈N (x)

F c(y)), (3)

where x and y represent pixel locations, N (x) is a local patch centered at x,
and F c denotes the color channel of F . The reason to add the dark channel of
the latent focused image as a sparse prior in our optimization function is that
focused images (Fig. 2(a)) have more dark pixels (i.e., the pixels with the lowest
pixel value) than blurred images (Fig. 2(c)).

However, combining the hyper-Laplacian prior of image gradients and sparse
prior of dark channel together makes it very difficult to solve Eq. 2. Thus, we
relax the hyper-Laplacian prior ρ(∇F ) by ‖∇F‖0 and get the new formulation

min
F,h

E(F, h) = min
F,h

{‖h ⊗ F − I‖22 + α‖∇F‖0 + β‖h‖22 + γ‖DF ‖0}. (4)

We aim to estimate h based on Eq. 4 and then refocus F using the hyper-
Laplacian prior later in Eq. 7. To estimate h from Eq. 4, we alternatively solve
the latent deblurred image F :

min
F

E(F ) = min
F

{‖h ⊗ F − I‖22 + α‖∇F‖0 + γ‖DF ‖0}, (5)
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Fig. 2. (a, b) Focused image and its dark channel; (c, d) blurred image and its dark
channel. Dark channels are computed by a 25 × 25 sliding window.

Fig. 3. Estimating h. (a) Focused phase contrast image (ground truth). (b) Blur kernel
and the defocused image. (c) Estimated blur kernel and refocused image by Eq. 4.

and the blur kernel h (please check the appendix for solutions on Eqs. 5 and 6):

min
h

E(h) = min
h

{‖h ⊗ F − I‖22 + β‖h‖22}. (6)

In order to test the effectiveness of this method to estimate h, we blur a phase
contrast image from well-aligned optics (Fig. 3(a)) with a known kernel and get
the defocused image I (Fig. 3(b)). Using image I, we estimate the blur kernel
and the latent focused image using Eq. 4, and the results are shown in Fig. 3(c),
from which we can observe that the estimated h is closed to the ground truth,
but the F by Eq. 4 has many defects.

We also perform the ablation study to test the importance of each prior
term in Eqs. 4 and 5 by deleting either the Sparse Prior of image Gradients
(without SPG) or the Sparse Prior of Dark Channel (without SPDC) from the
optimization problem. The results are summarized in Fig. 4, from which we can
see without the sparse prior of image gradient, the refocused image F is less
smooth (Fig. 4(b2)). Without the sparse prior of dark channel, the image F is
less focused (Fig. 4(c2)). The latent refocused image can be estimated from Eq. 5
directly, however, as shown in Fig. 4(d2), this method is not effective enough to
preserve fine cell details in the latent image.

Refocusing F : With the estimated h from Eq. 4, we formulate a non-blind
refocusing problem with the hyper-Laplacian prior,

min
F

{‖h ⊗ F − I‖22 + δρ(∇F )}, (7)

where δ is a weight parameter.
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Fig. 4. Refocusing F . (a) Defocused phase contrast image. (b) Result without SPG in
Eq. 5. (c) Result without SPDC in Eq. 5. (d) Result by Eq. 5. (e) Result by Eq. 7.

The hyper-Laplacian prior makes Eq. 7 a non-convex optimization problem,
which is commonly regarded as computationally intractable. To solve this prob-
lem, an iterative reweighted least square process [9], which poses the optimiza-
tion as a sequence of least square problems while the weight of each derivative is
updated based on the previous iteration, is implemented. As shown in Fig. 4(e2),
the hyper-Laplacian prior has better power to preserve specimen details than
‖∇F‖0 (Fig. 4(d2)).

2.2 Refocusing Images from the Specimen Perspective

Problem Formulation: From Fig. 4(e), we can see that after getting F with the
hyper-Laplacian prior, there are still some small wavy artifacts in the background
(see Fig. 5(d)). As the refocused F can be regarded as an image produced from
the properly-aligned optics, we can build a linear imaging model as

F = hopt ⊗ (L + S) + n, (8)

where hopt is from [7] (a mathematically-derived PSF based on well-aligned
optics), L is the artifact-free image, and S is the artifact image.

Solving for L and S : Considering the sparse property of the artifacts and the
smoothness of the artifact-free image, we formulate the following optimization
problem to solve L and S:

min
L,S

E(L, S) = min
L,S

{‖hopt ⊗ (L + S) − F‖22 + λ‖∇L‖0 + μ‖S‖0}, (9)

where λ and μ are weight parameters. By fixing L first, we can alternatively
solve the artifact image S:

min
S

E(S) = min
S

{‖hopt ⊗ L + hopt ⊗ S − F‖22 + μ‖S‖0}, (10)

and then update the artifact-free image L:

min
L

E(L) = min
L

{‖hopt ⊗ L + hopt ⊗ S − F‖22 + λ‖∇L‖0}. (11)
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Fig. 5. Refocusing from the perspectives of optics and specimens. (a) Input image I.
(b) F obtained by refocusing the optics only. (c) L obtained by refocusing the optics
and specimens. (d) Removed artifacts S.

The iterative solutions of Eqs. 10 and 11 can be found in the appendix.
Figure 5 shows that after refocusing the image on optics, the edges and nuclei

become much sharper (Fig. 5(b)), but there are wavy artifacts in the background.
After further refocusing the image on specimens by assuming artifacts are sparse
and artifact-free image is smooth, the artifacts in the background (Fig. 5(d)) are
removed and the specimens are presented more clearly (Fig. 5(c)), which also
proves the efficiency of our assumption.

3 Experimental Results

Dataset: 500 phase contrast microscopy images with different cell densities
were captured at the resolution of 1040 ∗ 1392 pixels.

Evaluation Metrics: To evaluate our refocusing-optics step, we use the Struc-
tural Similarity Index (SSIM) [12]. To evaluate our refocusing-specimens step,
we test how well it can facilitate the cell segmentation task using the accuracy
metric. By denoting cell and background pixels as positive (P) and negative (N),
respectively, the accuracy is defined as ACC = (|TP | + |TN |)/(|TP | + |FP | +
|TN |+ |FN |), where TP is the true positive, FP is the false positive, TN is the
true negative, and FN is the false negative.

Parameter Setup: In our experiments, 100 images are used to learn the para-
meters by 5-fold cross validation. The rest of the dataset is used for testing. The
three parameters α, β, and γ in Eq. 4 (estimating blur kernel h) are 4e−3, 1e−4,
and 4e−3, respectively. The parameter δ in Eq. 7 (estimating optics-refocused F )
is 5e−4. The parameters λ and μ in Eq. 9 (estimating L with refocused optics
and specimens) are 3e−4 and 5e−4, respectively.

Evaluation: Figure 4 qualitatively compares our refocusing-optics algorithm
with alternative methods. We quantitatively compare them using the SSIM
index. As shown in Table 1, our method (Eq. 7) that estimates h first and then
estimates the optics-refocused F , outperforms the other methods.
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Fig. 6. Qualitative evaluation.

Figures 5 and 6(a1, b1, c1) show the superior performance of our algorithm
on refocusing images, which provides a sharp visibility on specimens. To demon-
strate how our refocusing algorithm facilitates automated microscopy image
analysis, we use the cell segmentation as a case study. Based on our refocused
image (Fig. 6(c1)), the simple Otsu thresholding method [13] is used to segment
specimens from the background. As shown in Fig. 6(c2), specimens can be easily
segmented from the background. Furthermore, Fig. 6(c2) (segmentation of the
optics-refocused and specimen-refocused image, Fig. 6(c1)) has less noise than
Fig. 6(b2) (segmentation of the optics-refocused image, Fig. 6(b1)).

We quantitatively compare our results (e.g., Fig. 6(c2)) with [7] (e.g.,
Fig. 6(d)) and [8] (e.g., Fig. 6(e)) using the accuracy index. The ground truth
segmentation (Fig. 6(a3)) is obtained by thresholding the corresponding fluores-
cence image (Fig. 6(a2)) (note that, in real experiments we do not use chemical
stains to damage cells’ viability. The fluorescence images are only used for our
groundtruth purpose). As shown in Table 2, the segmentation results using our
method over 400 testing images are more accurate because our refocused images
focus image contents on specimens with the uniform background whose artifacts
are removed.
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Table 1. Quantitative evaluation of the refocusing optics methods.

Method Eq. 5 w/o SPG Eq. 5 w/o SPDC Eq. 5 Our method

SSIM 0.7346 0.8888 0.8951 0.9221

Table 2. Quantitative evaluation of the segmentation results.

Method Method in [7] Method in [8] Ours

ACC 0.9326 0.9166 0.9654

4 Conclusion

In this paper, we investigate a refocusing algorithm to refocus the phase contrast
image from two perspectives. First, given a defocused phase contrast microscopy
image caused by misaligned optics, we estimate the blur kernel by implement-
ing a blind deblurring algorithm with the dark channel sparse prior, and then
unblindly refocus the image with the hyper-Laplacian prior of image gradient.
Secondly, we remove artifacts from the optics-refocused image to enhance the
contrast between specimens and background using the intrinsic point spread
function of the phase contrast microscopy image and the sparse prior of artifacts.
Note that, if the input defocused image is indeed well-focused, our refocusing-
optics step will return a Dirac delta function for h and the optics-refocused image
will be identical to the input.

The preliminary experiments demonstrate that our algorithm is very effective
to refocus phase contrast microscopy images. After refocusing the image from
both the optics and specimen perspectives, the refocused image provides better
visualization on specimen details and facilitates automated cell image analysis.

Acknowledgement. This project was supported by NSF CAREER award IIS-
1351049 and NSF EPSCoR grant IIA-1355406.

A Appendix

Equation 6 is a quadratic equation, and we can get the closed-form solution as

h = F−1

(
F(I) ◦ F(F ) ◦ F(∇) ◦ F(∇)

F(F ) ◦ F(F ) ◦ F(∇) ◦ F(∇) + β

)
. (12)

where F(·) denotes the Fast Fourier Transform (FFT), F−1(·) is the inverse
FFT, F(·) is the complex conjugate operator. Since Eqs. 5, 10 and 11 are similar
quadratic programming, we take Eq. 11 to derive the solution.

In order to tackle this �0-regularized term, we introduce an auxiliary vari-
able g = (gx, gy) with respect to image gradients in the horizontal and vertical
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directions, then Eq. 11 can be rewritten as:

min
L,g

E(L, g) = min
L,g

{‖hopt ⊗ L + hopt ⊗ S − F‖22 + λ‖g‖0 + ν‖∇L − g‖22}, (13)

where ν is a large penalty parameter. When ν is close to ∞, the solution of
Eq. 13 will be equivalent to that of Eq. 11. Equation 13 can be solved efficiently
by alternatively minimizing L and g.

Given L, the g can be obtained by

min
g

E(g) = min
g

{λ‖g‖0 + ν‖∇L − g‖22}. (14)

Equation 14 is a pixel-wise minimization problem, we can get the solution of g
as [11]

g =

{
∇L, |∇L|2 ≥ λ

ν

0, otherwise.
(15)

When g is fixed, the solution of L can be obtained by solving

min
L

{‖hopt ⊗ L + hopt ⊗ S − F‖22 + ν‖∇L − g‖22}. (16)

We transfer this problem to the frequency domain

min
F(L)

{‖F(hopt)◦F(L)+F(hopt)◦F(S)−F(F )‖22+ν‖F(∇)◦F(L)−F(g)‖22}, (17)

where ◦ represents the element-wise multiplication operator. Then we can get
the closed-form solution of this least square minimization problem

F = F−1

(
F(F ) ◦ F(hopt) + νF(g) ◦ F(∇) − F(S) ◦ F(hopt) ◦ F(hopt)

F(hopt) ◦ F(hopt) + νF(∇) ◦ F(∇)

)
, (18)

During the alternative solution, we first initialize L in Eq. 14 as the input
image F and derive g from Eq. 14, then we substitude g into Eq. 16 and derive
a new L. We iteratively update g and L until converging.

References

1. Zernike, F.: How I discovered phase contrast. Science 121, 345–349 (1955)
2. https://www.microscopyu.com/tutorials/phase-contrast-microscope-alignment
3. Zhang, W., Cham, W.K.: Single-image refocusing and defocusing. IEEE Trans.

Image Process. 21, 873–882 (2012)
4. Shan, Q., Jia, J.Y., Agarwala, A.: High-quality motion deblurring from a single

image. In: ACMTOG (2008)
5. Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring text images via L0-regularized

intensity and gradient prior. In: CVPR (2014)
6. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel

prior. In: CVPR (2016)

https://www.microscopyu.com/tutorials/phase-contrast-microscope-alignment


74 L. Han and Z. Yin

7. Yin, Z., Li, K., Kanade, T., Chen, M.: Understanding the optics to aid microscopy
image segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A.
(eds.) MICCAI 2010. LNCS, vol. 6361, pp. 209–217. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15705-9 26

8. Su, H., Yin, Z., Kanade, T., Huh, S.: Phase contrast image restoration via dictio-
nary representation of diffraction patterns. In: Ayache, N., Delingette, H., Golland,
P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 615–622. Springer, Heidel-
berg (2012). doi:10.1007/978-3-642-33454-2 76

9. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a con-
ventional camera with a coded aperture. In: ACMTOG (2007)

10. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors.
In: NIPS (2009)

11. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. In:
SIGGRAPH Asia (2011)

12. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–
612 (2004)

13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9, 62–66 (1979)

http://dx.doi.org/10.1007/978-3-642-15705-9_26
http://dx.doi.org/10.1007/978-3-642-33454-2_76

	Refocusing Phase Contrast Microscopy Images
	1 Introduction
	1.1 Related Work
	1.2 Our Proposal

	2 Methodology
	2.1 Refocusing Images from the Optics Perspective
	2.2 Refocusing Images from the Specimen Perspective

	3 Experimental Results
	4 Conclusion
	A Appendix
	References




