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3 IBM Zürich Research Lab, Zürich, Switzerland
patip@student.ethz.ch

Abstract. Cancer diagnosis and personalized cancer treatment are
heavily based on the visual assessment of immunohistochemically-stained
tissue specimens. The precision of this assessment depends critically on
the quality of immunostaining, which is governed by a number of para-
meters used in the staining process. Tuning of the staining-process para-
meters is mostly based on pathologists’ qualitative assessment, which
incurs inter- and intra-observer variability. The lack of standardization
in staining across pathology labs leads to poor reproducibility and con-
sequently to uncertainty in diagnosis and treatment selection. In this
paper, we propose a methodology to address this issue through a quan-
titative evaluation of the staining quality by using visual computing
and machine learning techniques on immunohistochemically-stained tis-
sue images. This enables a statistical analysis of the sensitivity of the
staining quality to the process parameters and thereby provides an opti-
mal operating range for obtaining high-quality immunostains. We eval-
uate the proposed methodology on HER2-stained breast cancer tissues
and demonstrate its use to define guidelines to optimize and standardize
immunostaining.

1 Introduction

Immunohistochemistry (IHC) is an invaluable tool for cancer diagnosis, treat-
ment selection, and research, owing to rapidly obtainable tissue profiles. It is
widely used with different biomarkers for the identification of prognosticators
of cancer progression. IHC localizes specific proteins (antigens) in tissues by
exposing them to the corresponding antibodies. The antigen-antibody binding
reaction generates a visual signal, whose intensity is a function of a number of
parameters, including the antigen density on tissue, antibody concentration, res-
idence (incubation) time, and tissue-preprocessing methods. Assessment of the
generated visual signal conveys vital information for a patient. If the signal orig-
inates from a ‘low-quality’ stain, the results are unreliable – with potential dire
consequences, such as false diagnosis and/or ineffective treatment. Therefore, in
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cancer diagnosis and treatment the quality of the visual signal plays as significant
role as its assessment. Although immunopathology has been extensively studied
and used for decades, more emphasis has been given to the antigen-antibody
reactions and the assessment of the resulting signal, whereas the signal quality
has generally been neglected.

Pathology laboratories use different staining process parameters to achieve a
‘high-quality’ stain, defined by manual assessments over parameter grids. Such
manual effort with trial-and-error experiments is tedious and tissue exhaustive.
Consequently, the lack of parametric standardization and reproducibility of the
staining quality remain major concerns in IHC. According to NorqiQC’s statis-
tics, about 20% of breast cancer IHC stains and about 30% of general cancer IHC
stains have been assessed as insufficient for diagnostic use [1]. Indeed, tuning the
parameters of the staining process is one of the crucial elements for improving
the staining quality. However, the effect of the process parameters on the quality
is difficult to deconvolve, since measurements on the exact same tissue location
with different parameters cannot be acquired. Hence, strategies for automatic
analysis of staining quality sensitivity to process parameters and for contex-
tual quantitative analysis by using only a limited amount of tissue samples are
important towards improving standardization in IHC staining. These standard-
ized tests will enable novel avenues of tissue evaluation relevant to pathologists.

Several works in literature have performed quantitative analysis of IHC-
stained tissues. Most of these (e.g. [2,3]) emphasize the quantification of bio-
marker expressions. To a large extent, the results show agreement between
image-analysis based methods and pathologists’ visual examination. However,
there are only few studies that focus on the assessment of staining quality. For
instance, [4] proposed quality indicators (i.e., signal intensity, tissue integrity,
image integrity) for IHC-stained tissues to quantify the staining quality around
predefined thresholds. In [5], a reference-based technique was described in which
some quality indicators are computed for both a test specimen and a reference
specimen, prepared at a standardized laboratory. Subsequently, a relative qual-
ity measure is computed using the cumulative distance between these indicators.
This reference-based approach was validated in [6] using membrane connectivity
as the quality measure. The drawback of the aforementioned approaches is that
they quantify the staining quality either with respect to a user-defined threshold
or a reference specimen, which involves an expert’s intervention. To the best of
our knowledge, there are no efforts in the literature that analyze the sensitivity
of the staining quality to IHC process parameters with the aim of optimizing
the staining quality for process parameters. In this work, we propose a novel,
automated, principled method to assess the sensitivity of the staining quality to
IHC process parameters – a major step towards the standardization of immunos-
taining.

2 Proposed Methodology

Our methodology includes an automated signal and noise segmentation
algorithm, followed by a novel no-reference staining quality metric learning
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technique. Accordingly, it has three main components: (i) image segmentation
and representation, (ii) staining quality metric learning, and (iii) sensitivity
analysis to process parameters. The components are validated through several
experiments in which HER2 is selected as the biomarker of interest owing to its
high clinical relevance in breast cancer diagnosis. HER2 overexpression provides
insights for diagnosis and hints for a targeted therapy. As it is a transmembrane
receptor, the quantification of overexpression can be modelled as ‘peaks’ (cell
membranes) versus ‘valleys’ (cell’s cytoplasm and stroma) detection. This is used
as a guiding principle and a starting point for the tissue-based staining-quality
evaluations introduced in this work.

2.1 Image Segmentation and Representation

Staining quality is directly proportional to the signal-to-noise ratio, where the
signal is the staining of membrane (foreground), and the noise is the staining
of cytoplasm, nucleus, and stroma inside footprint (background). Therefore, our
methodology starts with the detection and separation of signal and noise in
IHC-stained tissue images. We propose a fully-automatic segmentation algorithm
that deconvolves an image into four regions: (i) footprint, (ii) off-footprint, (iii)
foreground, and (iv) background, as illustrated in Fig. 1 for a HER2-stained tissue.

We begin by finding and delineating the localized footprint, where a vertical
microfluidic probe [7] is applied, using a combination of Otsu thresholding and
the non-parametric marker-based Watershed algorithm; cf. Fig. 1(b–c). Subse-
quently, we segment the foreground within the footprint, as it is the region of
interest, using a global thresholding. A robust threshold is determined from a
16-bin intensity histogram within the footprint, and the value is set as the mean
of the most frequent and the maximum intensity values. Then, we extract the
background by taking the difference of the foreground and the dilated foreground
mask. We preserve the connectivity of the background by performing a morpho-
logical closing operation. Thereon, we subtract the foreground mask from the
background to ensure that there are no remaining foreground pixels in it.

Global and local features are extracted to define representative signatures for
the images. Global features include intensity features that are extracted from the
individual segmented regions. Local features are extracted from patches within
the foreground to capture local structural and morphological information around
cells. Local features include the gray level co-occurrence matrix-based texture
features, rotation and scale invariant Gabor wavelet features, and Haralick fea-
tures from the dual-tree complex wavelet transform. Finally to construct a fixed-
dimensional signature per image, we compute the feature-wise mean across local
patches and then concatenate them to global intensity features.

2.2 Staining Quality Metric (SQM) Learning

The definition of high-quality staining varies for different tissue types (TT ) and
protein expressions [8], as depicted by the ‘peaks’ and ‘valleys’ guiding princi-
ple in Fig. 2. A protein overexpression exhibits distinct peaks and valleys, with
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Fig. 1. Segmentation outputs of a sample HER2-stained tissue: (a) input image,
(b) footprint, (c) off-footprint, (d) foreground, and (e) background.

Fig. 2. ‘High-quality’ HER2-stained tissues for HT (left), PT (middle), MT (right),
and the respective intensity profiles of the cross-sectional view of a cell.

the distinction decreasing with the expression level. For instance, a high-quality
staining of a HER2 overexpressed primary breast tumor tissue (PT ) and of a
lymph node metastasis tissue (MT ) would entail a high level of distinction,
whereas a high-quality staining of a healthy tissue (HT ) with low HER2 expres-
sion would have an absent or a low level of distinction. Therefore, we propose to
learn independent TT -specific SQMs, which are classifiers evaluating the stain-
ing quality for the corresponding TT s. We design the SQM through evaluation
and combination of several quality indicators (QI), as shown in Fig. 3. In this
work, we define two QIs acquired via probabilistic classifiers. The first QI com-
prises tissue-discrimination probabilities to indicate the informativeness of the
staining towards expressing the TT categories. The second QI conveys the signal-
to-noise contrast level (CL) to suggest a sample’s degree of agreement with the
expected signal-to-noise CL for each TT category. The QIs for a sample with
a feature signature X can be denoted as P (X1 = TTi), TTi ∈ {PT,MT,HT}
and P (X2 = CLi), CLi ∈ {High, Low)}. TT labels for the training samples
are obtained from the tissue provider, whereas CL labels are determined by the
consensus of three experts.

SQM Learning and Quality Assessment: Given the two QIs for the sam-
ples, TT -specific SQMs are trained independently by using the samples corre-
sponding to the respective TT categories. For example, the QIs obtained for
the samples of the PT category are used to model SQMPT . For training the
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Fig. 3. Overview of the SQM learning.

SQMs, TT -specific quality labels ∈ {Acceptable,NotAcceptable} are obtained
from the experts. The output probability of belonging to the Acceptable quality
class, given by a TT -specific SQM, is considered to represent the sample’s overall
quality value (QV ) for the respective TT category. The QV of a sample belong-
ing to a TT category is expected to reflect the underlying staining quality on a
quantitative scale. For instance, considering the staining-quality expectations for
a PT tissue type, if the first QI of a given sample conveys a high P (X = PT )
probability, and the second QI expresses a high signal-to-noise contrast level
P (X = High), then using the SQMPT is expected to result in a high QV for
the sample.

2.3 Analysis of Sensitivity to Process Parameters

In the final step of the methodology, we analyze the sensitivity of the stain-
ing quality to the variations in the IHC staining-process parameters, i.e., the
antibody concentration (C) and the residence time (RT ). The aim is to esti-
mate the optimal operational range for the parameters for obtaining high-quality
stains. As the quality expectations differ across TT s, we hypothesize that the
optimal process parameters generating high-quality stains may also vary across
TT s. Thus, we perform the sensitivity analysis independently for each TT . We
compute QV s for all samples belonging to a TT category by using the respec-
tive SQM. The QV s obtained are distributed over a range of C and RT values
analytically and experimentally. To obtain a comprehensive visualization and
evaluation of the sensitivity of QV , we interpolate QV s at intermediate C and
RT configurations, and fit a smooth 3D manifold for the QV s.

Similarly to the variational quantification approach in [9], we measure the
sensitivity of QV per TT at all possible configurations over the entire C
and RT parameter space. For a given point on the 3D manifold, denoted by
pi = (RTi, Ci, QVi), we quantify the variations in 8-neighboring directions. The
variations are measured by the eigenvalues of a covariance matrix at pi, where
the covariance matrix is generated from the QV differences between pi and its 8-
connected neighboring points. We consider the “maximum eigenvalue” to quan-
tify the sensitivity at pi, as it indicates the direction and the degree of maximum
variation at that point. A higher “maximum eigenvalue” at a point conveys a
high degree of variation, implying a high sensitivity of the staining quality to
slight variations in parameters around that point. We project the sensitivity
values onto a 2D contour map to visualize and estimate the stable operating
configurations per TT . For a TT category, we combine the information from the
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staining quality 3D manifold and the 2D sensitivity map to determine the opti-
mal range for the parameters. Thereby, we aim at maximizing the acceptable
staining quality and minimizing the sensitivity in parametric operation.

3 Experimental Validation

For evaluating the potential of the proposed methodology, we collected stained
samples of 36 cores across 19 unique patients for three different tissue types on
tissue micro-arrays (TMA). To increase the accuracy of the true-positive stain
and to minimize tissue usage, we applied microimmunohistochemistry (µIHC)
using vertical microfluidic probe [7] for the staining. The TMA cores were stained
for HER2 protein with three antibody dilutions C = {6.25, 12.5, 25}µg/mL.
Each core was patterned with eight footprints of increasing residence time
RT = {12, ..., 289} s, generating 288 IHC-stained samples in total. As first
step, we performed signal-to-noise separation, followed by comprehensive fea-
ture extraction for all samples in the dataset.

SQM Learning: The first step in learning the SQMs is to generate an auto-
matic TT classifier. For the classifier training, we selected a balanced subset of
160 samples from the complete dataset. The subset consisted of samples across all
C and RT values. They contained sufficient cells and represented their TT class
in terms of both poor (insufficient and over-staining) and high-quality staining.
In the training phase, the optimal set of 73 features X1 for the TT classification
were chosen by Random Forest (RF) feature importance measure out of a com-
plete set X of 353 features. For designing the best TT classifier, we experimented
with different hyperparameters, such as patch size, feature combination, and clas-
sification algorithms. The classifiers were compared using accuracies computed
through a 10-fold cross-validation on the training data. The best accuracy of
0.82 was obtained using an Support Vector Machine (SVM) with RBF kernel
classification algorithm, which was modeled using features extracted on patches
of in size 64 × 64 pixel. Similarly, for the second quality indicator, we trained a
signal-to-noise CL classifier on an independent subset of 77 samples across all
TT categories. The samples selected clearly represented high and low contrast
levels irrespective of their TT . We achieved the best classification performance
of 0.95 using SVM with RBF kernel with 63 RF-selected features extracted on
patches of in size 64 × 64 pixel. SQMs were learned for individual TT s by com-
puting classification probability maps for the quality indicators. ROC curves and
AUC values were computed for evaluating the performance of the SQMs learned.
SQMPT and SQMMT achieved 0.83 and 0.90 AUC scores, respectively, indicat-
ing a good separability of Acceptable and NotAcceptable staining-quality classes.
In this work, we evaluated only for HER2 overexpressive PT and MT types, as
they are of higher importance than HT in cancer diagnosis.

Analysis of Sensitivity to Process Parameters. Each SQM provides
staining-quality scores, QV s, for the samples belonging to the corresponding
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TT category. We interpolated QV s for the entire range of C and RT , and fitted
3D manifolds for each SQM. Afterwards, the eigenvalue-based variational quan-
tification approach was used to inspect the sensitivity of the staining quality.
Considering the range of both parameters, we analyzed the variation in C and
RT within ±1 µg/mL and ±5 s respectively. Thereon, the 2D staining-quality
contour maps and the sensitivity maps for each SQM were plotted.

Fig. 4. 3D SQM manifolds (left), 2D staining quality maps (middle), and sensitivity
maps (right) for PT (top row) and MT (bottom row).

Figure 4 displays the SQM manifolds, the staining-quality and sensitivity
contour maps for both the PT and MT tissue categories. For PT , the SQM
manifold shows that high-quality staining can be obtained when operating in
the range of 9 < C < 17µg/mL and 85 < RT < 160 s. It also illustrates the
variation in the staining quality, i.e., that the staining quality is low for low-
end and high-end C and RT values. These observations align with the concepts
of insufficient and over-staining, respectively, which cause a decay in staining
quality. Therefore, observations from the quality map can aid in reducing false
negative and false positive staining. In addition, the sensitivity map indicates the
stability of the staining quality for a given parameter configuration. It shows that
the staining quality is slightly sensitive towards the lower end and the upper end
of the aforementioned range of C values. Combining the knowledge from both
the maps, an operational range of 11 < C < 15µg/mL and 85 < RT < 130 s can
be selected for generating stable and high-quality stains. In a similar analysis for
MT , it can be observed that the high staining-quality range is highly unstable.
Thus, a more stable operating range should be selected from the sensitivity map,
with a small compromise in the staining quality. To verify the robustness of
the optimal parameters computed, 95% staining-quality confidence ellipses were
evaluated for 500 bootstrap datasets, which resulted in consistent performance
and behavior across all datasets.
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4 Conclusions

In this work, we have proposed a framework that uses visual computing and
machine learning techniques to address a prevalent challenge in IHC. We first
devised an automatic methodology for the quantification of the staining quality
in IHC-stained images. Then we introduced a tool for standardizing the IHC
process parameters via automatic determination of the operating bounds. The
proposed framework was applied to HER2-stained breast cancer tissues, with
promising results achieved in the experiments conducted. The computation-
ally extracted results were validated against subjective expert opinions, with
the staining behavior found in line with underlying biology of the tissue type.
Furthermore, a quantitative evaluation of these results led to the development
of SQMs, reducing subjectivity and uncertainty of such staining, while defin-
ing operational parameters that lead to high-quality stains. Inclusion of further
quality indicators and availability of more stained tissue specimens will undoubt-
edly refine our system. These promising results show the potential of our app-
roach towards the standardization of immunostaining using automatic process-
parameter optimization in IHC, but most importantly, for reducing uncertainty
in cancer diagnosis and treatment selection.
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