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Abstract. Aggressive cancers are known to induce field effect that affect
large areas of cells at a tissue surface. This means that local deformation
induced by the tumor as it grows could cause distensions in regions dis-
tant from the tumor, presumably even the surface of the organ within
which the tumor is growing. In this work, we focused on evaluating
whether more and less aggressive prostate cancers (i.e. tumors that sub-
sequently resulted in disease recurrence or not) could differentially induce
changes and distensions in the surface of the prostate capsule. Specifically
we have developed the concept of a new imaging marker called FOrge
features, that attempts to quantify the degree and nature of the deforma-
tion induced in the capsule surface on account of tumor growth and then
sought to evaluate whether FOrge is predictive of the risk of biochemi-
cal recurrence in prostate cancer patients based off a pre-operative T2w
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MRI scan. The FOrge features were extracted from a spatially contex-
tual surface of interest (SOI) of the prostate capsule, uniquely determined
from statistically significant shape differences between prostate atlases
constructed from patients who did (BCR+) and who did not (BCR−)
undergo biochemical recurrence. A random forest classifier trained on the
FOrge features extracted from atlas images (25 BCR+ and 25 BCR−)
yielded an accuracy of 78% and an AUC of 0.72 in an independent vali-
dation set of 30 patients.

1 Introduction

Field cancerization or field effect is often observed in aggressive cancers that
affects tissues far beyond the tumor periphery due to genetic and/or epigenetic
alterations. Such alterations are often strongly associated with local recurrence
of various kinds of cancer including prostate. Biochemical recurrence (BCR),
which is defined as an elevated prostate specific antigen (PSA) of 0.2 ng/ml for
surgery or 2 ng/ml for radiation therapy above the nadir, is strongly suggestive
of disease recurrence and hence treatment failure in prostate cancer patients who
have undergone definitive therapy. BCR is typically associated with aggressive
cancer growth that may induce field effect and deform the prostate capsule
resulting in an irregular bulge and/or focal capsular retraction.

Previous work for prostate cancer detection, risk stratification and recur-
rence prediction has focused on using image texture features of the tumor and
radiomic characterisation of the prostate [1,2]. However the cancer field effect
that is strongly correlated to disease recurrence and that may mechanically
deform prostate capsule surface far beyond the tumor periphery has not, thus far,
been computationally investigated. To the best of our knowledge, no other stud-
ies have investigated the distil mechanical effect of the growth of an aggressive
recurring tumour on the prostate surface, with a view to predicting outcome.

We hypothesize that such differential localized deformation of the prostate
SOI may arise from the field effect of aggressive growth of the confined tumour
for BCR+ patients. We quantify such localized deformation with deformation
magnitude and orientation features to discriminate BCR+ and BCR− patients.

In this work we present FOrge features extracted from a spatially contextual
SOI of the prostate capsule that quantifies prostate capsule deformation mag-
nitude and orientation to predict prognosis of recurrence. There are two major
contributions of this work;

– A new set of 3D shape features that captures subtle cues with regard to the
prostate capsule surface deformations was developed.

– The FOrge features were extracted from a spatially contextual surface of
interest (SOI) of the prostate capsule, uniquely determined from statistically
significant shape differences of BCR+ and BCR− atlases to predict BCR.

The closest work in literature compared to our work is that of Rusu et al. [3].
Rusu et al. showed that statistically significantly difference in the prostate cap-
sule shape exist between patients with and without cancer. Unlike Rusu et al.,
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our work is however focused on BCR. More importantly Rusu et al. have not
translated their observation to a shape based descriptor for classification or pre-
diction of disease outcome. In our work however we evaluate FOrge features for
the task of prediction of recurrence of prostate cancer. Even though the FOrge
features are used in prediction of recurrence of prostate cancer, the concept
may be extended to aggressive cancer prediction of other organs like the breast,
kidney, bladder and the lung.

2 Methods

2.1 Brief Overview

The BCR prediction method may be broadly be divided into three parts, (1)
Creation of BCR+ and BCR− cohort atlases, (2) Identification of the surface
of interest (SOI) that significantly differs between BCR+ and BCR− atlases
and (2) Extraction of FOrge features from SOI to predict BCR patients in a
validation set. The entire framework is presented in Fig. 1.

2.2 Creation of BCR+ and BCR− Cohort Atlases

Spatially contextual SOI of the prostate capsule was uniquely identified from a
statistical significant shape differences between BCR+ and BCR− atlases cre-
ated from the training images. The prostate with median volume of each cohort
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Fig. 1. Biochemical recurrence prediction framework
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was selected as the representative template for the cohort. The remaining T2w
images of each of the cohorts were registered to the representative template to
create BCR+ and BCR− atlases given by A+ and A− respectively.

A block matching strategy described in [4] was adopted to determine the
transformation parameters for the affine registration. Similarity between a block
from the moving image to all blocks of similar dimension in the fixed or the ref-
erence image was computed. The best corresponding block defined the displace-
ment vector for the affine transformation. Normalized cross correlation based
similarity was used to determine the block correspondences. The affine registra-
tion of the moving image to the reference image was followed with a B-spline [5]
based non-rigid registration. Segmented prostate masks were used to constrain
the registration in the volume of interest. The manually segmented masks of the
prostate capsules were given the same transformation as the registered images
to bring the prostate masks/surfaces in correspondence.

2.3 Spatially Contextual Surface of Interest (SOI)

To perform a statistical comparison of the prostate capsule shape between BCR+
and BCR− patients, atlas A+ created for BCR+ patients were registered to atlas
A− of the BCR− patients. All registered prostate capsules of both the BCR+
and BCR− groups were isotropically scaled to 0.3 mm3 resolution and trans-
formed into signed distance function. The signed distance representation gives
an implicit representation of the prostate boundary and aids in a t-test based
comparison of the shape in a non-parametric General Linear Model (GLM) based
t-test framework [6]. Statistically significant shape differences were quantified
with 5000 random permutation testing with the p-value being corrected for mul-
tiple comparison. A voxel was considered as belonging to a region exhibiting sta-
tistically significant differences between shapes for BCR+ and BCR− patients
if the p-value estimated by this extensive testing was less than 0.05. Signifi-
cant shape differences between BCR+ and BCR− cohorts were then quantified
as SOI. The entire framework for statistical shape differences quantification is
presented in Fig. 1.

2.4 Field Effect Induced Organ Distension (FOrge) Features

To quantify the irregular deformation of the prostate capsule in SOI, curvature
magnitude and surface normal orientation features were extracted. The surface
curvature and orientation features were however meaningful in spatially contex-
tual SOI which is significantly different between the BCR+ and BCR− cohorts.
To extract the curvature and surface orientation features from spatially contex-
tual SOI, all patients were rigidly registered to the BCR− template selected for
statistical comparison of BCR+ and BCR− cohorts. The SOI mask identified
via population based statistical comparison (as explained in Sect. 2.2) was then
registered to patient mask using a B-spline based registration. This ensures that
the patient mask was not deformed and remains un-affected. The registered mask
was then considered as the SOI for the patient for feature extraction.
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The surface normal orientation reflects the direction of the surface defor-
mation and the surface Gaussian curvature reflects corresponding magnitude.
Gaussian curvature and normal orientation features were extracted for every
vertex of the mesh. Kth Gaussian curvature discretized at vertex v was given by,

Kv = 2 × PI −
∑

∇
(vγ) (1)

where
∑

∇ is the summation of all facets and vγ is the orientation at v. For every
vertex normal orientation was represented in spherical coordinate system and θ
the angle between the projection of the normal vector in XY plane and X axis
and φ the angle between the projection of the normal vector in Y Z plane and
Z axis were extracted.

For every patient three arrays of curvature, θ and φ were created and statis-
tical measures like mean, standard deviation, inter-quartile range (Q1 and Q3),
range, skewness and kurtosis were extracted. Thus the dimension of feature vec-
tor for every patient was 21, coming from three features (curvature, θ and φ)
and seven statistical measures (mean, standard deviation, inter-quartile range
(Q1 and Q3), range, skewness and kurtosis) for each of the three features.

3 Experimental Results and Discussions

3.1 Data Description and Preprocessing

In this single center Institutional Review Board (IRB) approved study 874
patients were selected from a prostate MRI registry. Availability of complete
image datasets (T1w, T2w and ADC maps), no treatment for PCa before MRI;
presence of clinically localized PCa; Gleason score available from pretreatment
biopsy and/or from radical prostatectomy specimens; and post-treatment out-
come data including post-treatment PSA and a minimum of 3 years of follow-up
were used as inclusion criteria. Of the 874 patients in the registry, 80 cases met
these criteria. BCR+ and BCR− cases for atlas creation were selected from
these 80 patients. To reduce statistical biases of the atlases, an equal number of
patients in the BCR+ and BCR− cohorts (25 each); similar Gleason scores (6 to
9); and similar tumor stages (T2 to T3) were used to identify 50 patients. The
remaining 30 patients out of 80 were used for validation. The BCR+ patients
had a mean recurrence time of 18.5 months. The BCR− patients had a mean
follow-up time of 4.2 years. An experienced genitourinary radiologist with more
than 7 years of experience in reading prostate MRI reviewed the T1 and T2w
images before manually contouring the prostate gland on T2-weighted images.
Prior to performing the FOrge analysis, N4 bias field correction [7] was applied
to all T2w images.

3.2 Evaluation of Atlas Construction

The population based statistics used to identify spatially contextual SOI that
significantly differs between the two cohorts is however dependent on the quality
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of the registration of the atlases A+ and A−. The A+ and A− atlases registration
accuracy was evaluated in terms of Dice similarity coefficient (DSC) and mean
absolute surface distance (MASD). The DSC of A+ atlas was 0.98 ± 0.01 and
that of A− was 0.97 ± 0.01. The MASD of A+ atlas was 0.30 ± 0.11 mm and
that of A− atlas was 0.40 ± 0.14 mm. The registration accuracy for atlas creation
may suggest that the atlases were created sufficiently accurately for statistical
shape comparison.

3.3 Evaluation of FOrge Features from SOI vs Entire Capsule

The accuracy of FOrge features extracted from SOI are compared to the FOrge
features extracted from the entire mesh using a random forest (RF) classifier.
This is done to highlight the importance of extracting features from targeted
spatially constrained SOI that significantly differs between the two population
cohorts. The results are presented in Fig. 2.

Fig. 2. Comparison of classification accuracy between FOrge features extracted from
entire mesh and constrained SOI on the independent test set (n = 30).

The performance of a RF classifier trained on FOrge features from SOI com-
pared to the entire mesh is significantly better (p< 0.05) for accuracy, AUC,
sensitivity and specificity as observed in Fig. 2. This may suggest that to dis-
criminate BCR+ and BCR− population it is important to extract curvature and
normal features from targeted spatially contextual SOI.

The depth of the RF classifier was fixed to 2 and 10,000 trees were used
to prevent over fitting. RF Gini impurity index were then used to identify top
performing features from the training data (25 BCR+ and 25 BCR−). The fea-
ture dimension was then reduced to top 9 features to prevent over fitting and
improve accuracy. We used the RF Gini impurity score for feature selection as
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the feature distributions were not Gaussian and a non-parametric multi-variate
feature selection model was necessary. Most traditional feature selection meth-
ods cannot account for both non-parametric and multivariate feature selection
simultaneously unlike RF Gini impurity score. The Gini importance score for
the top 9 features are presented in Table 1. The figure showing the difference in
φ distribution between BCR+ and BCR− patients is presented in Fig. 3.

Fig. 3. BCR+ve and BCR−ve patients exhibits differential φ distribution in the SOI.
The left panel shows the SOI overlaid on a BCR+ve and middle panel shows the SOI
overlaid on a BCR−ve prostate cancer patients. The rightmost panel shows the overlay
of the φ feature distribution between BCR+ve and BCR−ve SOI.

Table 1. Gini importance score for top 9 features. Abbrevations used std = standard
deviation, Curv= curvature, krt = kurtosis

φ std Curv std Curv range Curv mean θ mean θ krt θ range φ range θ std

Gini score 0.090 0.079 0.072 0.071 0.067 0.056 0.055 0.046 0.043

As every tree in RF selects
√

features, fixing feature dimension to 9 ensured
that every tree in RF would have three features which in turn ensured that
every tree can grow to a depth of 2. A three-cross validation over the training
set resulted in an accuracy of 0.80 ± 0.21 and an AUC of 0.72 ± 0.11. Eventually
the entire training dataset is then used to build the classifier for the validation
set of 30 patients and the results are presented in Fig. 2. The RF classifier using
the FOrge features yielded an AUC = 0.72 and an accuracy of 0.78 ± 0.21 on
the test set (n = 30).

4 Conclusions

In this work we presented a new spatially contextual discriminative (FOrge)
shape features that captures prostate capsule deformation magnitude and orien-
tation in a SOI for predicting BCR. We have also shown that FOrge extracted
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from the entire prostate mesh had a significantly inferior performance com-
pared to a spatially localized region which was found to be significantly different
between the BCR+ and BCR− population cohorts.

We acknowledge that our study did have its limitations. As described in
the approach, the FOrge features are only predictive when extracted within
the SOI regions identified on the prostate surface. In other words, the precise
identification of the SOI is a critical step to ensure success of the approach.
Clearly we need to address the sensitivity of our features to changes in location
and contour of the SOI in future work. Additionally, we did not explicitly control
for peripheral and central gland tumors in this study. It is not clear whether
the FOrge features might be more or less predictive based off the geographical
location of the tumor in the prostate.

Another avenue for future research is to integrate a more traditional tumor
radiomics approach with the FOrge features to assess whether the combination
results in improved predictive performance compared to either approach indi-
vidually. Finally, a multi-site validation of the approach on a larger independent
cohort is needed to confirm the preliminary findings presented in this work.
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