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Abstract. We propose a novel, multi-task, fully convolutional network
(FCN) architecture for automatic segmentation of brain tumor. This net-
work extracts multi-level contextual information by concatenating hier-
archical feature representations extracted from multimodal MR images
along with their symmetric-difference images. It achieves improved seg-
mentation performance by incorporating boundary information directly
into the loss function. The proposed method was evaluated on the
BRATS13 and BRATS15 datasets and compared with competing meth-
ods on the BRATS13 testing set. Segmented tumor boundaries obtained
were better than those obtained by single-task FCN and by FCN with
CRF. The method is among the most accurate available and has rela-
tively low computational cost at test time.
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1 Introduction

We address the problem of automatic segmentation of brain tumors. Specifically,
we present and evaluate a method for tumor segmentation in multimodal MRI of
high-grade (HG) glioma patients. Reliable automatic segmentation would be of
considerable value for diagnosis, treatment planning and follow-up [1]. The prob-
lem is made challenging by diversity of tumor size, shape, location and appear-
ance. Figure 1 shows an HG tumor with expert delineation of tumor structures:
edema (green), necrosis (red), non-enhancing (blue) and enhancing (yellow). The
latter three form the tumor core.

A common approach is to classify voxels based on hand-crafted features and
a conditional random field (CRF) incorporating label smoothness terms [1,2].
Alternatively, deep convolutional neural networks (CNNs) automatically learn
high-level discriminative feature representations. When CNNs were applied to
MRI brain tumor segmentation they achieved state-of-the-art results [3–5].
Specifically, Pereira et al. [3] trained a 2D CNN as a sliding window classi-
fier, Havaei et al. [4] used 2D CNN on larger patches in a cascade to capture
both local and global contextual information, and Kamnitsas et al. [5] trained a
3D CNN on 3D patches and considered global contextual features via downsam-
pling, followed by a fully-connected CRF [6]. All these methods operated at the
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Fig. 1. An HG tumor. Left to right: Flair, T1, T1c, T2 and expert delineation; edema
(green), necrosis (red), non-enhancing (blue), enhancing (yellow).

patch level. Fully convolutional networks (FCNs) recently achieved promising
results for natural image segmentation [11,12] as well as medical image segmen-
tation [13–15]. In FCNs, fully connected layers are replaced by convolutional
kernels; upsampling or deconvolutional layers are used to transform back to the
original spatial size at the network output. FCNs are trained end-to-end (image-
to-segmentation map) and have computational efficiency advantages over CNN
patch classifiers.

Here we adopt a multi-task learning framework based on FCNs. Our model
is a variant of [14–16]. Instead of using 3 auxiliary classifiers for each upsampling
path for regularization as in [14], we extract multi-level contextual information
by concatenating features from each upsampling path before the classification
layer. This also differs from [16] which performed only one upsampling in the
region task. Instead of either applying threshold-based fusion [15] or a deep
fusion stage based on a pooling-upsampling FCN [16] to help separate glands,
we designed a simple combination stage consisting of three convolutional layers
without pooling, aiming at improving tumour boundary segmentation accuracy.
Moreover, our network enables multi-task joint training while [16] has to train
different tasks separately, followed by a fine-tuning of the entire network.

Our main contributions are: (1) we are first to apply a multi-task FCN frame-
work to multimodal brain tumor (and substructure) segmentation; (2) we pro-
pose a boundary-aware FCN that jointly learns to predict tumor regions and
tumor boundary without the need for post-processing, an advantage compared
to the prevailing CNN+CRF framework [1]; (3) we demonstrate that the pro-
posed network improves tumor boundary accuracy (with statistical significance);
(4) we compare directly using BRATS data; our method ranks top on BRATS13
test data while having good computational efficiency.

2 Variant of FCN

Our FCN variant includes a down-sampling path and three up-sampling paths.
The down-sampling path consists of three convolutional blocks separated by max
pooling (yellow arrows in Fig. 2). Each block includes 2–3 convolutional layers as
in the VGG-16 network [7]. This down-sampling path extracts features ranging
from small-scale low-level texture to larger-scale, higher-level features. For the
three up-sampling paths, the FCN variant first up-samples feature maps from the
last convolutional layer of each convolutional block such that each up-sampled
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Fig. 2. Variant of FCN. Images and symmetry maps are concatenated as the input to
the net [8]. Colored rectangles represent feature maps with numbers nearby being the
number of feature maps. Best viewed in color.

feature map (purple rectangles in Fig. 2) has the same spatial size as the input
to the FCN. Then one convolutional layer is added to each up-sampling path to
encode features at different scales. The output feature maps of the convolutional
layer along the three up-sampling paths are concatenated before being fed to
the final classification layer. We used ReLU activation functions and batch nor-
malization. This FCN variant has been experimentally evaluated in a separate
study [8].

3 Boundary-Aware FCN

The above FCN can already produce good probability maps of tumor tissues.
However, it remains a challenge to precisely segment boundaries due to ambiguity
in discriminating pixels around boundaries. This ambiguity arises partly because
convolution operators even at the first convolutional layer lead to similar values
in feature maps for those neighboring voxels around tumor boundaries. Accurate
tumor boundaries are important for treatment planning and surgical guaidance.
To this end, we propose a deep multi-task network.

The structure of the proposed boundary-aware FCN is illustrated in Fig. 3.
Instead of treating the segmentation task as a single pixel-wise classification
problem, we formulate it within a multi-task learning framework. Two of the
above FCN variants with shared down-sampling path and two different up-
sampling branches are applied for two separate tasks, one for tumor tissue clas-
sification (‘region task’ in Fig. 3) and the other for tumor boundary classification
(‘boundary task’ in Fig. 3). Then, the outputs (i.e., probability maps) from the
two branches are concatenated and fed to a block of two convolutional layers
followed by the final softmax classification layer (‘combination stage’ in Fig. 3).
This combination stage is trained with the same objective as the ‘region task’.
The combination stage considers both tissue and boundary information esti-
mated from the ‘region task’ and the ‘boundary task’. The ‘region task’ and
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Fig. 3. The structure of boundary-aware FCN. The two up-sampling branches in the
two FCNs are simply represented by the solid orange and blue lines.

the ‘combination stage’ task are each a 5-class classification task whereas the
‘boundary task’ is a binary classfication task. Cross-entropy loss is used for each
task. Therefore, the total loss in our proposed boundary-aware FCN is

Ltotal(θ) =
∑

t∈{r,b,f}
Lt(θt) = −

∑

t∈{r,b,f}

∑

n

∑

i

log Pt(lt(xn,i);xn,i, θt) (1)

where θ = {θr, θb, θf} is the set of weight parameters in the boundary-aware
FCN. Lt refers to the loss function of each task. xn,i is the i-th voxel in the
n-th image used for training, and Pt refers to the predicted probability of the
voxel xn,i belonging to class lt. Similarly to [15], we extract boundaries from
radiologists’ region annotations and dilate them with a disk filter.

In the boundary-aware FCN, 2D axial slices from 3D MR volumes are used as
input. In addition, since adding brain symmetry information is helpful for FCN
based tumor segmentation [8], symmetric intensity difference maps are combined
with original slices as input, resulting in 8 input channels (see Figs. 2 and 3).

4 Evaluation

Our model was evaluated on BRATS13 and BRATS15 datasets. BRATS13 con-
tains 20 HG patients for training and 10 HGs for testing. (The 10 low-grade
patients were not used.) From BRATS15, we used 220 annotated HG patients’
images in the training set. For each patient there were 4 modalities (T1, T1-
contrast (T1c), T2 and Flair) which were skull-stripped and co-registered. Quan-
titative evaluation was performed on three sub-tasks: (1) the complete tumor
(including all four tumor structures); (2) the tumour core (including all tumor
structures except edema); (3) the enhancing tumor region (including only the
enhancing tumor structure).

Our model was implemented with the Keras and Theano backend. For each
MR image, voxel intensities were normalised to have zero mean and unit variance.
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Networks were trained with back-propagation using Adam optimizer. Learning
rate was 0.001. The downsampling path was initialized with VGG-16 weights [7].
Upsampling paths were initialized randomly using the strategy in [17].

4.1 Results on BRATS15 Dataset

We randomly split HG images in the BRATS15 training set into three subsets at
a ratio of 6:2:2, resulting in 132 training, 44 validation and 44 test images. Three
models were compared: (1) variant of FCN (Fig. 2), denoted FCN; (2) FCN with
a fully-connected CRF [6]; (3) the multi-task boundary-aware FCN.

Firstly, FCN models were evaluated on the validation set during train-
ing. Figure 4(a) plots Dice values for the Complete tumor task for boundary-
aware FCN and FCN. Using boundary-aware FCN improved performance at
most training epochs, giving an average 1.1% improvement in Dice. No obvious
improvement was observed for Core and Enhancing tasks. We further performed
a comparison by replacing the combination stage with the threshold-based fusion
method in [15]. This resulted in Dice dropping by 15% for the Complete tumor
task (from 88 to 75), which indicates the combination stage was beneficial. We
experimented adding more layers to FCN (e.g., using four convolutional blocks in
downsampling path and four upsampling paths) but observed no improvement,
suggesting the benefit of boundary-aware FCN is not from simply having more
layers or parameters.

(a) (b) (c) (d)

Fig. 4. Validation results on complete tumor task. (a) Dice curves for boundary-aware
FCN and FCN on BRATS15; (b) boundary precision: percentage of misclassified pix-
els within trimaps of different widths; (c) Dice curves on BRATS13; (d) Trimap on
BRATS13.

The validation performance of both models saturated at around 30 epochs.
Therefore, models trained at 30 epochs were used for benchmarking on test data.
On the 44 unseen test images, results of boundary-aware FCN, single-task FCN
and FCN+CRF are shown in Table 1. The boundary-aware FCN outperformed
FCN and FCN+CRF in terms of Dice and Sensitivity but not in terms of Positive
Predictive Value.

One advantage of our model is its improvement of tumor boundaries. To show
this, we adopt the trimap [6] to measure precision of segmentation boundaries
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Table 1. Performance on the BRATS15 44 testing set

Method Dice Positive predictive value Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

FCN 88.1 70.9 72.5 92.2 82.7 79.7 86.0 67.5 70.5

FCN + CRF 87.7 70.9 72.5 93.2 82.7 79.7 84.5 67.5 70.5

Boundary-

aware FCN

88.7 71.8 72.5 90.1 80.4 77.9 88.7 72.0 72.3

for complete tumors. Specifically, we count the proportion of pixels misclassified
within a narrow band surrounding tumor boundaries obtained from the experts’
ground truth. As shown in Fig. 4(b), boundary-aware FCN outperformed single-
task FCN and FCN+CRF across all trimap widths. For each trimap width used,
we conducted a paired t-test over the 44 pairs, where each pair is the perfor-
mance values obtained on one validation image by boundary-aware FCN and
FCN. Small p-values (p < 0.01) in all 7 cases indicate that the improvements
are statistically significant irrespective of the trimap measure used. Example
segmentation results for boundary-aware FCN and FCN are shown in Fig. 5. It
can be seen that boundary-aware FCN removes both false positives and false
negatives for the complete tumor task.

We conducted another experiment without using symmetry maps. Boundary-
aware FCN gave an average of 1.3% improvement in Dice compared to FCN.
The improvement for boundaries was statistically significant (p < 0.01).

4.2 Results on BRATS13 Dataset

A 5-fold cross validation was performed on the 20 HG images in BRATS13.
Training folds were augmented by scaling, rotating and flipping each image.
Performance curves for Dice and trimap show similar trends as for BRATS15
(Fig. 4(c)–(d)). However, using CRF did not improve performance on this
dataset, suggesting boundary-aware FCN is more robust in improving bound-
ary precision. The improvement of trimap is larger than for BRATS15. It is
worth noting that, in contrast to BRATS15 (where ground truth was produced
by algorithms, though verified by radiologists), the ground truth of BRATS13
is the fusion of annotations from multiple radiologists. Thus the improvement
gained by our method on this set is arguably more solid evidence showing the
benefit of joint learning, especially on improving boundary precision.

Our method is among the top-ranking on the BRATS13 test set (Table 2).
Tustison et al. [2], the winner of BRATS13 challenge [1], used an auxiliary health
brain dataset for registration to calculate the asymmetry features, while we only
use the data provided by the challenge. Our model is fully automatic and overall
ranked higher than a semi-automatic method [9].

Regarding CNN methods, our results are competitive with Pereira et al. [3]
and better than Havaei et al. [4]. Zhao et al. [10] applied joint CNN with CRF
training [18]. Our boundary-aware FCN gave better results without the cost



Boundary-Aware Fully Convolutional Network 439

Table 2. BRATS13 test results (ranked by online VSD system)

Method Dice Positive Predictive Value Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Pereira et al.

[3]

88 83 77 88 87 74 89 83 81

Boundary-

aware FCN

88 83 76 87 87 73 90 81 81

Zhao et al. [10] 87 82 76 91 86 77 84 81 77

FCN 87 82 75 85 87 72 89 79 80

Kwon et al. [9] 88 83 72 92 90 74 84 78 72

Havaei et al. [4] 88 79 73 89 79 68 87 79 80

Tustison et al.

[2]

87 78 74 85 74 69 89 88 83

Meier [1] 82 73 69 76 78 71 92 72 73

Reza [1] 83 72 72 82 81 70 86 69 76

(a) (b) (c) (d) (e)

Fig. 5. Example results. Left to right: (a) T2, (b) T1c, (c) Flair with ground truth,
(d) FCN results, (e) boundary-aware FCN results. Best viewed in colour.

of tuning a CRF. A direct comparison with 3D CNN is not reported here as
Kamnitsas et al. [5] did not report results on this dataset.

One advantage of our model is its relatively low computational cost for a new
test image. Kwon et al. [9] reported an average running time of 85 min for each
3D volume on a CPU. For CNN approaches, Pereira et al. [3] reported an average
running time of 8 min while 3 min was reported by Havaei et al. [4], both using
a modern GPU. For an indicative comparison, our method took similar compu-
tational time to Havaei et al. [4]. Note that, in our current implementation, 95%
of the time was used to compute the symmetry inputs on CPU. Computation of
symmetry maps parallelized on GPU would provide a considerable speed-up.
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5 Conclusion

We introduced a boundary-aware FCN for brain tumor segmentation that
jointly learns boundary and region tasks. It achieved state-of-the-art results
and improved the precision of segmented boundaries on both BRATS13 and
BRATS15 datasets compared to the single-task FCN and FCN+CRF. It is
among the top ranked methods and has relatively low computational cost at
test time.

Acknowledgments. This work was supported partially by the National Natural Sci-
ence Foundation of China (No. 61628212).

References

1. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image
segmentation benchmark (BRATS). Med. Imaging 34(10), 1993–2024 (2015)

2. Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric mul-
timodal templates and concatenated random forests for supervised brain tumor
segmentation (simplified) with ANTsR. Neuroinformatics 13(2), 209–225 (2015)

3. Pereira, S., Pinto, A., Alves, V., et al.: Brain tumor segmentation using convolu-
tional neural networks in MRI images. Med. Imaging 35(5), 1240–1251 (2016)

4. Havaei, M., Davy, A., Warde-Farley, D., et al.: Brain tumor segmentation with
deep neural networks. Med. Image Anal. 35, 18–31 (2017)

5. Kamnitsas, K., Ledig, C., Newcombe, V.F., et al.: Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal.
36, 61–78 (2017)
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