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Abstract. We propose a convolutional neural network (CNN) based
solution for temporal image interpolation in navigated 2D multi-slice
dynamic MRI acquisitions. Such acquisitions can achieve high contrast
time-resolved volumetric images without the need for breath-holding,
which makes them essential for quantifying breathing induced motion for
MR guided therapies. Reducing the number of navigator slices needed in
these acquisitions would allow increasing through-plane resolution and
reducing overall acquisition time. The proposed CNN achieves this by
interpolating between successive navigator slices. The method is an end-
to-end learning based approach and avoids the determination of the
motion field between the input images. We evaluate the method on a
dataset of abdominal MRI sequences acquired from 14 subjects during
free-breathing, which exhibit pseudo-periodic motion and sliding motion
interfaces. Compared to an interpolation-by-registration approach, the
method achieves higher interpolation accuracy on average, quantified in
terms of intensity RMSE and residual motion errors. Further, we analyze
the differences between the two methods, showing the CNN’s advantages
in peak inhale and exhale positions.

1 Introduction

Dynamic volumetric magnetic resonance imaging (4D-MRI) is an essential tech-
nology for non-invasive quantification of breathing induced motion of anatomical
structures [1]. It is of particular importance for learning motion models, which
are used for planning and guiding radiotherapy [2] and high intensity focused
ultrasound therapy [3]. One particular approach to 4D-MRI is navigated 2D
multi-slice acquisition, which is performed by continuously switching between
acquiring a navigator slice Nt (at same anatomical location) and a data slice
Dp (at different locations p), e.g. for 3 locations the acquisition sequence would
be {N1,D1,N2,D2,N3,D3,N4,D1, . . . }. 3D MRI for different time points are
retrospectively created by stacking the data slices enclosed by navigators that
show the same organ position. The main advantages of 4D-MRI are that it
allows imaging without breath-holding, which facilitates quantifying irregular
motion patterns over long periods and does not impose additional discomfort to
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the patient. Compared to other temporal MRI techniques [4], the chosen image
protocol yields higher inflow contrast which provides stronger image contrast
between vessels and soft tissue, an important advantage for radiotherapy appli-
cations.

Reducing the number of navigator acquisitions without sacrificing tem-
poral resolution is very attractive. For example, changing to a scheme
where 3 data slices are acquired between navigators would reduce the
required acquisition time by 2/3, which could be used for improving
through plane resolution while keeping the same total acquisition time (same
FOV covered by 6 slices {N1,D1,D2,D3,N2,D4,D5,D6,N3,D1 . . . }) or for
reducing overall acquisition time while keeping the same plane thickness
({N1,D1,D2,D3,N2,D4,D1 . . . }). Accurate temporal interpolation of the nav-
igators can achieve such a reduction.

In this work we propose a convolutional neural network (CNN) for temporal
interpolation of 2D MRI slices. The network takes as input the images of the
same slice acquired at different time points, e.g. N1,N3,N5 and N7, and inter-
polates the image in between, e.g. N4. The proposed network is a basic fully
convolutional architecture that takes multiple images and produces an image of
the same size. We evaluate the proposed method with a dataset composed of
navigator images from 4D-MRI acquisitions in 14 subjects with a mean tem-
poral resolution of 372 ms. We compare our algorithm with a state-of-the-art
registration based approach, which interpolates between successive time points
using the displacement field estimated by a non-rigid registration algorithm.
The results suggest that the proposed CNN-based method outperforms the reg-
istration based method. Analyzing the differences, we observed that the net-
work produces more accurate results when interpolating at peak inhalation and
exhalation points, where the motion between time points is highly non-linear.
Registration-based interpolation that considers multiple past and future images
might be able to account for some of this non-linear motion, but will require
a more sophisticated approach including inversion of non-rigid transformation
fields (potentially introducing errors) and thus much higher computation times.

Related Work: Temporal interpolation in MRI has been studied in the liter-
ature for the problem of dynamic MRI reconstruction. Majority of these works
interpolate k-space data [4] or use temporal coherency to help reconstruction [5].
Sampling patterns in the k-space is an important part of these methods while
the proposed method here, directly works on the image space. On the other
hand, 4D-MRI reconstruction methods without 2D navigators have also been
proposed, relying, for example, on an external breathing signal [6] or the consis-
tency between neighbouring data slices after manifold embedding [7]. However,
continuously observing organ motion through navigators potentially provides
superior reconstructions.

Temporal interpolation in the image space has been mostly studied for
ultrasound imaging. Several works tackled this problem by explicitly track-
ing pixel-wise correspondences in the input images. These include approaches
based on optical flow estimation [8], non-rigid registration [9,10] and motion
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compensation [11]. Authors in [12] interpolate the temporal intensity variation
of each pixel with sparse reconstruction using over-complete dictionaries.

Following the success of CNNs several computer vision studies proposed tem-
poral interpolation in non-medical applications. Authors in [13] use CNN-based
frame interpolation as an intermediate step for estimating dense correspondences
between two images. Their CNN architecture is inspired by [14], where the goal
is dense optical flow estimation. Variants of deep neural networks that have been
proposed for the closely related task of future frame prediction in videos include
recurrent neural networks [15] and an encoder-decoder style network with a
locally linear latent space [16]. Authors in [17] and [18] use generative adversar-
ial networks [19] and variational autoencoders [20] to predict future video frames
and for facial expression interpolation respectively.

2 Method

CNN-Based Temporal Interpolation: The general architecture of the pro-
posed temporal interpolation CNN is shown in Fig. 1. The network is trained to
increase the temporal resolution of an input image sequence (N1, N3, N5, . . . ) by
generating the intermediate images (N2, N4, . . . ). For generating the intermedi-
ate image at any time instance, 2T input images, T from the past and T from the
future, are concatenated in the order of their time-stamps, and passed through
multiple convolutional blocks in order to generate the target image. Each con-
volutional block consists of a spatial dimension preserving convolutional layer,
followed by a rectified linear unit (ReLU) activation function. As the network
is fully convolutional, it can be used to temporally interpolate image sequences
of any spatial resolution without retraining. During training we optimize a loss
function L between the ground truth images Nt and the interpolated ones N̂t,
i.e. L(Nt, N̂t). We experimented with different loss functions that we detail in
Sect. 3.

Fig. 1. Architecture of the temporal interpolation CNN.

Long range spatial dependencies are captured by increasing the convolution
kernel sizes or the depth of the network. Other ways to do this, such as pooling
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or higher stride convolutions, may reduce the spatial dimensionality in the hid-
den layers, which might lead to losing high-frequency details in the generated
images. These alternatives often require skip connections [13] or multi-resolution
approaches [17] to preserve details.

Some of the previously proposed CNN-based methods for frame interpolation
in computer vision, such as [13], use only the immediate neighbours for interpo-
lation, i.e. T = 1. Due to lack of additional temporal context, these approaches
may be unable to resolve certain motion ambiguities and capture non-linearities.
In the proposed algorithm, we consider larger temporal context similar to [17],
to deal with such challenges. Indeed, our experiment analysis demonstrates the
benefits of using T > 1.

Registration-Based Interpolation: We employ the widely used interpolation-
by-registration approach to compare with the proposed CNN. The method is
based on the principles proposed in [9], however, we employ a recently devised
image registration method that can cope with sliding boundaries and has a
state-of-the-art performance for 4D-CT lung and 4D-MRI liver image registra-
tion [21]. It uses local normalized cross correlation as image similarity measure
and isotropic total variation for spatial regularization besides a linearly interpo-
lated grid of control points G with displacements U.

For T = 1, intermediate slices Nt are created by registering the enclosing
slices (Nt−1, Nt+1) and then applying half of the transformation to the moving
image. To improve SNR and avoid possible bias, we make use of both transforma-
tions (Nt+1 → Nt−1, Nt−1 → Nt+1) and average the resulting two interpolated
slices. For T=2, 3 moving images (Nt−2, Nt+1, Nt+2) are registered to fixed
image Nt−1, providing grid displacements Ut−2, Ut+1, Ut+2. Per grid point and
displacement component, a third order polynomial is fitted to the displacement
values to deduce Ut. Finally the inverse transformation U−1

t is approximated
and applied to N̄t−1 (mean of the fixed and warped moving images) to provide
the interpolated image.

3 Experiments and Results

Dataset: The dataset consists of temporal sequences of sagittal abdominal MR
navigator slices from 14 subjects. Images were acquired on a 1.5T Philips Achieva
scanner using a 4-channel cardiac array coil, a balanced steady-state free pre-
cession sequence, SENSE factor 1.7, 70◦ flip angle, 3.1 ms TR, and 1.5 ms TE.
Spatial resolution is 1.33 × 1.33 × 5 mm3 and temporal resolution is 2.4–3.1 Hz.
For each subject the acquisition was done over 3 to 6 blocks with each block
taking 7 to 9 min and with 5 min resting periods in between. Each block con-
sists of between 1100 and 1500 navigator images. We divide the 14 subjects
into two groups of 7 subjects each, which are used for two-fold cross-validation
experiments.

Training Details: The network is implemented in Tensorflow [22]. The archi-
tecture parameters (see Fig. 1) are empirically set to a depth n = 9, kernel sizes
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(f1, f2, . . . f9) = (9,7,5,3,3,3,3,3,3), and (D1, D2,. . . D8) = (32,16,8,8,8,8,8,8). The
weights are initialized as recommended in [23] for networks with ReLUs as acti-
vation functions. We use the Adam optimizer [24] with a learning rate of 1e−4
and set the batch size to 64. Per block, the image intensities are linearly normal-
ized to their 2 to 98%tile range. The CNN trains in about 48 h. No overfitting is
observed, with training and testing errors being similar (mean RMSE +2.1%).

Evaluation: The interpolation performance was quantified by (i) the RMSE
between the intensities of the interpolated and the ground truth image, and (ii)
the residual mean motion when registering the interpolated image to the ground
truth image. We summarize the performance by the mean, median and 95%tile
after pooling all test results.

We evaluated the benefit of providing additional temporal context for inter-
polation by comparing the proposed CNN’s performance using T = 1 and T = 2.
Setting T = 2, we then studied the effect of training the network on 3 differ-
ent loss functions, namely L2 (‖Nt − N̂t‖2), L1 (‖Nt − N̂t‖1), and L1-GDL
(L1 + ‖∂Nt/∂x − ∂N̂t/∂x‖1 + ‖∂Nt/∂y − ∂N̂t/∂y‖1), where GDL stands for the
Gradient Difference Loss [17] that is shown to improve sharpness and correct
edge placement. In GDL computation, the target image gradients are computed
after denoising with a median filter of size 5× 5 and the gradient operators are
implemented with first order finite differences. The GDL is equally weighted
with the reconstruction cost, as in [17].

Results: We evaluated the performance of the registration algorithm in aligning
2D liver MR sequences based on manually annotated landmarks inside the liver
(20 landmarks from sequences of 10 subjects, 300 frames each). Its mean reg-
istration accuracy was 0.75 mm and average runtime per slice registration was
1.19 s on a 2 processor machine with Intel i7-3770K CPUs @ 3.50 GHz.

Table 1. Intensity RMSE and residual mean motion comparison.

Method RMSE ResMotion [mm] Runtime [s]

Mean Median 95% Mean Median 95%

(a) Interpolation by registration versus CNN

Registration T=1 8.45 7.97 12.86 0.45 0.32 1.14 2.377

Registration T=2 8.34 7.84 12.30 0.36 0.29 0.80 94.691

CNN T=1, L2 8.46 7.98 12.68 0.42 0.30 1.08 0.006

CNN T=2, L2 7.92 7.63 11.62 0.30 0.24 0.66 0.007

CNN T=3, L2 7.99 7.66 11.67 0.31 0.25 0.67 0.007

(b) CNN trained on different loss functions

CNN T=2, L2 7.92 7.63 11.62 0.30 0.24 0.66 0.007

CNN T=2, L1 7.93 7.61 11.64 0.31 0.24 0.70 0.007

CNN T=2, L1-GDL 9.44 8.95 12.58 0.31 0.24 0.71 0.007
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Fig. 2. Relative performance of the two methods along several breathing cycles. Labels
a-c indicate rows in Fig. 3 showing the corresponding images.

Fig. 3. Visualization of cases marked in Fig. 2. Each row (from left to right): CNN
(T = 2, L2) result and error image, registration result and error image. Rows (a, b)
show examples of the CNN performing better at an (a) end-inhale and (b) end-exhale
position, while row (c) shows the registration performing better when the motion is
high and linear.
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Table 1 summarizes the two-fold cross-validation interpolation results. The
performances of the registration and the CNN (T = 1) are similar, with the
latter needing much less time for interpolation. Using CNN (T = 2) leads to an
improvement in mean RMSE and mean residual motion by 6.27% and 33.33%
respectively. More temporal context (CNN, T = 3) does not improve results fur-
ther. L1 and L2 losses lead to similar results, while the introduction of the GDL
worsens the RMSE. The relevant evaluation measure for 4D reconstruction, the
residual mean motion, seems insensitive to the choice of training loss function.

To gain insight about the method’s performance, we extracted the superior-
inferior mean motion within the liver by registering all images to a reference
end-exhale image, see Fig. 2. Then we marked cases were the RMSE values of
CNN and registration differed substantially. It can be observed that CNN had
substantially lower RMSE values for most end-inhale extrema (positive SI dis-
placements) while a registration was better for a few frames during the high
motion phase. Example interpolated images and their differences to the ground
truth image are shown in Fig. 3 for the selected cases with large difference in
RMSE. The difference is also visually apparent.

4 Conclusion

In this article, we proposed a convolutional neural network for temporal inter-
polation of 2D MR images. Experimental results suggest that the CNN based
method reaches a higher accuracy than interpolation by non-rigid registration.
The difference is especially pronounced at the peak inhalation and exhalation
points. We believe the proposed method can be useful for 4D MRI acquisition.
For the same acquisition time, it can improve the through-plane resolution or
SNR, and for the same through-plane resolution and SNR, it can reduce the
acquisition time. The proposed method is evaluated using retrospective data in
this work. In our future work, we will extend this to prospective evaluation with
new data acquisitions to quantify improvements on through-plane resolution and
acquisition time reduction.

The results also suggest that there is room for improvement. Better network
architectures [14–18] and objective functions [17] might preserve high-frequency
details better, which will be examined in the continuation of this work. Lastly,
we demonstrated the temporal interpolation for the problem of interpolating
navigator slices in 4D MRI. The same methodology can also be used for tempo-
ral interpolation of segmentation labels for more accurate object tracking and
longitudinal studies with irregular temporal sampling.
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