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Abstract. Cardiac magnetic resonance (CMR) can be used for quan-
titative analysis of heart function. However, CMR imaging typically
involves acquiring 2D image planes during separate breath-holds, often
resulting in misalignment of the heart between image planes in 3D. Accu-
rate quantitative analysis requires a robust 3D reconstruction of the heart
from CMR images, which is adversely affected by such motion artifacts.
Therefore, we propose a fully automated method for motion correction of
CMR planes using segmentations produced by fully convolutional neural
networks (FCNs). FCNs are trained on 100 UK Biobank subjects to pro-
duce short-axis and long-axis segmentations, which are subsequently used
in an iterative registration algorithm for correcting breath-hold induced
motion artifacts. We demonstrate significant improvements in motion-
correction over image-based registration, with strong correspondence to
results obtained using manual segmentations. We also deploy our auto-
matic method on 9,353 subjects in the UK Biobank database, demon-
strating significant improvements in 3D plane alignment.

1 Introduction

Cardiac magnetic resonance (CMR) is an established clinical imaging technique
for the assessment of cardiovascular disease. Three-dimensional (3D) reconstruc-
tion from multiplanar short-axis (SA) and, orthogonal to these, long-axis (LA)
cine CMR can be used for the quantitative analysis of heart function, including
volumetric measurements [7] and cardiac motion [1].

Current clinical protocols typically require a subject to take a separate
breath-hold for the acquisition of each image plane over the cardiac cycle. Vari-
ation in breath-hold positions for the acquisition of different planes alters the
position of the heart with respect to the scanner, resulting in misalignment of
the cardiac geometry between image planes. These motion artifacts can cause
errors in the 3D reconstruction of relevant cardiac structures from these image
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planes including the left-ventricle (LV) myocardium and blood-pool, and can
therefore adversely affect the subsequent analysis of heart function.

CMR Motion Artifacts: CMR image acquisition is typically gated by an
electrocardiogram (ECG). ECG-gating allows for temporal frames to be acquired
at corresponding phases of the cardiac cycle for each image plane. An implication
of ECG gating is that the contractile state and resulting shape of the heart
is fixed for each respective phase of the cardiac cycle. As a result, the heart
undergoes an approximately rigid transformation between different breath-hold
positions, and mainly a translation in the craniocaudal direction [5]. However,
the field of view of standard CMR images typically includes surrounding features
within and including the rib cage. Taken as a whole, these features undergo a
non-rigid deformation between different breath-holds. Therefore, when applying
rigid registration to align standard LA and SA images, the non-rigid deformation
of the image content under different breath-holds is not adequately modelled and
can result in poor alignment of the myocardium.

Related Work: Previous work to correct breath-hold induced motion artifacts
includes the minimisation of a global cost function by rigidly registering together
2D LA and SA images [4], or their local phase transform [12]. However, with-
out cropping the images to a tighter region around the heart, this approach
suffers from the problem of non-rigid deformation of features surrounding the
heart. Another approach has been to register 2D images to a simultaneously
acquired 3D image volume to take into account through-plane rotations and
translations [13]. This approach is also susceptible to non-rigid deformation of
features around the heart under different breath-holds, and requires a time-
consuming 3D scan. Mesh-based methods have enforced smoothness of a 3D
mesh fitted to SA myocardial contours [10], although this approach disregards
the 3D anatomical information provided by combining LA and SA images. For
3D/3D registration of cardiac CT volumes, identification of cardiac geometry
has been used to overcome limitations of image-to-image registration [6].

Contributions: Intuitively, if the geometry of the heart at a given cardiac phase
can be accurately identified in the LA and SA views, then a rigid registration
could be applied to optimize alignment of the 3D heart geometry from all images,
without issues arising due to non-rigid deformation of background features. A
common representation of cardiac anatomy is the use of segmentation labels.
Typically, manual segmentation is required to produce labels, but processing
large datasets in this way can be prohibitively time-consuming and prone to
inter-observer error. To overcome this problem, Fully Convolutional Neural Net-
works (FCNs) have recently produced state-of-the-art results in cardiac segmen-
tation [11]. In this paper we present a method for breath-hold induced motion
artifact correction using automatic myocardial segmentations as the input to a
rigid registration algorithm. Specifically we present:

– FCNs trained separately on LA and SA images to produce high accuracy
labels of LV myocardium and blood-pool in multiple image planes;
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– An iterative algorithm to correct motion artifacts by aligning LA and SA
segmentations of the LV myocardium and blood-pool;

– A comparison of automatic segmentation-based alignment, manual
segmentation-based alignment, and image-based alignment on UK Biobank
data.

2 Materials and Methods

2.1 Image Data

SA and LA CMR images were used from a subset of the UK Biobank database1

(see [7] for full CMR protocol). Typically 10–12 SA planes and, orthogonal to
these, three LA planes comprising the 2-chamber (2Ch), 3-chamber (3Ch) and 4-
chamber (4Ch) views were available for each subject. The SA images have an in-
plane resolution of 1.8 mm and slice thickness of 8 mm, while the LA images have
in-plane resolution of 1.8 mm and slice thickness of 6 mm. The SA and LA views
were segmented (see Sect. 3.1) producing a LV blood-pool label = 1, myocardium
label = 2, and background label = 0. Note that the right ventricle was excluded
since its inclusion generally produced worse results for the registration due to
greater segmentation ambiguities caused by partial-volume effects.

2.2 Segmentation Network

Deep convolutional neural networks (CNNs) have emerged in recent years as a
powerful method to learn image features for tasks such as image classification
[9] and segmentation [3,8]. Networks used for image classification such as the
VGG-net [9] learn image features through cascaded layers of increasingly coarse
feature maps connected via combinations of convolutions and pooling operators,
with an output dimensionality equal to the number of image classes. The FCN
[3] and U-net [8] architectures, on the other hand, produce pixel-wise predictions
of image labels by up-sampling coarse feature maps from different levels of the
network to an output with the resolution of the input images.

Problem Formulation: Let x be an image and y be its corresponding pixel-
wise label map, where a training set S consists of pairs of images and label maps,
S = {xi|i = 1, 2, . . . , N ; yi|i = 1, 2, . . . , N}. Supervised learning is performed to
estimate the network parameters, Θ, to predict label map yi of image xi in the
training set, by optimising the cross-entropy loss function

min
Θ

L(Θ) = −
∑

i

∑

j

logP (yi,j |xi, Θ), (1)

where j denotes the pixel index and P (yi,j |xi, Θ) denotes the softmax probability
produced at pixel j for image (and corresponding label map) i.

1 https://www.ukbiobank.ac.uk.

https://www.ukbiobank.ac.uk
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Network Architecture: A VGG-like network with FCN architecture is used
for the automatic segmentation of the LV myocardium and blood-pool, as shown
in Fig. 1. Batch-normalisation (BN) is used after each convolutional layer, and
before a rectified linear unit (ReLU) activation. The BN operation removes inter-
nal covariate shift, improving training speed.

Fig. 1. The VGG-like FCN architecture with 17 convolutional layers used for segmen-
tation. Feature map volumes are colour-coded by size, reported above the volumes.

As shown in Fig. 1, input images have pixel dimensions 224×224. Every layer
in the diagram prefixed by “C” performs the operation: convolution → BN →
ReLU, with the exception of C15 and C17. The (filter size/stride) is (3×3/1) for
layers C1 to C13, except for layers C3, C5, C8 and C11 which have (3 × 3/2).
The arrows represent (3 × 3/1) convolutional layers (C14a − e) followed by a
bilinear up-sampling (up) layer with a factor necessary to achieve feature map
volumes with size 224 × 224 × 64, all of which are concatenated into the orange
feature map volume. C15 and C16 are (1×1/1) convolutional layers, where C15
performs convolution → linear activation. C17 applies a (1 × 1/1) convolution
with a pixel-wise softmax activation, producing the green feature map volume
with a depth = 3, corresponding to the number of image labels.

2.3 Multiplanar Registration Algorithm

An iterative algorithm was developed for the registration of SA and LA images
in 3D using the automatic segmentations. Similarly to [12], a global convergence
is reached by iteratively registering each image plane to its intersection with the
other image planes, which are kept fixed in space. Each cycle over all N image
planes (from both SA and LA views) constitutes one iteration.

Registering segmentations is advantageous since it allows a the use of a com-
putationally efficient similarity measure, such as the Sum of Squared Differences
(SSD). Let Si,j denote the segmented image at slice i and iteration j, and let Ŝi,j

denote the segmented image computed from the other image planes intersecting
with Si,j . Nearest-neighbour interpolation of the intersecting planes was used in
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order to preserve the segmentation labels of the myocardium and blood-pool.
Gradient descent was used to minimise SSD,

E(Φi,j , Si,j) =
∑

k

(Si,j(Φi,j) − Ŝi,j)2, (2)

where k indexes the image pixels, and Φi,j = {Δxi,j ,Δyi,j} are the translation
parameters applied to transform Si,j . Only in-plane translations were consid-
ered as minimal in-plane rotation was assumed [5]. Additionally, through-plane
translation/rotation was assumed to be minimal relative to the slice thicknesses,
which were 8 mm and 6 mm for the SA and LA planes, respectively [5].

To preserve the segmentation labels at each iteration, the translations pro-
duced in Eq. 2 are rounded to the nearest whole-pixel increment. We denote
these whole-pixel translations by Φp

i,j = {Δxp
i,j ,Δyp

i,j}. Under this constraint,
the above procedure was performed until M iterations where the translation
norm of all planes, N , summed to zero,

N∑

i

‖Φp
i,M‖ = 0 (3)

At this point, the final translation for slice i from its original position was
computed as the summation over all iterations,

Φf
i =

M∑

j

Φp
i,j , (4)

which was used to align the original CMR images and segmentations. Iterating
over slice-wise sub-problems in this way to find the final translation parameters
for each slice, i, is akin to finding a global minimum [2] for a cost function:

EG(Φf
1 , Φf

2 , . . . , Φf
N ;S1, S2, . . . , SN ) =

N∑

i

E(Φp
i , Si). (5)

3 Experiments and Results

3.1 Segmentation

Pre-processing: A set of 100 subjects was randomly sampled from the UK
Biobank database and expert manual segmentations of the LA and SA planes
were created in ITK-SNAP2 with labels described in Sect. 2.1. For the SA planes,
approximately 1000 end-diastolic (ED) SA images were segmented, as well as 100
ED LA images in each LA view. All images and labels were reshaped to 224×224
pixels by zero-padding. Image pixel dimensions varied between subjects, with a
mean of 190 pixels, a maximum of 210 and a minimum of 132.

2 http://www.itksnap.org.

http://www.itksnap.org
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Training: Separate networks (using the architecture in Fig. 1) were trained for
the (i) SA, (ii) 2Ch, (iii) 3Ch, and (iv) 4Ch views. The data were split into
80% training and 20% validation datasets. Mini-batches were used to train each
network with batch sizes of 20 and 5 for (i) and (ii)–(iv), respectively. On-the-fly
data augmentation was used for each mini-batch, with random rotation, scaling
and translation applied to the images. Training was run with a learning rate of
0.001 for 500 epochs after which the change in validation accuracy was negligible.

Assessment: Dice score was used to compare the overlap of the generated labels
to the ground truth labels in the validation data. Furthermore, intra-observer
variability was assessed by comparing the manual validation segmentations to a
second round of segmentations performed by the same expert.

Results: In Table 1, the intra-observer Dice scores are slightly higher than
that of the FCN output for both labels, by approximately 1% in both SA and
LA views. This demonstrates the FCNs’ consistency in segmenting both the
myocardium and blood-pool in all views. Performance of FCNs trained on the
LA views was similar to that trained on the SA view despite far fewer images in
the training set. This is likely due to the greater variation in SA image content,
which varies from base to apex planes. The blood-pool Dice score was higher for
the LA views compared to SA. Absence of papillary muscles in the 4Ch view
may explain the higher myocardium Dice score than the 2Ch and 3Ch views.

Table 1. The Dice scores achieved for the 4 FCN networks in the ED LV myocardium
and blood-pool on the validation data.

Label (i) SA (ii) LA 2Ch (iii) LA 3Ch (iv) LA 4Ch

Myocardium 0.821 0.825 0.821 0.846

Intra-observer 0.830 0.828 0.831 0.851

Blood-pool 0.948 0.968 0.959 0.966

Intra-observer 0.957 0.971 0.965 0.975

3.2 Motion Correction

Pre-processing: Two additional sets of 20 subjects were curated from the UK
Biobank database to assess the motion correction algorithm. The first 20 subjects
(Set 1) were selected based on visual inspection for having LA and SA images
with negligible motion artifacts. The second 20 subjects (Set 2) were selected
based on having visibly moderate to severe motion artifacts.

Performance Assessment: A comparison was made between four methods:
(a) no registration; (b) image-based (IB) registration; (c) segmentation-based
registration using manual segmentation (SB-manual); and (d) segmentation-
based registration using the FCN output (SB-FCN). Results for each method on
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Set 1 and Set 2 are shown in Table 2. For the IB registration, the same iterative
approach was used as described in Sect. 2.3, except with a Normalised Mutual
Information similarity measure on image intensities, and a maximum number of
iterations set to M = 5. Convergence of SB registrations was typically achieved
within 3 iterations. The mean distance in pixels between the endocardial con-
tours (MCD) from the LA versus SA planes was used to assess the registration
results of the different methods. Note that manual segmentations were compared
for (a)–(c), and the FCN segmentations were used for (d). Additionally, the SB-
FCN method was assessed on 9,353 subjects with CINE MRI scans in the UK
Biobank database (‘UKBB’ in Table 2).

To assess the smoothness and anatomical accuracy of the 3D reconstruction,
a statistical shape model (SSM) LV mesh was fitted to the SA myocardium
segmentations in 3D before and after alignment [1]. The Dice score between the
fitted SSM and SA LV myocardium segmentation is a measure of integrity for
further quantitative analysis, for example to analyse 3D motion.

For comparisons within Set 1, Set 2 and UKBB, a two-tailed paired t-test was
used to determine significant differences between normally distributed samples,
and the Wilcoxon signed ranked test for non-normally distributed samples. For
Comparison between Set 1 and Set 2, a two-tailed unpaired t-test and the Mann-
Whitney U test were used for normally and non-normally distributed samples,
respectively. Normality was tested using the Shapiro-Wilk test.

Table 2. The mean distance between endocardial contours and the SSM Dice scores
for the different experiments. Approximate processing time per subject for (automatic
or manual) segmentation and registration is shown for (c) and (d).

Experiment MCD (pixels) Mean SSM Dice score Time

Set 1 Set 2 UKBB Set 1 Set 2 UKBB (mins)

(a) None 1.09 2.13† 1.45 0.903 0.837† 0.851 -

(b) IB 1.09 1.87† - 0.891 0.839† - -

(c) SB-manual 1.02 1.16 - 0.899 0.886 - 25

(d) SB-FCN 0.91 1.04 1.02∗∗ 0.885∗ 0.879 0.869∗∗ 2

Results: Significant differences are reported for p < 0.01. Referring to Table 2,
for Dice scores in Set 1, there were significant differences between both (a) and
(c) compared to (d) (∗). There were no significant differences in MCD between
them, however, suggesting similar alignment of Set 1 using all methods. The
lower Dice score of the SB-FCN method is addressed in the Sect. 4.

There was both a significant increase in MCD and decrease in Dice score for
methods (a) and (b) on Set 2 (†) compared to (a) and (b) on Set 1 as well as
(c) and (d) on Set 2. Conversely, there was no significant difference in MCD and
Dice score between (c) and (d) on Set 2 (bold) compared to (c) and (d) on Set 1.
This suggests that (c) and (d) produce as good results on Set 2 as they do on Set
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1, demonstrating their ability to correct moderate to severe artifacts. Figure 2
shows results for a case with severe motion artifacts, where method (b) fails to
align the 3D geometry, but both (c) and (d) succeed. Finally for UKBB, SB-FCN
(∗∗) significantly improved MCD and Dice scores compared to no alignment.

Fig. 2. For a subject in Set 2, the myocardial label in the SA (red) and LA (green)
views is shown with fitted SSM (gray) in 3D for the 4 methods. In (a)–(c) manual
segmentations are shown, whereas the FCN segmentations are used in (d).

4 Discussion and Conclusions

We have proposed a fully automated method for the robust correction of breath-
hold induced motion artifacts using FCNs and an iterative registration algo-
rithm. The FCN segmentations approached expert intra-observer Dice scores
for both SA and LA views. The proposed SB-FCN registration produces sig-
nificantly better results than IB registration for cases with moderate to severe
motion artifacts, and is considerably faster than a SB-manual approach. The
SB-FCN method also significantly improves 3D alignment of CMR planes and
segmentations for a large dataset of 9,353 subjects.

A limitation of our method is that the FCN struggles to accurately segment
the most apical and basal SA slices with myocardium, leading to slightly lower
Dice scores compared to the SB-manual method in Table 2. In future work,
networks could be trained specifically for the SA apex and base images, and
segmentations and images could be used jointly for registration. Our approach
can also be easily adapted for data from different scanners via transfer learning.
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