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Abstract. Dense cardiac motion tracking and deformation analysis
from echocardiography is important for detection and localization of
myocardial dysfunction. However, tracking methods are often unreliable
due to inherent ultrasound imaging properties. In this work, we pro-
pose a new data-driven spatiotemporal regularization strategy. We gen-
erate 4D Lagrangian displacement patches from different input sources
as training data and learn the regularization procedure via a multi-
layered perceptron (MLP) network. The learned regularization procedure
is applied to initial noisy tracking results. We further propose a frame-
work for integrating tracking methods to produce better overall estima-
tions. We demonstrate the utility of this approach on block-matching,
surface tracking, and free-form deformation-based methods. Finally, we
quantitatively and qualitatively evaluate our performance on both track-
ing and strain accuracy using both synthetic and in vivo data.

1 Introduction

Cardiac motion estimation and regional deformation analysis are important for
detection of myocardial dysfunction. Tracking methods typically follow speckles
(texture patterns) or image-derived features (e.g. surfaces) over the image cycle
to produce a Lagrangian dense motion field, where the displacement vectors
at each image frame references the material point of the initial image frame.
However, inherent properties of ultrasound (US) can create image artifacts that
cause speckle de-correlation and poor motion tracking results. Therefore, effec-
tive regularization of the raw tracking results is essential. Various methods of
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speckle tracking have been proposed in the past, including block-matching [1],
optical flow [2], and registration techniques [3,4]. These methods generally apply
spatial and temporal regularization separately.

Several recently proposed approaches utilize joint spatiotemporal regulariza-
tion. A free-form deformation (FFD) method with 2D spatiotemporal B-splines,
proposed in [3], was extended to regularize velocities (instead of displacements)
using diffeomorphi FFD with 3D B-splines [4]. However, B-splines require an
priori carefully defined explicit grid of points that may yield bias in the track-
ing data. Recently, we proposed [5] learning joint spatiotemporal cardiac motion
patterns via sparse dictionaries and reconstructing noisy tracking results with
the learned dictionary. However, due to the inherent limitations of K-SVD dic-
tionaries shown in [5], the dictionary representation was applied only to the
high-error trajectories, yielding limited regularization performance.

In this work, we propose a neural-network based method that eliminates
the above limitation and applies spatiotemporal regularization to the entire
myocardium. The regularization procedure is learned by feeding 4D Lagrangian
displacement patches to a multi-layered perceptron (MLP) network [6]. We
demonstrate the effectiveness of our procedure for regularization of differ-
ent tracking techniques, including block matching on radio-frequency (RF)
images [1], non-rigid registration using FFD [7] and a graph-based tracking
method with learned weights [8]. We further propose combining complementary
tracking methods using a multi-view learning framework [9]. Our experiments
show that combination of complementary tracking methods lead to the best
overall estimation. Finally, we apply the combined architecture on a different
set of 4D echocardiography images and show the plausibility of domain adap-
tation. This implies that the learned regularization procedures can be adapted
and applied to other echocardiography datasets for improvement of tracking and
strain estimations.

In our experiments, we use 8 synthetic cardiac sequences from [10], that sim-
ulate different physiological conditions, including one normal, 4 sequences with
occlusions in the proximal (ladprox) and distal (laddist) parts of the left ante-
rior descending coronary artery, left circumflex (lcx), right coronary artery (rca),
3 sequences with dilated geometry with 1 synchronous (sync) and 2 dyssynchro-
nous (lbbb, lbbbsmall) sequences. These sequences contain realistic US fea-
tures that simulate challenges for tracking. Each sequence contains 2250 ground
truth trajectories. In [11], five speckle tracking algorithm are validated and com-
pared using these sparse ground-truth trajectories located at grid-intersection
points. However, regional tracking and strain validation is more appropriate for
precise localization of myocardial injury. In this work, we spatially interpolate
the sparse ground truth trajectories to produce dense ground-truth displacement
fields for evaluation of both dense tracking and regional strain accuracy.
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2 Method

2.1 Initial Tracking Methods

We demonstrate our method on three widely used, distinctive cardiac track-
ing methods: radio-frequency image-based block matching (RFBM), free-form
deformation (FFD), and flow-network tracking (FNT).

RFBM is a block-matching method applied to 3D radio-frequency (RF)
echocardiography images in a spherical coordinate system. Given two subsequent
frames, the algorithm maximizes normalized cross-correlation (NCC) between a
3D block defined around every voxel in the first RF frame and a 3D block
within a search region in the second frame [1]. FNT tracks discrete points
on the myocardium surfaces while enforcing spatial and temporal consistency
in the resulting trajectories. The tracking problem is defined with a graphical
framework, where the nodes represent points on the endocardial and epicardial
surfaces, and edges define spatial and temporal connections among points. The
edge weights are learned using a Siamese network. The objective function finds
optimal trajectories that adhere to edge weights while subjected to physiologi-
cal constraints [8]. FFD finds a global transformation given a set of fixed grid
points. The grid points parameterize a B-spline transformation that best min-
imizes the difference between a reference frame and an adjacent frame. Spatial
regularization is imposed both implicitly, via the smooth B-splines, and explic-
itly, via minimizing the bending energy and uses a coarse to fine optimization
scheme [7]. For each method, the resulting frame-to-frame displacement field
is temporally interpolated and propagated to produce Lagrangian displacement
fields and sampled into Xtrain and Xtest as illustrated in Fig. 1.

We spatially interpolate the sparse set of ground-truth trajectories, provided
in [10], with radial basis functions (RBFs) using the method described in [12].
The resulting frame-to-frame displacement fields are temporally interpolated and
propagated to produce the Lagrangian displacement field, where ground-truth
trajectory patches Ytrain and Ytest are sampled as illustrated in Fig. 1.

Fig. 1. Extraction of 4D spatiotemporal
patches from dense displacement field

Fig. 2. Process diagram for training
and testing of MLP architecture
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2.2 Spatiotemporal Displacement Regularization Learning

In the training stage, given initial Lagrangian noisy tracking data, the optimal
parameters θ∗ are found by solving:

θ∗ = arg min
θ

1
N

N−1∑

i=0

log cosh[Y (i)
train − fθ(X

(i)
train)] , (1)

where Y
(i)
train is the ground-truth trajectory patch, and fθ(X

(i)
train) is the regular-

ized trajectory patch for sample i over N samples. While L2 norm (i.e. sum of
squared distances between the patches’ pixels) is widely used, we use the Mean
Log-Cosh error, which is more robust to noise and outliers [13].

We approximate fθ using a MLP network f with three fully-connected hidden
layers and parameters θ. To accelerate learning, we use rectified linear units
(ReLU) as our activation function. To avoid overfitting, we incorporate a dropout
layer after each activation layer. Dropout randomly drops the output of each
neuron during training in order to avoid co-adaptation among neurons [14].

During testing, we apply the neural network with the learned parameters
θ∗ onto the noisy trajectory patches Xtest to produce corresponding regularized
displacement trajectories. We then reconstruct the dense displacement field by
averaging the overlapping regularized trajectories.

2.3 Soft-Threshold Outlier Regularization

Next, we outline our soft-threshold regularization approach. As described in
Fig. 2, in order to train the network, we need to provide pairs of noisy - ground
truth trajectory patches. However, similar to [5], we observed oversmoothing
of initially well-tracked trajectories. Hence, better tracking performance was
achieved when the learned regularization function was applied only on the out-
liers trajectory patches (that were detected via stacking an additional neural
network). However, regularization of only selected trajectory patches created
spatial displacement discontinuities that caused high derivatives and noisy strain
estimations. Therefore, instead of applying hard threshold regularization (i.e.
determining whether to regularize a certain trajectory), we implicitly learned
soft-threshold regularization by simultaneously training our MLP architecture
with both ground truth-ground truth as well as noisy-ground truth pairs of data.
MLP learned to regularize both initially well-tracked trajectories via learned
identity function and poorly-tracked trajectory patches via learned regulariza-
tion function. Thus, the trade-off between good signal preservation and spatially
smooth regularization is learned.

2.4 Combining Complementary Methods via Multiview Learning

Next we describe our multi-view MLP architecture. As illustrated in Fig. 4,
RFBM performs better within the myocardium, while FNT performs better near
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Fig. 3. Multiview Learning Architec-
ture for integrating two tracking methods

Fig. 4. RFBMvs. FNT tracking error
at cross-sectional slice of myocardium for
ladprox. RFBM error is higher near the
boundaries but lower inside myocardium

the boundaries of the myocardium. Therefore, RFBM and FNT might comple-
ment each other in these regions. Inspired by the multi-view learning frame-
work [9], we utilize trajectory patches from two different methods (i.e. RFBM
and FNT) and combine them at the input layer of the regularization net as
shown in Fig. 3.

3 Experiments and Results

We resampled each voxel to 0.5mm3 with image size 75 × 75× 61 voxels. To test
our method, we used a leave-one-image-out scheme, training on 7 images and
testing on the 8th image. Training patches were sampled with a stride of 2 in
each direction, and we used 5× 5× 5× 32× 3 (3 for x–y–z directions) for nor-
mal geometry images and 5× 5× 5× 39× 3 for dilated geometry images (around
100,000 patches). Test patches were sampled with a stride of 1 (around 22,000
patches). For each MLP, we utilized three hidden layers with 1000 neurons each
along with dropout with probability of 0.2. Average test time is around 800 s.

3.1 Quantitative Results

We quantitatively evaluated the performance of our algorithm on dense trajecto-
ries. Table 1 shows that applying the neural network-based spatiotemporal regu-
larization (NNSTR) to RFBM, FNT, and FFD yielded significant improvements
in tracking accuracy for all three methods over both initial tracking and dictio-
nary learning-regularized trajectories (DL) [5]. In addition, combining RFBM
and FNT in the multi-view learning framework further improved the tracking
accuracy by leveraging the complementary nature of FNT and RFBM tracking.

We also analyzed our performance via regional strain analysis. We computed
strain as Ef = 1

2 [∇Uf +(∇Uf )T +(∇Uf ) · (∇Uf )T ], where Uf is the Lagrangian
dense displacement at frame f . We projected the strain tensor in clinically rel-
evant radial (Rad.), circumferential (Cir.), and longitudinal (Long.) directions.
We summarize strain performance improvements in Table 2.
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Table 1. Median tracking error
(mm) per frame compiled for all 8
studies for all trajectories within
myocardium

Methods Error (mm)

RFBM 1.64± 1.78

RFBM-DL 1.48± 1.55

RFBM-NNSTR 0.90± 0.73

FNT 1.31± 0.95

FNT-DL 1.28± 0.86

FNT-NNSTR 1.05± 0.86

FFD 1.62± 1.14

FFD-DL 1.61± 1.12

FFD-NNSTR 1.16± 0.80

RFBM+FNT 0.82± 0.61

Table 2. Median strain error (%) per frame
between estimated strain and ground-truth strain
compiled for all 8 studies for all trajectories within
myocardium

Methods Rad. (%) Cir. (%) Long. (%)

RFBM 21.3± 72.6 7.0± 44.0 5.9± 45.1

RFBM-DL 20.2± 33.9 4.9± 19.7 5.7± 17.5

RFBM-NNSTR 5.9± 10.7 2.3± 2.6 2.4± 3.4

FNT 8.1± 22.0 4.6± 12.4 6.1± 8.7

FNT-DL 8.2± 19.2 4.9± 10.2 6.0± 8.4

FNT-NNSTR 4.7± 11.4 2.6± 3.4 2.6± 3.7

FFD 12.3± 24.3 4.9± 6.0 7.0± 16.9

FFD-DL 12.1± 21.7 4.9± 5.8 6.9± 14.9

FFD-NNSTR 6.0± 10.4 3.0± 3.9 3.1± 4.1

RFBM+FNT 4.0± 9.8 1.9± 2.2 2.2± 2.9

3.2 Qualitative Results

Figure 5 shows the median strain curves within each segment of mid-cavity accord-
ing to the American Heart Association (AHA) 17-segment standard. RFBM esti-
mates radial strain poorly due to relatively high deformation (see also Table 1).
FNT estimates radial strain well due to its restriction of the tracking space to
myocardial surfaces and capturing high deformations. However, FNT tends to
underestimate circumferential strain due to the lack of surface features that cap-
ture torsion, while RFBM captures rotational motion well. Applying NNSTR
to RFBM and FNT individually indeed yielded improvement. Further combin-
ing RFBM and FNT using the proposed multi-view architecture, thus exploiting
the complementary nature of these two methods, produced better overall results
for both radial(Fig. 5a) and circumferential (Fig. 5b) strains. Figure 6 shows that
NNSTR and combined method significantly reduced the spatial noise, producing
more clinically plausible results. In the case of lcx, the combined method leveraged
FNT to produce better estimation than regularizing RFBM only.

Finally, we trained the multi-view learning architecture combining RFBM
and FNT with all 8 synthetic images, and we applied our learned network on a
completely different set of in vivo open-chest canine data (N = 5 studies) acquired
using our Philips iE33 scanner and X7-2 probe (conducted in compliance with
Institutional Animal Care and Use Committee policies). For each canine study,
we applied NNSTR to a baseline image and a corresponding image with occlusion
in the Left Anterior Descending (LAD) artery for simulation of high stenosis.
Figure 7 shows example displacements from RFBM and regularized displace-
ments, which are smoother and physically plausible compared to the original
RFBM results. Figure 8 shows example radial strain for both baseline and high
stenosis case. We noticed again that our multi-view architecture learns the com-
plementary nature of FNT and RFBM and produced radial strain that resembles
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(a) Radial Strain for lbbb (dyssynchronous)

(b) Circumferential Strain for ladprox(occlusion in LAD)

Fig. 5. Strain (%) vs. time in the mid-cavity according to the AHA 17-segment model

(a) Radial Strain for normal (b) Radial Strain for lcx

Fig. 6. Radial strain during end-systole produced with RFBM, regularized RFBM,
combined method, and GT interpolated at epicardium

FNT. Finally, we expected to see motion abnormalities at the Left Ventricle(LV)-
Right Ventricle(RV) junction due to occlusion in the LAD. This is captured in
the radial strain map of the combined method.

Fig. 7. Displacements at end-
systole from canine images in
the horizontal, vertical, and longi-
tudinal directions for RFBM and
regularized RFBM with combined
architecture

Fig. 8. Radial strain (%) at end-systole
from FNT, RFBM, and combined architec-
ture estimated on canine images. Strain
from combined method shows expected
dysfunction from LV-RV junction
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4 Conclusions

In this work, we proposed a learning-based method for spatiotemporal regu-
larization of myocardial tracking. The regularization procedure was learned by
feeding 4D Lagrangian displacement trajectories to a multi-layered perceptron
(MLP) network. We showed effectiveness of our method on three distinct track-
ing methods: RF-block matching (RFBM), non-rigid registration (FFD), and a
graph-based myocardial surface tracking method (FNT). We further proposed
a multi-view learning framework that learned to leverage the complementary
nature of FNT and RFBM to produce better estimations than individual regular-
ization. Finally, we showed how our learned regularization model can potentially
be applied to other echocardiography datasets via domain adaptation.

Acknowledgment. This work was supported by the National Institute of Health
(NIH) grant number R01HL121226.

References

1. Chen, X., Xie, H., Erkamp, R., Kim, K., Jia, C., Rubin, J., O’Donnell, M.: 3-D
correlation-based speckle tracking. Ultrason. Imaging 27(1), 21–36 (2005)

2. Alessandrini, M., Liebgott, H., Barbosa, D., Bernard, O.: Monogenic phase based
optical flow computation for myocardial motion analysis in 3D echocardiography.
In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.)
STACOM 2012. LNCS, vol. 7746, pp. 159–168. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36961-2 19

3. Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Suhling, M., Hunziker,
P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion
estimation. IEEE Trans. Med. Imaging 24(9), 1113–1126 (2005)

4. De Craene, M., Piella, G., Camara, O., Duchateau, N., Silva, E., Doltra, A.,
Dhooge, J., Brugada, J., Sitges, M., Frangi, A.F.: Temporal diffeomorphic free-
form deformation: application to motion and strain estimation from 3D echocar-
diography. Med. Image Anal. 16(2), 427–450 (2012)

5. Lu, A., Zontak, M., Parajuli, N., Stendahl, J.C., Boutagy, N., Eberle, M., ODon-
nell, M., Sinusas, A.J., Duncan, J.S.: Dictionary learning-based spatiotemporal
regularization for 3D dense speckle tracking. In: SPIE Medical Imaging, Interna-
tional Society for Optics and Photonics, p. 1013904 (2017)

6. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

7. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Non-
rigid registration using free-form deformations: application to breast MR images.
IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

8. Parajuli, N., Lu, A., Stendahl, J.C., Zontak, M., Boutagy, N., Eberle, M., Alkhalil,
I., ODonnell, M., Sinusas, A.J., Duncan, J.S.: Flow network based cardiac motion
tracking leveraging learned feature matching. In: International Conference on Med-
ical Image Computing and Computer-Assisted Intervention (2017)

9. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7–8),
2031–2038 (2013)

http://dx.doi.org/10.1007/978-3-642-36961-2_19
http://dx.doi.org/10.1007/978-3-642-36961-2_19


Learning-Based Spatiotemporal Regularization 331

10. Alessandrini, M., De Craene, M., Bernard, O., Giffard-Roisin, S., Allain, P.,
Waechter-Stehle, I., Weese, J., Saloux, E., Delingette, H., et al.: A pipeline for
the generation of realistic 3D synthetic echocardiographic sequences: methodology
and open-access database. IEEE Trans. Med. Imaging. 34(7), 1436–1451 (2015)

11. Alessandrini, M., Heyde, B., Queirós, S., Cygan, S., Zontak, M., Somphone, O.,
Bernard, O., Sermesant, M., Delingette, H., Barbosa, D., et al.: Detailed evaluation
of five 3D speckle tracking algorithms using synthetic echocardiographic recordings.
IEEE Trans. Med. Imaging 35(8), 1915–1926 (2016)

12. Parajuli, N., Compas, C.B., Lin, B.A., Sampath, S., O’Donnell, M., Sinusas, A.J.,
Duncan, J.S.: Sparsity and biomechanics inspired integration of shape and speckle
tracking for cardiac deformation analysis. In: van Assen, H., Bovendeerd, P., Del-
haas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 57–64. Springer, Cham (2015).
doi:10.1007/978-3-319-20309-6 7

13. He, R., Hu, B., Yuan, X., Wang, L.: Robust Recognition via Information Theoretic
Learning. SCS. Springer, Cham (2014)

14. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

http://dx.doi.org/10.1007/978-3-319-20309-6_7

	Learning-Based Spatiotemporal Regularization and Integration of Tracking Methods for Regional 4D Cardiac Deformation Analysis
	1 Introduction
	2 Method
	2.1 Initial Tracking Methods
	2.2 Spatiotemporal Displacement Regularization Learning
	2.3 Soft-Threshold Outlier Regularization
	2.4 Combining Complementary Methods via Multiview Learning

	3 Experiments and Results
	3.1 Quantitative Results
	3.2 Qualitative Results

	4 Conclusions
	References




