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Abstract. In this paper, we consider the problem of automatically seg-
menting neuronal cells in dual-color confocal microscopy images. This
problem is a key task in various quantitative analysis applications in neu-
roscience, such as tracing cell genesis in Danio rerio (zebrafish) brains.
Deep learning, especially using fully convolutional networks (FCN), has
profoundly changed segmentation research in biomedical imaging. We
face two major challenges in this problem. First, neuronal cells may
form dense clusters, making it difficult to correctly identify all individ-
ual cells (even to human experts). Consequently, segmentation results of
the known FCN-type models are not accurate enough. Second, pixel-wise
ground truth is difficult to obtain. Only a limited amount of approximate
instance-wise annotation can be collected, which makes the training of
FCN models quite cumbersome. We propose a new FCN-type deep learn-
ing model, called deep complete bipartite networks (CB-Net), and a new
scheme for leveraging approximate instance-wise annotation to train our
pixel-wise prediction model. Evaluated using seven real datasets, our pro-
posed new CB-Net model outperforms the state-of-the-art FCN models
and produces neuron segmentation results of remarkable quality.

1 Introduction

A fundamental problem in neuroscience research is automatic image segmen-
tation of neuronal cells, which is the basis for various quantitative analyses of
neuronal structures, such as tracing cell genesis in Danio rerio (zebrafish) brains
[3] (e.g., using the EMD-based tracking model [5]). Fully convolutional networks
(FCN) [11] have emerged as a powerful deep learning model for image segmen-
tation. In this paper, we aim to study the problem of automatically segmenting
neuronal cells in dual-color confocal microscopy images with deep learning.
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In this problem, we face two major challenges, which also arise in other
biomedical image segmentation applications. (1) Neuron segmentation is quite
complicated, due to vanishing separation among cells in densely packed clusters,
very obscure cell boundaries, irregular shape deformation, etc. (see Fig. 1). Even
to biologists, it is difficult to correctly identify all individual cells visually. Since
state-of-the-art FCN models may incur considerable errors in this difficult task,
it is highly desirable to develop new effective models for it. (2) To train FCN-type
models for per-pixel prediction, pixel-level supervision is commonly needed, using
fully annotated images. However, in our problem, even experienced biologists can
hardly determine per-pixel ground truth. For pixels near cell boundaries, even
approximate ground truth is difficult to acquire. In fact, biologists only perceive
instance-level information, namely, presence or absence of cells. Thus, how to
leverage instance-level annotation to train pixel-level FCN models is important.

In this paper, we propose a new FCN-type segmentation model, called deep
Complete Bipartite Networks (CB-Net). Its core macro-architecture is inspired
by the structure of complete bipartite graphs. Our proposed CB-Net explicitly
employs multi-scale feature re-use and implicitly embeds deep supervision. More-
over, to overcome the lack of pixel-level annotation, we present a new scheme
to train pixel-level deep learning models using approximate instance-wise anno-
tation. Our essential idea is to extract reliable and discriminative samples from
all pixels, based on instance-level annotation. We apply our model to segment
neuronal cells in dual-color confocal microscopy images of zebrafish brains. Eval-
uated using 7 real datasets, our method produces high quality results, both
quantitatively and qualitatively. Also, the experiments show that our CB-Net
can achieve much higher precision/recall than the state-of-the-art FCN-type
models.

Fig. 1. A dual-color confocal microscopy image example of the tectum of a zebrafish
brain. Two zoom-in regions are shown, including the red channel, the green channel,
and approximate instance-wise human annotation.

Related Work. In literature, different strategies have been proposed to improve
FCN-type segmentation models, most of which share some of the following
three characteristics. First, FCN can be embedded into a multi-path framework,
namely, applying multiple instances of FCNs through multiple paths for different
sub-tasks [4]. An intuitive interpretation of this is to use one FCN for cell bound-
aries and another FCN for cell interior, and finally fuse the information from such
two paths as the cell segmentation results. Second, extra pre-processing and/or
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post-processing can be included to boost the performance of FCNs. One may
apply classic image processing techniques to the input images and combine the
results thus produced together with the input images as the input to FCNs [14].
Also, contextual post-processing (e.g., fully connected CRF [6] or topology aware
loss [2]) can be applied to impose spatial consistency to obtain more plausible
segmentation results. Third, FCN, as a backbone network, can be combined with
an object detection sub-module [1] or be applied in a recurrent fashion [12] to
improve instance-level segmentation accuracy.

In this paper, we focus on developing the CB-Net model, bearing in mind that
CB-Net can be viewed as a backbone network and thus be seamlessly combined
with the above mentioned strategies for further improvement of segmentation.

Fig. 2. The macro-architecture of CB-Net. Overall, CB-Net operates at five different
scales (i.e., resolutions). The bridge block performs abstraction at the highest scale
(i.e., the lowest resolution). Encoder block k and decoder block k process the feature
space at scale k (k = 1, . . . , 4). There is a shortcut link (blue arrow) from every encoder
block to every decoder block, to deeply consolidate multi-scale information.

2 Methodology

2.1 CB-Net

Figure 2 shows a schematic overview of CB-Net. This model employs a general-
ized “complete bipartite graph” structure to consolidate feature hierarchies at
difference scales. Overall, CB-Net works at five different scales (i.e., different
resolutions of the feature plane). At scale k (k = 1, . . . , 4), an encoder block
k is employed to distill contextual information and a decoder block k is used
to aggregate the abstracted information at this scale, while the bridge block
performs abstraction at the highest scale/lowest resolution (i.e., scale 5).

There is one shortcut connection between each encoder and each decoder to
implement the complete bipartite structure, which implicitly integrates the ben-
efits from diversified depths, feature reuse, and deep supervision [9]. With the
interacting paths between encoder blocks and decoder blocks, the whole network
implicitly ensembles a large set of sub-networks of different depths, which signif-
icantly improves the representation capacity of the network. In a forward pass,
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the encoded features at one scale are effectively reused to aid decoding at each
scale. In a backward pass, the shortcut connections assist the gradient flow back
to each encoder block efficiently, so that the supervision through the prediction
block can effectively have deep impact on all encoder blocks.

Core Blocks (Encoders and Decoders). Figure 3 shows the structures of the
encoder blocks and decoder blocks. A key component for feature extraction at
a particular scale is the residual module [8], with two successive “batch normal-
ization BN + ReLU + 3 × 3 convolution” (see Fig. 3(A)). Since we do not pad
the convolution output, the input to the first BN is trimmed in both the height
and width dimensions before adding to the output of the second convolution.
The width of each residual module (i.e., the number of feature maps processed
in the module) follows the pyramid design [15], i.e., 32k width at scale k.

The encoders consist of a residual module and a “Conv-Down” layer for
downsampling. Inspired by [16], we use a 2 × 2 convolution with stride 2,
instead of pooling, to make the downsampling learnable so as to be scale-specific.
The decoders first fuse the main decoding stream with reused features from the
encoders at different scales. The concatenated features include the deconvolution
result [11] from a previous decoder (or the bridge block), and 4 sets of re-sized
feature maps, each from the output of a different encoder block with proper
rescaling (bi-linear interpolation for up-sampling and max pooling for down-
sampling) and/or border cropping. Then, a spatial dropout [17] (the rate = 0.5),
namely randomly selecting a subset of the concatenated feature maps during
training, is applied to avoid overfitting to features from specific scales. Before
feeding into the residual module, a 1 × 1 convolution is applied for dimension
casting.

Auxiliary Blocks. The transition block is a 7 × 7 convolution and ReLU (with
zero padding), which can be interpreted as a mapping from the input space
(of dimension 2, red/green channels, in our case) to a rich feature space [15]
for the model to exercise its representation power. The bridge block, similar to
encoders but no down-sampling, aims to perform the highest level abstraction
and trigger the decoding stream. The prediction block is a 1 × 1 convolution
and LogSoftMax, whose output indicates the probability of each pixel belonging
to a neuron.

Fig. 3. The structures of the core residual module (A), an encoder block (B), and a
decoder block (C). The blue arrows indicate the shortcut connections from encoder
blocks to decoder blocks (better viewed in color).
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2.2 Leveraging Approximate Instance-Wise Annotation

In our problem, per-pixel ground truth cannot be obtained, even by experi-
enced biologists. Instead, human experts are asked to draw a solid shape within
each cell to indicate the cell body approximately. (Note: By “approximate”, we
mean that we know neither the exact bounding box nor the exact shape of
each instance.) Generally, the annotations are drawn in a conservative manner,
namely, leaving uncertain pixels close to cell boundaries as unannotated. But,
when it is absolutely sure, the sizes of the solid shapes are drawn as large as pos-
sible. In Fig. 4(C), all annotated regions are in white, and the remaining pixels
are in black. Directly using this kind of annotation as per-pixel ground truth will
cause considerably many positive samples (i.e., pixels of cells) being used falsely
as negative samples (i.e., background), due to such conservative annotation.

Our main idea of utilizing approximate instance-wise annotation for pixel-
level supervision is to extract a sufficient number of more reliable and more
effective samples from all pixels based on the available annotations. Specifically,
(1) we prune the annotated regions to extract reliable ground truth pixels belong-
ing to cells, and (2) we identify a subset of all unannotated pixels that is more
likely to be background, especially in the gap areas among touching cells.

Let A be an annotated binary image. First, we perform erosion on A (with a
disk template of radius 1); let E be the resulting eroded regions. Second, we per-
form dilation on A (with a disk template of radius 4); let D be the result. Third,
we compute the outer medial axis of E (see Fig. 4(E)), denoted by M . Then, for
each pixel p, we assign its label L(p) as: 1 (Cell), if p ∈ E; 2 (Background), if
p ∈ M∪(A\D); 3 (Fuzzy Boundary), otherwise. The “Fuzzy Boundary” (roughly
a ring along the boundary of an annotated region, see Fig. 4(D)), where the pixel
labels are the most uncertain, will be ignored during training. A special scenario
is that such ring shapes for proximal cells may overlap. So, the outer medial axis
of the eroded annotated regions is computed and is retained as the most repre-
sentative background samples to ensure separation. Note that this scheme may
also be applied to other applications by adjusting the parameters (e.g., larger
erosion for less conservative annotation).

Fig. 4. Illustration of pixel-wise training data generation from approximate instance-
wise annotation made by human. (A-B) Input red/green fluorescent channels. (C)
Approximate instance-wise human annotation. (D) Illustrating the “fuzzy boundary” of
a cell, i.e., the blue ring area. The dotted curve is the boundary of the human-annotated
region. The pixels in the green area are assigned a label of “Cell”. (E) Illustrat-
ing the outer medial axis. (F) The generated pixel-wise training data: green = “Cell”,
red = “Background”, and blue = “Fuzzy Boundary” (better viewed in color).



26 J. Chen et al.

2.3 Implementation Details

Post-processing. The output of CB-Net can be viewed as a probability map, in
which each pixel is given a probability of being in a cell (a value between 0 and
1). We produce the final binary segmentation by thresholding (at 0.75), two suc-
cessive binary openings (with a disk template of radius 5, and a square template
of size 3), and hole filling. We find the CB-Net prediction is of high accuracy
so that the threshold is not sensitive and simple morphological operations are
sufficient to break the potentially tenuous connections among tightly touching
cells (not common, less than 5%). Also, the template sizes of the morphological
operations are determined based on our object shapes (i.e., cells), and should
not be difficult to adjust for other applications (e.g., a larger template for larger
round cells, or a smaller template for star shape cells with tenuous long “arms”).

Data Augmentation. Since we have only 5 images with annotation, we per-
form intensive random data augmentation to make effective training and reduce
overfitting. In each iteration, an image patch is processed by (1) horizontal flip,
(2) rotation by a random degree (an integer between 1 and 180), or (3) verti-
cal flip. Each flip is randomly applied with a probability of 50%. Because the
random rotation usually involves intensity interpolation, implicitly introducing
lighting noise, no color jittering is employed.

Training. Learnable parameters are initialized as in [7] and optimized using
Adam scheme [10]. The key hyperparameters are determined empirically: (1)
We use batch size of 1, since large image patch is preferred over large batch size
[13]. (2) We use higher learning rates for a few epochs (1e-5 for epochs 1–50 and
1e-6 for epochs 51–100), and fix a small learning rate, 1e-7, for all the remaining
epochs. (3) We use a weighted negative log likelihood criterion (0.25, 0.75, and
0 for the “Cell”, “Background”, and “Fuzzy Boundary” weights, respectively).
Thus, the fuzzy boundary is ignored by assigning a zero weight. The background
is associated with a higher weight to encourage separation among cells.

3 Experiments

Besides having 5 images for training, we use 7 in-house datasets for evalua-
tion, each containing 55 dual-color microscopy images of a zebrafish brain. We
use double transgenic fish where GCaMP6s, a green fluorescent protein (GFP)
based genetically encoded calcium indicator, and H2b-RFP, a histone fused red
fluorescent protein (RFP), are driven by the elavl3 promoter. This yields dual-
color images, in which all neurons in the double transgenic fish express green
fluorescence in the cytosolic compartment and red fluorescence in the nucleus.

Our method is compared with U-Net [13], a state-of-the-art FCN-type model,
which has achieved lots of successes in various biomedical image segmentation
applications. For fair comparison, we use the same training procedure to train
U-Net as we do for CB-Net. The numbers of learnable parameters for CB-Net
and U-Net are 9M and 31M, respectively. Due to the multi-scale feature reuse,
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a smaller width is sufficient for each residual module in CB-Net. Consequently,
CB-Net contains 70% fewer learnable parameters than U-Net.

Leave-one-out experiments are conducted to quantitatively assess the perfor-
mance. The results of running 2000 training epochs are given in Fig. 5(A). One
can observe that CB-Net can achieve better validation performance than U-Net,
and overfitting is not a severe issue even using only 5 annotated training images.

Fig. 5. (A) The results of the leave-one-out experiments; (B) the precision and recall
of U-Net and CB-Net on seven different real datasets.

Performance on the real datasets was examined in a proof-reading manner.
This is because pixel-level ground truth is not available in our problem (see
Sect. 1), and even approximate instance-level annotation can take two experts
over 20 h in total to manually annotate 5 images for training. Strictly speaking,
we presented the segmentation results to experienced biologists in order to (1)
confirm true positives, (2) reject false detections, and (3) detect false negatives.
Note that falsely merged or falsely separated cells are treated as false detection.
If a segmented cell is much smaller (resp., larger) than the actual size, then it is
classified as false negative (resp., false detection). Finally, Precision and Recall
are calculated. In fact, the proof-reading evaluation for our problem is too time
consuming to make extensive quantitative ablation evaluation in practice. Also,
with a similar amount of effort, we choose to evaluate and compare with the most
representative baseline models on many different datasets, instead of comparing
with more baseline models on only few datasets. The quantitative testing results
are shown in Fig. 5(B), and qualitative results are presented in Fig. 6. It is clear
that our CB-Net achieves much better results than U-Net.

We observe that a large portion of errors made by U-Net occurs in the fol-
lowing two situations: (1) confusion between noisy areas and cells with relatively
weak fluorescent signals (see row 1 in Fig. 6), and (2) confusion between touching
cells and large single cells (see rows 2 and 3 in Fig. 6). The higher representative
capability of CB-Net (due to the complete bipartite graph structure) enables it
to extract features more effectively and gain deeper knowledge of the semantic
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Fig. 6. Sample results of U-Net and our CB-Net. Left to right: Red and green fluo-
rescence channels, results of U-Net and CB-Net. Some errors are indicated by arrows:
yellow (false negative), red (false positive), blue (false split), and purple (false merge).

context. Consequently, CB-Net can attain more accurate segmentation in the
above two difficult situations and achieve significant improvement over U-Net.

4 Conclusions

In this paper, we proposed a new FCN model, CB-Net, for biomedical image
segmentation. The main advantage of CB-Net is deep multi-scale feature reuse
by employing a complete bipartite graph structure. Moreover, we presented a
new scheme for training a pixel-wise prediction model using only approximate
instance-wise annotation. Qualitative and quantitative experimental results show
that our new method achieves high quality performance in automatic segmenta-
tion of neuron cells and outperforms U-Net, a state-of-the-art FCN model.
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