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Abstract. Identification of anatomical vessel branches is a prerequisite
task for diagnosis, treatment and inter-subject comparison. We propose
a novel graph labeling approach to anatomically label vascular struc-
tures of interest. Our method first extracts bifurcations of interest from
the centerlines of vessels, where a set of geometric features are also cal-
culated from. Then the probability distribution of every bifurcation is
learned using a XGBoost classifier. Finally a Hidden Markov Model with
a restricted transition strategy is constructed in order to find the most
likely labeling configuration of the whole structure, while also enforcing
topological consistency. In this paper, the proposed approach has been
evaluated through leave-one-out cross validation on 50 subjects of center-
lines obtained from MRA images of healthy volunteers’ Circle of Willis.
Results demonstrate that our method can achieve higher accuracy and
specificity, while obtaining similar precision and recall, when compar-
ing to the best performing state-of-the-art methods. Our algorithm can
handle different topologies, like circle, chain and tree. By using coordi-
nate independent geometrical features, it does not require prior global
alignment.

1 Introduction

Automatic anatomical labeling approaches for tubular-like structures has been
investigated for a couple of decades. Methods exist from 2D atlas registration [6],
3D branch matching [8], to the maximum likelihood estimation [7], etc. These
methods are applicable to tree-like structures with short and straight branches,
such as the airways and abdominal aorta. However, they are not feasible for struc-
tures with large variations in geometry or/and topology. For example, the Circle
of Willis (CoW) is genus 1 in terms of topology, with total of 83 variations [4].
Majority of human have one or more missing arteries in their CoW. Additionally,
vessels can be twisted and intertwined, which create complex geometries with
large range in branch length, curvature, torsion and radius. These rise difficulties
for atlas based labeling approaches [1]. Even for the same person, his/her vessel
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structure and morphology change over time. All these make the automatic CoW
labeling a challenging problem.

In [2], a maximum a posteriori (MAP) classification is firstly used to identify
five branches. It then combines the MAP with a graph matching method to label
the CoW in the form of three separate trees. The MAP inferences in [9,10] are
formulated as a quadratic binary programming problem. This formulation can
handle non tree-like vasculature with high efficiency. It simultaneously segments
and labels CoW with an integer programming. However, their methods do not
differentiate symmetrically located bifurcations.

This paper describes a novel and generic approach to anatomically label
vascular structures. Our method first extracts bifurcations of interest from the
centerlines of vessel structures, where a set of geometric features are calculated.
Then the probability distribution of these bifurcations is generated using an
XGBoost classifier. Finally a Hidden Markov Model (HMM) with a restricted
transition strategy is constructed to find the most likely labeling configuration
of the whole structure, while constraining all branches or bifurcations with a
feasible topology. Our main contribution is threefold: (1) Coordinate indepen-
dent geometrical features are used to describe the bifurcations, which alleviate
the global alignment that is required in other approaches. (2) XGBoost method
is used to learn the probability distribution of bifurcations of interest as well as
those not of interest. (3) The topology identification is considered as a matching
problem which is solved by an HMM.

2 Method

Problem Formulation. Each vascular structure is modeled as a centerline
graph together with a set of radii corresponding to all centerline points. Based
on this initial setting, although many features like centerline length, curva-
ture, etc., could be calculated, these features alone are not sufficient to classify
each anatomical structure. We propose to classify bifurcation points based on
extracted geometrical features associated with them. That is, for each bifurcation
point, we calculate features from the three branches, which are uniquely identi-
fied as the Head, Left and Right, connected to the bifurcation as well as a few
combined features derived from them. Each vascular structure is modeled as an
undirected weighted graph G = (V,E,A), where a sets of vertex V = {v1, . . . , vn}
denote the bifurcation points of the structure, E ⊂ V ×V is a set of edges repre-
senting vessel connections with these bifurcations, and A : V �→ R

f are features
associated with V . The bifurcation c = {Vc, Ec head, Ec left, Ec right, Ac} , c =
1, . . . , f , is generated by G. The vessel labeling problem can be considered as
a bifurcation mapping problem, based on an available graph set {Ĝ} as well
as known bifurcation set {Ĉ}. All these form a knowledge base K. For a given
target graph Gt, the target labeling is defined as L : Ct �→ {Ĉ} ∪ {∅}, where
Ct = {cti : i = 1, . . . ,m}represents bifurcation sets on the Gt, and the label ∅

represents certain bifurcation point that is not of interest. Obviously, a surjective
mapping to ∅ is allowed. As for the remaining subset of Ct, the inclusion map
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Ct �→ {Ĉ} is injective but not necessarily surjective. It is possible that multiple
solutions that fulfill these conditions exist. Let the joint probability distribution
of every possible solution be P (Ct, L|K). We aim at finding the label L∗ with
the maximum a posteriori (MAP) probability:

L∗ = arg max
L∈L

P (Ct, L|K), (1)

where L denotes the labeling solution space.

The Proposed Model. By observing the vascular anatomy, it seems that
anatomical bifurcations can only appear in a certain order, starting from a refer-
ence point, e.g. internal carotid artery and vertebral basilar artery in the CoW.
However, there always exists anatomical variabilities. For example, CoW exhibits
large variability in its topology [2], including the absence of bifurcation points
of interests. This also means that the absence of one bifurcation can imply that
those further downstream cannot be presented either. Despite of those variations,
it is still helpful to impose topology constraints during the inference.

We propose to formulate the labeling process as an HMM with a restricted
transition strategy. In our model, a bifurcation’s label is assumed to depend
only on those of its immediate neighbors while independent on the rest. There-
fore, the bifurcation points with feature sets can be considered as a sequence
of observations. Their labels are considered as a state sequence with state tran-
sition probabilities as topology constraints from the prior training population.
Feature set At generated by Gt gives information about the sequence of states.
Let S = {si} , si ∈ {l1, . . . , lk} ∪ {∅} be the state space, containing labels
of different anatomical bifurcation points and a null label ∅ for those not
of interest. Let O = {oi} , oi ∈ {c1, . . . , cm} be the observation space of all
anatomically possible bifurcations. For a given observed sequence of length L,
Y = {y1, . . . , yL}, yi ∈ O, we can extract its corresponding state sequence
X = {x1, . . . , xL} , xi ∈ S from {Ĝ}. Then, we can define the state transition
probability matrix Q and the output probability matrix B with dimensions equal
to that of the state space:

Q =
[
qij

]
k∗k , qij = P (xt+1 = sj |xt = si)

B =
[
bij

]
k∗m , bij = P (yt = oj |xt = si) (2)

The initial probabilities on the state space is defined as Π = {πi}k , πi = P (x1 =
si). Following the Markov property, we have:

P (xt|x1, x2, . . . , xt−1) = P (xt|xt−1), and
P (yt|y1, y2, . . . , yt−1, x1, x2, . . . , xt) = P (yt|xt). (3)

The problem in Eq. 1 can be formulated as: X∗ = arg maxX P (Y,X), which can
be solved by the Viterbi algorithm [5]. Let Vi,k be the maximum probability of a
sequence with length i and end state sk. With dynamic programming, we have:

V1,k = P (y1|sk) · πk

Vi,k = P (yi|sk) · max
x∈[1,L]

(qx,k · Vi−1,x). (4)
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The solution can be found: xL = arg maxx∈[1,L] VL,x. The critical task is to
convert the graph Gt into a chain, and to find the optimal implicit state sequence
Y by the observed sequence X and model. It remains to calculate Q and B
(Eq. 2).

Note that the topology of graph Gt is always different, due to the fact that,
some branches may be missing in certain cases, and some branches may not
be what we are interested in. Such heterogeneity could be caused by either the
patient anatomy or the process of segmentation and skeletonization. Bifurcations
are “sorted” by the angles between each vector from E (Fig. 1(a)) to a bifurcation
and a specific reference vector. For example, assuming that the CoW is complete,
the order can normally be determined by traversing. For seemingly “multiple-
tree” structures that are split by the gap of some missing blood vessels, and if a
bifurcation is not connected with the others, the next one in the clock-wise order
can be considered as the next bifurcation. With this rule, all bifurcations can be
virtually connected even with missing branches. Additionally in this way, even
if symmetric bifurcations have similar geometric features, they have different
position in the chain. For any given sequence Y , except the ∅, the probability of
each elements si in state space appear in a particular location is different. The
vascular structure of interest can be regarded as a Markov chain, including the
CoW where multiple trees maybe found instead of a “circle”.

Then for the prediction step, we construct the chain model of the out-
put/observed sequence, P (xt = si) can be calculated from the occurrence rate of
si in the training set, and P (xt = si|yt = oj) can be obtained from a bifurcation
label classifier trained on Ĉ.

Bifurcation Label Classifier. In order to estimate the likelihood of a bifur-
cation oj with label si, P (si|oj), we propose to use the XGBoost algorithm
with probability estimation [3]. It is an improved gradient tree boosting based
on classification and regression tree. This method is particularly suitable for
our vascular datasets which spans in large space but also with larger sparsity.
The connected three branches are uniquely identified, such that f features of
each branch could be combined to 3f features for the corresponding bifurcation.
Since the CoW ring lies approximated on a plane, the relative positions of the
branches around any bifurcation are the same. Then we just consider a branch,
whose one end is on the circle structure and the other not, as the Head one.

Table 1. Geometrical features defined on vessel centerline models.

Type Parameter #

Basis Lengths (len), average radii (rad), 6× 3

Average curvatures (cur), average torsion(tor),

Angles between bifurcation’s three tangential vectors (tan),

Angles between bifurcation and its three branches’ end points (seg)

Combined
∫
len× cur (alc), rad/len (per), 3× 3

Ratio of lengths between its left & right branches from any branch (bal)
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With the bifurcation as the origin, from the Head branch anti-clockwise in the
ring plane we can identify the children branches (Fig. 1(b)). Specifically, 27 coor-
dinate invariant features are calculated such that the global alignment can be
avoided (Table 1).

3 Experiments and Results

Data and Technical Details. Our proposed approach has been evaluated on
the public dataset distributed by the MIDAS Data Server at Kitware Inc. It
contains 50 MRA images of the cerebral vasculature from healthy volunteers
together with theirs segmentations and centerlines [2], as well the ground truth
manually indicted by an expert. We first prune the centerline model to a region
around the CoW. This results in about 18 bifurcations in each case. In this
step, we use features of Euclidean distance to three base points (i.e. where blood
enters the whole CoW) and the smallest average radius of the bifurcation. Due
to the heterogeneity of the different cases, according to the expert’s experience,
we are mainly interested in 11 bifurcation points, which are labeled as A-K in
Fig. 1. In the 27 features reported in Table 1, tor is removed by a Least Significant
Difference metric, which results in 24 features are calculated. In the approximate
plane of the CoW, the orthogonal vectors of tangent from the bifurcation point
of the BA branch is considered as the reference vector. Branches are sorted by
the angles between each vector from E to a bifurcation and the reference vector.

Fig. 1. (a) A sketch of CoW, together with the 11 labels (A-K) of the bifurcations of
interest. (b) A sketch of the basis features (as in Table 1) of one bifurcation. Only the
corresponding ones for one of the three branches are indicated, those of the other two
can be similarly defined.

Evaluation. A leave-one-out cross-validation was performed to asses the per-
formance of the proposed method. Exemplar labeled segmentation of a normal
CoW (Fig. 2(a)) and a varied CoW (Fig. 2(c)) are shown, where branches of
interest, i.e. those determined by the 11 bifurcations of interest, are color-coded,
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Fig. 2. Color-coded example labeling results of: (a)(c) normal and (b)(d) varied CoW
models (with grey-colored ones being not of interest).

with grey-colored ones being not of interest. We could see that our approach is
able to handle topological disturbances around the CoW (e.g. grey-colored small
branches in the enlarged views).

Table 2 shows the accuracy, precision, recall and specificity for each bifurca-
tion of interest separately, using our method with and without the topological
constraints. They are compared with two best performing methods [2,10]. In gen-
eral, our method offers higher accuracy and specificity, while those by [2] offers
higher recall. These suggests that our method also tries to label both bifurcations
of and not of interest correctly. This is probably more suitable when the data
is more generic and not trimmed only for those of interests. But for datasets
that contain only relevant branches, the method by [2] could perform better.
With these said, for all of the bifurcations, the differences between the methods
are not significant, as have also been reported in [10]. However, note that the
method by [10] does not distinguish symmetrical bifurcation points, which are
one of the main error sources in the CoW classification problem. Thus, we do not
intend to compare and interpret their numbers directly. The error source could
be seen in the plotted confusion matrices shown in Fig. 3, where the “confused”
symmetrically located bifurcation points could be seen, e.g. J and K, D and F.
From the confusion matrices, we could see that the bifurcation points J and K
are the most wrongly classified. In addition to confusing each other, it is due to
the difference in the length of the MCA-1 vessel and the presence of other bifur-
cations. The errors of the bifurcation A, I, D and F are mainly caused by missing
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Table 2. Evaluation comparison of the 11 bifurcations of interest (Fig. 1) with accuracy
(A), precision (P), recall (R) and specificity (S) are reported for the proposed method
with (Ours) and without (Ours w/o) the topological constraints, as well as for the best
performing state-of-the-art methods [2,10].

L Ours Ours w/o Bogunović 13 [2] Robben 16 [10]

A P R S A P R S A P R S A P R S

A 99.8 98.0 100 99.9 99.7 98.0 98.0 99.9 96 95 100 88
96 100 95 n.a.

I 99.1 100 85.7 100 98.9 95.4 85.7 99.7 100 100 100 100

B 99.5 96.0 96.0 99.7 98.9 88.7 94.0 99.2 100 100 100 n.a.
100 100 100 n.a.

H 99.9 98.0 100 99.9 99.6 96.1 98.0 99.7 98 100 98 100

C 99.4 100 90.0 100 99.0 93.7 90.0 99.6 98 100 97 100
98 100 97 n.a.

G 99.4 95.9 94.0 99.7 99.4 97.9 92.0 99.9 98 97 100 93

D 98.4 93.0 80.0 99.6 97.8 84.8 78.0 99.1 96 95 100 87
97 100 95 n.a.

F 98.1 81.5 88.0 98.7 97.9 86.7 78.0 99.2 100 100 100 100

E 99.5 92.6 100 99.5 97.5 78.4 80.0 98.6 96 96 100 n.a. 92 98 93 n.a

J 97.8 84.8 78.0 99.1 94.9 58.3 56.0 97.4 80 80 100 n.a.
87 87 100 n.a.

K 98.1 88.6 78.0 99.4 94.1 51.1 48.0 97.0 84 84 100 n.a.

Fig. 3. The confusion matrices with (left), without (right) topological constraints.

vessels, e.g. AcoA and PCoA. More interestingly, due to the obvious features of
ICA, the bifurcation C and G are hardly affected by the reason above.

4 Conclusions

We have proposed a supervised learning method for anatomical labeling of vas-
cular branches. It learns the probability distribution of every anatomical branch
bifurcation with a XGBoost classifier, which is then used as inputs to a Hid-
den Markov Model so as to enforcing the topology consistency. Our method
is able to solve a labeling problems of trees, loops and chains. Furthermore, it
has demonstrated that it can handle a large anatomical variability such as those
present in the topology of the CoW, and is able to map labels to cases containing
different subsets of bifurcation points of interest. The leave-one-out cross valida-
tion performed on 50 cases has shown higher accuracy that the best performing
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state-of-the-art methods. Additionally, our method uses coordinate independent
features, reducing the need for a global rigid registration step before the labeling
process. Pending issues such as validations on larger population, on structures
with different topologies, the parallelization of the bifurcation classifier and the
optimization of topological constrained model fall into our future work.
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9. Robben, D., Türetken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F.,
Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral
vasculature. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.)
MICCAI 2014. LNCS, vol. 8673, pp. 307–314. Springer, Cham (2014). doi:10.1007/
978-3-319-10404-1 39

10. Robben, D., Türetken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F.,
Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral
vasculature. Med. Image Anal. 32, 201–215 (2016)

http://dx.doi.org/10.1007/978-3-642-23626-6_41
http://dx.doi.org/10.1007/978-3-642-15699-1_37
http://dx.doi.org/10.1007/978-3-319-10404-1_39
http://dx.doi.org/10.1007/978-3-319-10404-1_39

	Automatic Labeling of Vascular Structures with Topological Constraints via HMM
	1 Introduction
	2 Method
	3 Experiments and Results
	4 Conclusions
	References




