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Abstract. Digital holographic lens-free imaging is based on recording
the diffraction pattern of light after it passes through a specimen and
post-processing the recorded diffraction pattern to reconstruct an image
of the specimen. If the full, complex-valued wave-front of the diffrac-
tion pattern could be recorded then the image reconstruction process
would be straight-forward, but unfortunately image sensors typically
only record the amplitude of the diffraction pattern but not the phase.
As a result, many conventional reconstruction techniques suffer from
substantial artifacts and degraded image quality. This paper presents a
computationally efficient technique to reconstruct holographic lens-free
images based on sparsity, which improves image quality over existing
techniques, allows for the possibility of reconstructing images over a 3D
volume of focal-depths simultaneously from a single recorded hologram,
provides a robust estimate of the missing phase information in the holo-
gram, and automatically identifies the focal depths of the imaged objects
in a robust manner.
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1 Introduction

Lens-free imaging (LFI) is a technique based on the principle of digital holog-
raphy, in which a coherent light source (e.g., a laser) is used to illuminate the
object specimen. As light passes through the specimen it is diffracted by the
specimen, and the resulting diffraction pattern is recorded by an image sensor.
Once the diffraction pattern has been recorded, an image of the specimen is
reconstructed by post-processing the diffraction pattern using a mathematical
model of the diffraction process [4].

Holographic LFI has several advantages over conventional microscopy. First,
because there are no lenses in the imaging system, its overall cost and physical
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size can be greatly reduced compared to traditional microscopes. Second, LFI
allows much wider fields of view to be imaged than a conventional microscope
with equal magnification. Third, because the image of the specimen is generated
through post-processing the recorded diffraction pattern, there is no need for
an operator to manually focus the system as the focal depth can be adjusted
automatically through post-processing [4].

In principle, if one could record the exact, complex-valued diffraction pat-
tern of an object illuminated with a coherent light source, then reconstructing
an image of the specimen would be straight-forward by simply computing the
back-propagation of the recorded wave-front to the plane of the object using
an appropriate diffraction model. However, imaging sensors are typically only
capable of recording the (squared) magnitude of the diffraction pattern but not
the phase. This presents a significant challenge for applying LFI in practice, and
images reconstructed with conventional approaches typically contain significant
artifacts (commonly referred to as twin-image artifacts) [3,4]. Additionally, the
problem can be further complicated if the specimen contains objects at multiple
focal depths, as the diffraction patterns from out-of-focus objects will corrupt the
reconstructed images at a particular focal depth, which traditional LFI image
reconstruction approaches typically do not consider.

This paper addresses both of these issues by proposing a method to efficiently
reconstruct images of a specimen over potentially multiple focal depths from a
single recorded diffraction pattern while simultaneously estimating the phase
information missing from the diffraction pattern. Using this technique results
in significantly improved image quality over traditional image reconstruction
techniques, allows for a 3D volume of the specimen to be reconstructed simulta-
neously, and provides a robust means of finding focal depths that contain objects,
eliminating the need to manually tune focal depth.

2 Basics of Holographic Imaging

Holographic imaging is a technique based on optical diffraction. A full review
of diffraction theory is beyond the scope of this work, but a commonly used
approximation that is very accurate for the typical distances used in holography
is to model the diffraction process as a 2D convolution [4]. In particular, the
propagation of an optical wavefront X0 at a plane located at a distance z from
the image plane produces the wavefront Xz = T (z)∗X0, where T (z) is a transfer
function that models the diffraction of light over a distance z and ∗ denotes a 2D
convolution. Various choices can be made for T (z) depending on the particular
approximations one chooses in the model of the diffraction process (e.g., Fresnel,
Huygens, far-field) [4]. In this paper we use the wide-angular spectrum (WAS)
approximation, which defines the transfer function in the Fourier domain as

F(T (z))[kx, ky] = exp
(
iz

√
k2 − k2

x − k2
y

)
, (1)

where k = 2π/λ̄ is the wavenumber for light with wavelength λ̄ and
(kx,ky) denote the spatial frequencies in the horizontal and vertical directions,
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respectively. Note that T (z) has several easily verified properties: (1) T (z1) ∗
T (z2) = T (z1 + z2), (2) T (0) ∗ X = X, (3) T (−z) = T (z), where T (z) denotes
the complex conjugate of T (z), and (4) the linear operator Tz(X) ≡ T (z) ∗ X is
unitary.

Using the WAS approximation to model light diffraction, if one is given a
diffraction pattern, H ∈ R

m×n, recorded from an image sensor, then one can try
to find a corresponding image of a specimen, X ∈ C

m×n, at a given focal depth,
z ∈ R, such that H = T (z) ∗ X. A simple way to reconstruct an estimate of X
is to solve the least-squares problem

min
X

1
2‖H − T (z) ∗ X‖2F . (2)

Notice that from the properties of T (z) listed above and the fact that the Frobe-
nius norm is invariant to unitary operations we have that the optimal solution
to the above problem can be easily computed in closed form as X∗ = T (−z)∗H.
However, recall that image sensors are only capable of recording the magnitude
of the diffraction pattern but not the phase (i.e., H is real valued in practice
when in actuality it should be complex valued). This limitation results in the
twin-image artifact in the reconstructed image, which is typically characterized
by wave-like artifacts emanating from the object. The left column of Fig. 1 shows
an example image of human blood reconstructed using this approach;1 note the
large amount of artifacts present in the background of the reconstructed image.

One way to address this issue is to modify the problem in (2) to account
for the fact that because the phase is unknown one should only be concerned
with matching the magnitude of the estimated hologram. This leads to the least-
squares problem

min
X

1
2‖H − |T (z) ∗ X|‖2F . (3)

Note that this problem can be equivalently expressed as

min
X,W

1
2‖H � W − T (z) ∗ X‖2F s.t. |W | = 1, (4)

where � is the element-wise product of the matrix entries and |W | = 1 denotes
that the magnitudes of the entries of W ∈ C

m×n should be equal to 1. The
equivalence between (3) and (4) is seen by noting that the optimal solution for
W in (4) for any value of X is given by W ∗[i, j] = exp(i �(T (z) ∗ X)[i, j]).
Substituting this value for W ∗ into (4) gives (3).

While the modification of (2) into forms (3) and (4) has accounted for the
fact that the phase information is missing from the recorded hologram, H, note
that since T (z) is a unitary operator, for any choice of W one can generate
a reconstructed image X such that H � W = T (z) ∗ X. In other words, the
estimated phase, W , is totally arbitrary in this model, so additional modeling
assumptions are needed to find meaningful solutions.

Due to the significant practical challenges discussed above, many techniques
have been proposed to mitigate the effects of the twin-image artifact. Addition-
ally, due to the fact that the diffraction hologram contains sufficient information
1 The image in Fig. 1 also fits a constant background term.
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to potentially reconstruct 3D reconstructions of objects, several techniques have
been proposed to estimate a 3D volume of an object specimen. However, many
existing approaches either rely on acquiring multiple holograms under various
illumination conditions, which complicates the hardware requirements, or they
have not achieved sufficient performance when using a single recorded hologram
to be widely used in practice [3,4]. For example, the authors of [2] explore an
iterative reconstruction process that attempts to estimate the portion of the
reconstructed image that corresponds to the twin-image artifact versus the por-
tion of the reconstructed image corresponding to the true object. Using this
estimate, a masking operation is performed in an attempt to estimate the phase
of the hologram by removing the influence of the artifact; however, the method
only results in relatively modest improvements in image quality when applied to
real data [2].

Most closely related to our work, several prior studies have also explored the
use of an assumption of sparsity on the reconstructed image (i.e., most pixels
do not contains objects and are at the background intensity) as a means to
improve holographic image reconstruction. The authors of [1] consider a sparse
reconstruction model that promotes sparsity in the reconstructed image simi-
lar to what we propose. However, the primary difference from our work is that
the authors of [1] use a model which is purely in the real domain and do not
attempt to estimate the missing phase information. This approach is only suit-
able if the imaged objects are sufficiently small and separated in space to ensure
that their holograms do not significantly interact. As we show in experiments,
recovering the phase of the hologram dramatically improves the quality of the
image reconstruction.

In very recent work, the authors of [6] propose a model similar to (3) with an
added �0 pseudo-norm regularization on X (a count of the number of non-zero
elements in X), and attempt to solve a problem of the form

min
X

‖X‖0 s.t. ‖H − |T (z) ∗ X|‖ ≤ ε. (5)

This formulation presents significant practical challenges due to the fact that
problems penalized by the �0 pseudo-norm are typically NP-hard, so one must
resort to approximate solutions. As such, the algorithm proposed in [6] requires
one to greedily update an estimate of the pixels that contain an object and
solve a non-convex least-squares regression problem at each iteration. For large
images that are sparse but still contain a significant number of objects, the
computational costs of this approach are very significant, and additionally, the
variable updates cannot be solved to completion at any given iteration due to
the non-convexity of the sub-problems. In other recent work, sparsity has been
proposed in a reconstruction framework that combines information from multiple
holograms recorded at different focal depths to reconstruct an image [5]. While
this method produces high-quality reconstructions, in addition to requiring that
multiple holograms be recorded at different focal depths, this method is also
very computationally intensive, needing approximately 28 min to reconstruct a
single image [5].
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The main contribution of this work is a method to reconstruct images from
recorded holograms based on sparsity which (1) provides an estimate of the
missing phase information, (2) only requires a single recorded hologram (greatly
simplifying hardware design), and (3) allows for reconstructions over full 3D
volumes and robustly finds the focal depth of objects in the specimen. Further,
our method is highly efficient and reconstructs large images in under a second,
and experimental results demonstrate significantly improved image quality over
existing methods based on single hologram reconstructions. In Sect. 3 we present
our model for reconstructing single images, and then in Sect. 4 we extend our
model to reconstructions over 3D volumes.

3 Sparse Phase Recovery

Due to the fact that the LFI reconstruction problem in (4) is underdetermined,
additional assumptions are needed to find meaningful solutions. A natural and
rather general assumption in many applications is that the reconstructed image,
X, be sparse, an assumption that is justified whenever the objects in the spec-
imen occupy only a portion of the pixels in the field of view with many of the
pixels being equal to the background intensity. Note that there are many ways to
measure the sparsity of a signal, but here we use the �1 norm as it has the desir-
able property of encouraging sparse solutions while still being a convex function
and conducive to efficient optimization. Additionally, typical measures of sparse-
ness require that most of the entries be identically 0, while here if a pixel doesn’t
contain an object the value of the pixel will be equal to the background intensity
of the illumination light. As a result, we account for the non-zero background by
adding an additional term μ ∈ C to the model to capture (planar) illumination.
This results in the final model that we propose in this work,

min
X,W,μ

1
2‖H � W − μ1 − T (z) ∗ X‖2F + λ‖X‖1 s.t. |W | = 1. (6)

While our model given in (6) has many theoretical justifications based on
the nature of the LFI reconstruction problem, unfortunately, the optimization
problem is non-convex due to the constraint that |W | = 1. Nevertheless, despite
this challenge, here we describe an algorithm based on alternating minimization
that allows for efficient, closed-form updates to all of the variables which displays
strong empirical convergence using trivial initializations. In particular, one has
the following closed-form updates for our variables,

arg min
W

(6) = exp(i �(μ1 + T (z) ∗ X)) (7)

arg min
μ

(6) = 1
mn 〈H � W − T (z) ∗ X,1〉 (8)

arg min
X

(6) = SFTλ{T (−z) ∗ (H � W ) − μ exp(−izk)1} (9)
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where SFTλ{·} denotes the complex soft-thresholding operator, given by

SFTλ{Z}[i, j] =

{
Z[i, j] |Z[i,j]|−λ

|Z[i,j]| |Z[i, j]| > λ

0 |Z[i, j]| ≤ λ.
(10)

Note that the update for X comes from the unitary invariance of the Frobenius
norm, the properties of T (z) described above, the fact that F(T (z))[0, 0] =
exp(izk), and the standard proximal operator of the �1 norm.
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Fig. 1. Example image reconstructions of a whole blood sample using different recon-
struction algorithms. Left Panel: Reconstructed images using the basic reconstruction
(Left Column), sparse reconstruction without phase estimation (Middle Column), and
the full model (Right Column) shown with the full grayscale range of the reconstruction
(Top Row) and with the grayscale range clipped with a maximum of 2 to better visual-
ize the clarity of the background (Bottom Row). Top Right Panel: Linescan plots of the
3 reconstruction methods over the colored lines indicated in the left panel. The pink
region highlights a large area of the image background. Bottom Right Panel: Zoomed
in crops of a cluster of cells for the 3 methods.

From this, it is possible to efficiently reconstruct images from the recorded
diffraction patterns using the alternating sequence of updates to the variables
described by Eqs. (7)–(9), and full details are provided in Algorithm 1 in the
supplement. We note that we observe very strong convergence within approx-
imately just 10–15 iterations of the algorithm from trivially initializing with
X = 0, μ = 0, and W = 1. Due to the fact that the main computational burden
of the cyclical updates lies in computing Fourier transforms (for the convolu-
tion) and element-wise operations, the computation is significantly accelerated
by performing the calculation on a graphical processing unit (GPU), and images
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with 2048 × 4096 pixels can be reconstructed in approximately 0.7 s on a Nvidia
K80 GPU using 15 iterations of the algorithm. Figure 1(Left) shows an image
of human blood reconstructed using a basic reconstruction method which does
not estimate phase nor use a sparse prior on X (i.e., λ = 0 and W fixed at
W = 1), a reconstruction that uses a sparse prior but does not estimate the
missing phase information (by keeping W fixed at W = 1 as in [1]), and finally
the proposed method (Full Model). Note that the basic reconstruction has signif-
icant artifacts. Adding the sparse prior on X attenuates the artifacts somewhat,
but the artifacts are still clearly visible with a clipped grayscale range (bottom
row). Finally, in our full model the artifacts have been completely eliminated
(the small particles that remain are predominately platelets in the blood), and
the contrast of the red blood cells in the image has been increased significantly
(see the linescan in the top right panel). A value of λ = 1 was used for both
models involving sparsity.

4 Multi-depth Reconstructions

To this point, the discussion has largely pertained to reconstructing an image at
a single focal depth. However, one of the main advantages of holographic imaging
over conventional microscopy is the potential to reconstruct an entire 3D volume
of the specimen versus just a single image at one focal depth. One possibility
is to reconstruct multiple images independently using the algorithm described
in Sect. 3 while varying the focal depth. Unfortunately, if the specimen con-
tains objects at multiple focal depths, the diffraction patterns from out-of-focus
objects will corrupt the reconstruction at any given focal depth. Additionally,
even in the case where only one image at a single focal depth is needed, it is
still necessary to determine the correct focal depth, which can be tedious to do
manually. To address these issues, we extend the model in Sect. 3 to reconstruct
3D volumes of a specimen. In particular, we extend the single focal depth model
in (6), from reconstructing a single image, X ∈ C

m×n, to now reconstruct a
sequence of images, Xj

D
j=1, where each Xj ∈ C

m×n image corresponds to an
image at a specified depth z[j]. More formally, if we are given a vector of desired
reconstruction depths z ∈ R

D, then we seek to solve the model,

min
{Xj}D

j=1,W,μ

1
2‖H �W −μ1−

D∑
j=1

T (z[j])∗Xj‖2F +λ
D∑

j=1

‖Xj‖1 s.t. |W | = 1. (11)

This model is essentially the same as the model for reconstructing an image at
a single focal depth used in (6) but extended to a discretized 3D volume. Unfor-
tunately, due to multiple focal-depths it is no longer possible to derive a closed
form update for all of X (although one can still derive a closed form update for
an image at a particular depth, Xj). Instead we use a hybrid algorithm that
uses alternating minimization to update the W and μ variables and proximal
gradient descent steps to update X [7]. The detailed steps of the algorithm are
described in Algorithm 2 of the supplement, and Fig. 2 shows the magnitudes
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Fig. 2. Left: Example crops of the 3D reconstruction at different depths. The displayed
depth ranges from [800, 980] microns increasing from left-to-right, top-to-bottom.
Right: Magnitude of the reconstructed 3D volume over focal depth, as measured by
the �1 norms of the reconstructed images, ‖Xj‖1, for 101 evenly spaced focal depths
over the range [650, 1150] microns. The red-line depicts the focal depth obtained by
manually focusing the image.

of the reconstructed Xj images as a function of the specified focal depth for
101 uniformly spaced focal depths over the range [650, 1150] microns along with
example crops of the 3D reconstruction at different depths2. Note that the image
depth with the largest magnitude corresponds to the focal depth found by man-
ually focusing the depth of reconstruction, demonstrating how reconstructing
images over a 3D volume with the proposed method robustly and automatically
recovers the focal depth of objects within the specimen.

5 Conclusions

We have presented a method based on sparse regularization for reconstructing
holographic lens-free images and recovering the missing phase information from
a single recorded hologram. Our method converges quickly to a robust solution in
a computationally efficient manner, significantly improves reconstruction quality
over existing methods, is capable of reconstructing images over a 3D volume, and
provides a robust means to find the focal depth of objects within the specimen
volume, eliminating the need to manually tune focal depth.
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2 Note that the cells are dilated along the z-axis due to the limited axial resolution of
the imaging system.
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