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Abstract. The brain undergoes rapid development during early child-
hood as a series of biophysical and chemical processes occur, which can
be observed in magnetic resonance (MR) images as a change over time
of white matter intensity relative to gray matter. Such a contrast change
manifests in specific patterns in different imaging modalities, suggesting
that brain maturation is encoded by appearance changes in multi-modal
MRI. In this paper, we explore the patterns of early brain growth encoded
by multi-modal contrast changes in a longitudinal study of children. For
a given modality, contrast is measured by comparing histograms of inten-
sity distributions between white and gray matter. Multivariate non-linear
mixed effects (NLME) modeling provides subject-specific as well as pop-
ulation growth trajectories which accounts for contrast from multiple
modalities. The multivariate NLME procedure and resulting non-linear
contrast functions enable the study of maturation in various regions of
interest. Our analysis of several brain regions in a study of 70 healthy
children reveals a posterior to anterior pattern of timing of maturation in
the major lobes of the cerebral cortex, with posterior regions maturing
earlier than anterior regions. Furthermore, we find significant differences
between maturation rates between males and females.

1 Introduction

Appearance in MR scans serves as a noninvasive indicator of underlying tissue
composition and biochemistry. Brain MR scans clearly show variations in tissue
appearance as a result of neurological changes. These appearance variations have
been tracked to provide insights into neurological disease progression, aging,
and brain development [1]. During early stages of infant brain development,
crucial biophysical and chemical changes, such as myelination, manifest as rapid
variations in white matter (WM) intensity [2]. These changes in WM intensity are
commonly observed in T1W and T2W MR scans. The analysis of WM intensity
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changes therefore serves as the basis for many quantitative neurodevelopmental
studies of MR appearance [1,3]. However, using WM intensity measurements
alone proves unstable, as voxels in T1W and T2W MR scans show intensity
values that are highly variable with respect to several external factors, including
scanner settings and scanning conditions [4].

This problem can be overcome by using advanced, quantitative MR scanning
techniques such as MWF (Myelin Water Fraction) [5], and quantitative T2 maps.
However, the acquisition of new images does not alleviate the need to analyze
large retrospective studies consisting of mainly T1W and T2W MR scans. An
alternative is to utilize normalization schemes to standardize MR intensity val-
ues [3,6], however, these procedures are often complex and unsuitable for infant
brain scans. To reduce dependence on normalization procedures while ensuring
invariance in appearance computation to external conditions of scan, this work
adopts an inter-tissue contrast measure.

The contrast measure used quantifies relative intensity variations between
white and gray matter tissue classes using the Hellinger distance (HD) between
their intensity distributions, ensuring invariance to affine transformations of
underlying intensities due to properties of HD [7]. Further, spatiotemporal analy-
sis of the contrast change over time using nonlinear mixed-effects (NLME) model-
ing techniques results in quantification of regional appearance change parameters
from which inferences related to brain maturation can be drawn. Multivariate
and multilevel NLME modeling schemes also enable characterization of inter-
modality and inter-population differences in appearance change trajectories.

The primary contribution of this paper lies in application of the above
methodology to an infant brain imaging dataset consisting of repeated scans from
70 healthy subjects obtained across 3 time points between birth and 2 years of
age. As a result of longitudinal modeling of appearance parameters it is possible
to compare delay in developmental trajectories across brain regions, modalities,
and population groups. Inferences from analysis of sex differences using a mul-
tilevel longitudinal model show delay in appearance change between male and
female groups, demonstrating the potential clinical value of the method. To the
best of our knowledge, this is the first large-scale study of appearance change
during infant brain development in terms of inter-tissue contrast.

2 Methods

Spatiotemporal modeling of inter-tissue contrast involves an optimized 4D longi-
tudinal pipeline to ensure accurate generation of tissue segmentations and brain
parcellations. These segmentation and parcellation maps are then used to cre-
ate intensity distributions for WM and GM tissue classes specific to each major
cortical region. The contrast measure for each cortical region is then computed
in terms of the overlap between the WM and GM intensity distribution belong-
ing to that region. Such regional contrast measures are also obtained for each
modality. Finally, spatiotemporal growth patterns in the resulting multi-modal
contrast data are modeled via the non-linear mixed effects (NLME) method.



Longitudinal Modeling of Multi-modal Image Contrast 77

Parameters of interest are extracted and analyzed from the NLME fit in order
to characterize spatiotemporal trajectories of contrast change.
Preprocessing: It is well established that early gyrification of the brain ensures
consistent neuroanatomy in infant brains during early brain development, despite
large volumteric changes [8]. The 4D longitudinal pipeline used in this work,
which consists of co-registration, tissue segmentation, and regional parcellation
of the brain, is optimized to utilize this characteristic of subject-specific neu-
roanatomical consistency across time.

Inter-subject registration is performed using the ANTS framework with a
choice of cross-correlation as the metric for diffeomorphic mappings. Inter-
subject registration was then performed by computing a population atlas based
on the deformation of latest time point scans using the large deformation frame-
work [9], leveraging the high inter-tissue contrast seen in later time point scans.

Segmentation of the multimodal brain scans into major tissue classes was
done using an expectation maximization framework which utilized probabilistic
priors [10]. The effectiveness of a longitudinal segmentation framework, which
uses high-contrast, late-time point image segmentations to enforce a prior on
low-contrast, earlier time point images has already been established [8]. The
latest time point uses probabilistic priors from an existing population atlas, and
in turn provides priors for earlier time points.

To perform parcellation of the brain into major cortical regions, a parcellation
atlas from a previous large-scale neuroimaging study is co-registered with the
latest time point image from the series of infant scans. The atlas is co-registered
with scans from previous time points by using the intra-subject deformations
computed earlier. As a result of this pre-processing pipeline, each voxel in the
multimodal set of m brain scans at a time point tj and belonging to subject i is
given two labels: (a) a tissue-class label ck (based on segmentation), and (b) a
cortical-region label Rl (from parcellation).
Intensity distributions: Let Im

i,tj
represent the scan from the i-th subject at

time tj (corresponding to the jth time point) and belonging to modality m.
Corresponding to each scan is a label image resulting from tissue segmentation,
which assigns every voxel to a tissue class ck, as well as another label image from
parcellation, which assigns every voxel to an anatomical region Rl. Intensity
distributions are computed by sampling voxels belonging to the tissue class and
region under analysis. For every Im

i,tj
, we use kernel density estimation (KDE)

to obtain a smooth and continuous intensity distribution for each tissue class ck

and region Rl.
Consider the intensity distribution for the scan Im

i,tj
defined above. For the

modality m scan belong to subject i, acquired at timepoint tj , the probability
of a given intensity Intq being exhibited by voxels belonging to tissue class ck

and region Rl is computed by

Pm
i,tj (Intq|ck, Rl) =

1
nh

∑

x∈{ck,Rl}
G

(
Intq − Int(Im

i,tj
(x))

h

)
, (1)
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where n denotes the number of voxels x ∈ {ck, Rl}, int(Im
i,tj

(x)) is the intensity
of image Im

i,tj
at voxel x, and h is the bandwidth of the Gaussian kernel G.

The purpose of converting raw intensity values into a distribution is for com-
parison of image appearance between scans or between different regions of the
same scan, along with removal of any associated shape or volume information.
When compared with voxel-wise intensity comparisons, intensity distributions
eliminate the need for accurate image co-registration. Using a probability den-
sity function for intensity representation also ensures that volumetric information
from the contributing region is eliminated.
Quantification of contrast: Measuring relative intensity variations in terms of
inter-tissue contrast ensures sensitivity to WM-GM appearance changes result-
ing from neurodevelopment, while reducing variability due to external factors
(eg. scan conditions). Given two probabilistic intensity distributions (WM and
GM), the variations between them can be quantified by the overlap between
their distributions. Such a measure can capture subtle variations that cannot be
effectively measured by summary statistics such as difference in mean intensity.

The measure used in this work to quantify inter-tissue contrast is denoted
White-gray Intensity Variation in Infant Development (WIVID). WIVID quan-
tifies inter-tissue contrast between WM and GM by computing the Hellinger
Distance between their respective intensity distributions, which captures the
divergence between two probabilistic distributions [11]. Therefore, as the inter-
tissue contrast between WM and GM increases, this results in a corresponding
increase in the WIVID measure. Similarly, a decrease in inter-tissue contrast
between WM and GM results in a decrease in the WIVID measure.

Consider the image of modality m belonging to subject i at time tj , denoted
Im
i,tj

. WM and GM intensity distributions for this scan can be computed using
Eq. (1), with ck = WM and ck = GM for the respective tissue class distributions
estimated for a region Rl. The WIVID measure for this region can now be
computed in terms of the Hellinger Distance (denoted by HD) as

WIV IDRl
i,m(tj) = HD(Pim(Int, tj |ck = WM,Rl), Pim(Int|ck = GM,Rl)). (2)

Longitudinal modeling of multi-modal contrast: We briefly summarize the
NLME model [12]. Consider a population of Nind individual subjects indexed
by i and the Tind time points of scan are denoted by j. The contrast variable
WIV IDij belonging to the ith subject at the jth time point tij , can be written
in terms of the NLME equation as

WIV IDij = f(φi, tij) + eij , (3)

The mixed effects function used to model the change in the variable is written
as f . This function is dependent on the temporal variable tij as well as the
mixed-effect parameter vector φi that is specific to each subject. The error term
eij indicates the i.i.d error following the distribution eij ∼ N(0, σ2). The core
component of the NLME model is the mixed effect parameter vector φi which
can be written in terms of its fixed and random effects components
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φi = Aiβ + Bibi , where bi ∼ N(0,ψ). (4)

with fixed and random effects design matrices Ai and Bi for each subject i. The
p-vector of fixed effects is given by β and the q-vector of random effects is given
by bi. The random effects matrix bi is assumed to be normally distributed with
variance-covariance matrix ψ over all subjects.

Non-linear asymptotic growth is modeled by the logistic function

f(t) =
φ1

1 + exp(φ3−t
φ2

)
. (5)

with intuitive parameters: φ1 denoting right asymptote, φ2 denoting speed of
development, and φ3 is the midpoint (inflection point), denoting delay.

The NLME model in Eq. (3) can then be used to evaluate the logistic function
in Eq. (5). Practically, not all parameters have both fixed and random effects
components particularly since this might result in an unstable estimate due to
an increase in number of variables. In our analysis, φ1 (right asymptote) and
φ3 (delay) parameters were modeled with non-zero random effects, while it was
assumed that the speed parameter had no random effects component. Note that
in this multivariate model, the random effects parameters of all modalities have
a joint variance-covariance matrix which accounts for the inter-related nature of
growth trajectories of each modality [13].

3 Analysis of Early Brain Growth

Data: This dataset consists of 70 healthy children, with 40 male and 30 females.
Generally, subjects were scanned at 3 time points at approximately 6 months,
1 year, and 2 years of age, however, some subjects (19) have 2 observations. MR
acquisition was performed using a 3-T Siemens Tim Trio scanner with a 12-
channel head coil at multiple sites with protocol T1 magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) scan T2 fast spin echo (FSE) scan.
A LEGO phantom was scanned every month at all acquisition sites to correct
for image quality issues and site-specific regional distortions. Additionally, two
human phantoms were scanned once each year per scanner. Inter-site and intra-
site stability was tested using these human phantoms across multiple sites [14].
Results: All subject images were processed by a pipeline including co-
registration, tissue segmentation, and lobar parcellation as described in the
Sect. 2. An example of a co-registered set of multimodal scans from a single sub-
ject is shown in Fig. 1, along with the corresponding segmentation and parcel-
lation maps. Preprocessing was followed by calculation of intensity distributions
and WIVID distribution overlap per lobe and timepoint for WM and GM tissue
classes. The temporal series of WIVID measures was then modeled using the mul-
tilevel NLME model described in the previous section (see Fig. 1 middle and right).

To effectively model the dataset, joint multivariate modeling of WIVID using
both T1 and T2 modalities was performed. Asymptote and delay were chosen
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Fig. 1. Left: Processing framework illustrating co-registered multimodal T1W and
T2W scans at 6, 12 and 24 months along with segmentation and lobe parcellation
maps. Middle and right: Results from multilevel NLME modeling of contrast trajec-
tories in males. Plots for T1W scans (blue) and T2W scans (black) are shown for the
left temporal lobe and left occipital lobe.

to have random effects components in the model while a fixed effects component
was associated with the rate of change. The plots illustrate that the change in
contrast is highly asymptotic, and that trajectories and rate of change in different
modalities are very different. The T1W WIVID contrast values increase sharply
between 6 months and 1 year of age, after which they only have slow variation.
In comparison, the T2W WIVID contrast values are initially much lower but
continue to increase throughout the age range from 6 months until 2 years.

Figure 2 illustrates lobar patterns of maturation that proceed from anterior
to posterior brain regions. Visualizations show the timing of the inflection point
of the NLME fit per lobe regions, and only the T2 trajectories are used due
the increased age range where changes are observable. The same pattern is also
observable via delay and rate parameters from the NLME fit but tables are omit-
ted due to space limitations. Most noticeably, while the occipital lobe has the
lowest delay value indicating early maturation, frontal and temporal lobes have

Fig. 2. Visualization of analysis of contrast trajectories. Left: P-values corresponding to
the delay parameters (prior to correction for multiple comparisons). Delay parameters
for female (middle) and male (right) subjects.
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Fig. 3. Difference in delay parameter between male and female groups visualized across
major brain lobes of the cerebral cortex.

the highest delay value corresponding to late maturation. The same spatial pat-
tern is seen for female and male subjects, which corroborate common knowledge
in pediatric radiology [2,15]. Most interesting is the differences in delay between
female and male groups, where females show earlier maturation than male sub-
jects. Timing differences are shown in Fig. 3. A qualitative interpretation reveals
that sex differences are highest in regions which also mature earlier, i.e. in the
occipital and parietal lobes. Regions with later development such as temporal
and frontal lobes show smaller sex differences. It is important to note that these
maturation patterns are measured at an age where there is very limited access
to cognitive assessments of infant growth.

4 Discussion

This work characterizes spatiotemporal patterns of brain growth using inter-
tissue contrast from longitudinal pediatric neuroimaging data of healthy sub-
jects. Unlike most published work on early infant growth, contrast from multi-
modal MRI was used as a measure of longitudinal change. The distance measure
between gray and white matter intensity distributions is invariant to scale and
does not require normalization of MRI intensities which itself would represent
a significant challenge. Patterns that are commonly mentioned in neuroimag-
ing literature such as the posterior-to-anterior patterns of brain maturation in
the major lobes of the cerebral cortex are quantified using parameters emerging
from the NLME logistic fit. Differences shown in appearance change across dif-
ferent modalities have the potential to capture timing sequences of underlying
neurobiological properties. The finding of male-female differences being more
apparent in posterior brain regions indicate that such a method has potential
to detect maturation delays in infants at risk for mental illness at an age where
there are very limited other ways to assess development and growth. Improved
understanding of developmental origins and timing is a declared goal of research
in mental illness, and making use of image contrast in addition to volumetry,
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shape, or diffusion measures may potentially add information not sufficiently
studied before.

The variation of contrast with respect to nonlinear intensity distortions has
not been fully examined. As a result, the effect of intensity inhomogeneities
including bias distortions on contrast is not fully known. A prerequisite for pro-
posed methodology is brain tissue segmentation at all time points, even at stages
where there is very little or disappearing tissue contrast. We have applied a 4D
segmentation scheme via the use of a subject-specific atlas, indicating that mul-
tiple time points are necessary for an infant to be segmented. Further progress
on multi-modal segmentation at this age range may provide solutions. Finally,
quantitative investigations into the actual biophysical processes that result in
brain appearance change would help to get further insight into the nature and
extent of contrast variations in the infant brain.

References

1. Serag, A., Aljabar, P., Counsell, S., Boardman, J., Hajnal, J.V., Rueckert, D.:
Tracking developmental changes in subcortical structures of the preterm brain
using multi-modal MRI. In: IEEE ISBI, pp. 349–352 (2011)

2. Rutherford, M.: MRI of the Neonatal Brain. WB Saunders Co, London (2002)
3. Prastawa, M., Sadeghi, N., Gilmore, J.H., Lin, W., Gerig, G.: A new framework

for analyzing white matter maturation in early brain development. In: IEEE ISBI,
pp. 97–100. IEEE (2010)
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