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Abstract. The 4D infant cortical surface atlas with densely sampled
time points is highly needed for neuroimaging analysis of early brain
development. In this paper, we build the 4D infant cortical surface atlas
firstly covering 6 postnatal years with 11 time points (i.e., 1, 3, 6, 9,
12, 18, 24, 36, 48, 60, and 72 months), based on 339 longitudinal MRI
scans from 50 healthy infants. To build the 4D cortical surface atlas,
first, we adopt a two-stage groupwise surface registration strategy to
ensure both longitudinal consistency and unbiasedness. Second, instead
of simply averaging over the co-registered surfaces, a spherical patch-
based sparse representation is developed to overcome possible surface
registration errors across different subjects. The central idea is that,
for each local spherical patch in the atlas space, we build a dictionary,
which includes the samples of current local patches and their spatially-
neighboring patches of all co-registered surfaces, and then the current
local patch in the atlas is sparsely represented using the built dictionary.
Compared to the atlas built with the conventional methods, the 4D infant
cortical surface atlas constructed by our method preserves more details of
cortical folding patterns, thus leading to boosted accuracy in registration
of new infant cortical surfaces.

1 Introduction

The highly folded cerebral cortex shows considerably variable folding patterns
across subjects. To study cortical structure and function, cortical surface atlases
have been built [10] for providing the common spaces for quantitative com-
parison of subjects and populations. However, most of existing cortical surface
atlases are built from adult brains, e.g., the FreeSurfer atlas [1], PALS-B12 atlas
[3], and the recent HCP atlas [2]. Few works are focused on the infant corti-
cal surface atlas [6]. In fact, at early ages, the infant cortical surface undergoes
a dynamic and critical development, not only in size but also in the folding
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degree [4]. Hence, to fully characterize, analyze, and understand dynamic corti-
cal developmental trajectories during early brain development, instead of build-
ing a single atlas, it would be ideal to build a set of age-specific atlases with
(a) vertex-wise correspondences across ages, (b) dense sampling at key time
points during the cortex development, and (c) sharp folding patterns represent-
ing a population.

Motivated by above requirements, we build the 4D infant cortical surface
atlas firstly covering 6 postnatal years, based on 339 longitudinal MRI scans
from 50 healthy infants, with each scanned roughly at 1, 3, 6, 9, 12, 18, 24,
36, 48, 60, and 72 months of age. To establish cortical correspondences across
different subjects and different time points, a two-stage groupwise surface reg-
istration is adopted to ensure both longitudinal consistency and unbiasedness.
After registration, instead of averaging the co-registered surfaces, a spherical
patch-based sparse representation is developed to better capture common corti-
cal folding patterns and also overcome potential registration errors. To further
equip our atlas with parcellations, we also warp the FreeSurfer parcellation [1]
and the HCP MMP parcellation [2] onto this 4D atlas to facilitate early brain
development studies.

2 Method

2.1 Materials and Image Processing

Totally 339 serial MRI scans from 50 healthy infants were acquired by a Siemens
3 T scanner. Each subject was scheduled to scan at 1, 3, 6, 9, 12, 18, 24, 36, 48,
60, and 72 months of age. The subject number and gender information (with M
indicating male, and F indicating female) at each time point is given in Fig. 5.

All infant MR images were preprocessed by an established infant-specific
pipeline [5,12]. Briefly, it included skull stripping, cerebellum removal, inten-
sity inhomogeneity correction, tissue segmentation, separation of left/right hemi-
spheres, topology correction, cortical surface reconstruction, and computation of
morphological features (e.g., sulcal depth, average convexity, and curvature). All
cortical surfaces were then mapped onto a sphere for facilitating the registration.

2.2 Establishing Intra-subject and Inter-subject Correspondences

To establish cortical correspondences across subjects and time points, we adopt
a two-stage (intra-subject and inter-subject) groupwise surface registration to
ensure both longitudinal consistency and unbiasedness, using the spherical
demons method [13]. The registration framework is illustrated in Fig. 1.

The first stage is to build the unbiased intra-subject longitudinal correspon-
dences for each subject. All longitudinal cortical surfaces of the same subject are
groupwisely co-registered and then the intra-subject mean can be obtained. Note,
because all primary cortical folds are present at term birth and preserved during
postnatal development [3,4], the intra-subject mean cortical folding pattern is
sharp and contains representative subject-specific information.
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Fig. 1. Illustration of two-stage registration for building intra-subject and inter-subject
cortical correspondences. Gray boxes indicate missing data at that time.

The second stage is to build inter-subject correspondence across all subjects.
Specifically, we groupwisely co-register those intra-subject mean surfaces of all
subjects to a common space, i.e., the inter-subject mean space. For each subject
at any age, the longitudinally consistent inter-subject cortical correspondences
are established based on the correspondences defined by their intra-subject mean
cortical folding pattern, thus each cortical surface can be warped into the inter-
subject mean space and further resampled with a standard mesh tessellation.
Finally, we can build the 4D cortical surface atlas in this common space using a
sparse representation technique as detailed in the following section.

2.3 Atlas Built by Spherical Patch-Based Sparse Representation

After above two-stage registration, the correspondences across subjects and time
points are obtained. All subjects are now sitting in the inter-subject mean space.
Thus, all spherical cortical surfaces from different subjects now share the same
mesh structure with the same topology. Although a direct average over subjects
at each age could obtain age-specific average atlas, this may lead to the over-
smoothed cortical folding patterns due to large inter-subject variance (even after
registration). Many detailed folding patterns after averaging will be lost, thereby
degrading the registration accuracy when using this atlas to align a new subject.

To address this issue, we consider atlas construction as a problem of robust
and sparse representation of underlying cortical folding patterns, by using a dic-
tionary of individuals’ folding patterns. This will significantly reduce influences
of outliers and also increase clarity and representativeness of folding pattern in
the atlas. Specifically, first, we adopt the spherical patch-based representation to
capture local folding patterns. Then, corresponding patches across subjects are
collected to build the representation dictionary. To account for potential registra-
tion errors, neighboring patches are also augmented into the dictionary. Finally,
for each local patch on the surface atlas, the sparse representation is adopted to
robustly construct the cortical surface atlas from the built dictionary.

Construction of Comparable Neighboring Spherical Patches. Each
spherical cortical surface is a triangular mesh, composed of vertices and edges,
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(a) (b)

Fig. 2. Illustration on construction of comparable neighboring patches. (a) Inconsis-
tency of the mesh structures at vertices v1 and v2. (b) Rotation of the patch at v1 to
v2 to construct the two comparable neighboring patches.

thus the patch of a vertex can be regarded as the l -ring neighboring vertices
set. Figure 2(a) demonstrates the 1-ring patch for vertices v1 and v2. However,
due to the inconsistency of the mesh structure at different vertices, patches are
not directly comparable (i.e., two patches centered at v1 and v2, respectively,
are different in their local connections and sizes). Hence, we need to have com-
parable neighboring patches for building the dictionary. To address this issue,
the patch at v1 is rotated onto its neighboring vertex v2 (with v2 as one of the
2-ring neighbors of v1), and the rotated patch (indicated by the orange dotted
lines in Fig. 2(b)) with resampled cortical attributes is used as the patch for v2.
In this way, we can construct comparable neighboring patches for neighboring
vertices.

Dictionary Construction. Once the comparable neighboring patches con-
structed, we can build the dictionary for each local patch on the atlas. For a
patch centered at vertex vi, the corresponding patches from N co-registered
subjects are extracted and included into the dictionary, denoted as p

(n)
vi , where

n = 1, . . . , N denotes the subject index. To further overcome the potential reg-
istration errors, the neighboring patches close to the current local patch are also
extracted and included into the dictionary, denoted as p(n)

vk
i

, where vk
i is the k-th

vertex neighboring to the vertex vi (for example, vk
i , k = 1, . . . ,K, is the 2-ring

neighbors of vi as illustrated in Fig. 3). By combining the corresponding local
patches and also their neighboring patches, the dictionary Dvi

for the patch
centered at vi can be built, as also illustrated in Fig. 3.

Dic�onary of vertex on atlas

Current vertex Neighboring ver�cesSubject 1 Subject N

Fig. 3. Building dictionary for a local patch centered at vertex vi of the cortical surface
atlas.
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Sparse Representation. Once the dictionary is built, the atlas construction is
to sparsely represent the underlying cortical folding pattern in the atlas by using
the dictionary of individuals’ cortical folding patterns. For each vertex vi on the
atlas, N local patches from N co-registered subjects can be obtained. However,
due to the potential registration errors and also inter-subject variability, some
patches may have less agreement in representing the population folding pattern.
An effective strategy to filter out the outlier patches is to select those highly-
correlated patches from the population. To do this, first, the group center of
these patches are computed as the average of all patches; second, the correlation
coefficient between each patch and the group center patch is computed; finally,
the top M (M ≤ N) patches corresponding to the top M correlation coefficients
are selected, denoted as p̂(m)

vi
, with m = 1, . . . , M .

The sparse representation of those top M patches can be formulated as [14]:

x(vi) = arg min
x≥0

[
M∑

m=1

‖Dvi
x − p̂(m)

vi
‖22 + λ1‖x‖1 + 0.5λ2‖x‖22] (1)

where p̂(m)
vi

corresponds to m-th extracted patches from the top M patches,
and Dvi

is the dictionary for local patch centered at vi. The first term in Eq. 1
encourages the constructed patch Dvi

x to be similar to the selected top M

patches p̂(m)
vi

. The second term is a L1 regularization used to encourage the
representation vector x to be sparse, and the last term is a smoothness term used
to group select similar patches. We add the smooth term because neighboring
patches are overlapped and highly correlated, if only using L1 norm without L2
norm as did in LASSO, the optimization will select just one patch from many
correlated patches. λ1 and λ2 are non-negative parameters. By solving the above
optimization problem using [8], the atlas patch centered at vertex vi is obtained
based on the corresponding representation coefficients x(vi). Since each vertex is
covered by multiple patches, the final atlas will be created by averaging multiple
estimations at each vertex. In this way, for each age, a spherical surface atlas that
contains sharp, population-representative cortical folding pattern is constructed.

3 Experiments

To evaluate the constructed 4D atlas, we compare it with atlases generated by
3 other strategies, including (1) simple averaging, (2) averaging over the top M
highly-correlated patches, and (3) sparse representation that ignores averaging
of multiple estimations at each vertex, i.e., using only the sparsely estimated
patch center for each vertex on the atlas. In the experiments, we used the fol-
lowing parameter setting. The top 80% highly-correlated patches are selected.
Each patch is defined by the 2-ring neighbors, and neighboring vertices used
to augment patches are set as the 3-ring neighbors. The parameter λ1 is set
to be 0.05, and λ2 is set to be 0.002. These parameters are learned from cross
validation.
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Fig. 4. Comparison of 12-month cortical surface atlases built with 4 different strategies.
(a)–(d) shows the average convexity, and (e)–(h) shows the curvature.

Figure 4 demonstrates a comparison for the atlases built at 12 months by
four methods (including our proposed method) at two scales such as average
convexity and curvature. Figure 4(a)–(d) show the average convexity, denoting
a coarse-scale measurement of the folding patterns, while Fig. 4(e)–(h) show the
curvature, denoting a fine-scale measurement. It can be seen that our method
can better encode the folding patterns, compared to the other three methods,
especially for the fine-scale folding patterns.

To equip our 4D atlases with cortical parcellations, the FreeSurfer atlas is
further aligned onto our atlas at the last time point. Then, the FreeSurfer par-
cellation [1] with 35 regions in each hemisphere is propagated to the 4D atlas at
each of other time points. For fine-grained parcellation, the HCP multi-modal
parcellation (MMP) with 180 regions in each hemisphere [2] is first mapped to
the FreeSurfer space using HCP workbench [11] and then propagated to our 4D
infant cortical surface atlases. Figure 5 shows the built 4D infant cortical surface
atlas at all 11 time points based on the collected infant dataset.

Since there is no ground-truth to evaluate the quality of built atlas, we use
following strategy to quantitatively assess our 4D atlas. We divide the subjects
into three subsets randomly. Two subsets are used for building the 4D atlas, and
the left subset is used for evaluation. For each surface in the evaluation subset,
we register it onto (a) the FreeSurfer adult atlas [1]; (b) the atlas generated
by the FreeSurfer strategy, i.e., directly align all subjects together in one step;
and (c) age-matched atlases generated by different strategies mentioned above
and also shows in Fig. 4. If the atlas can better encode the folding patterns, the
registered surfaces would be aligned in a more agreement way. We measure the
alignment degree in coarse and fine evaluation ways. In the coarse evaluation
way, we follow the evaluation in [7]. That is, all registered cortical surfaces are
partitioned into gyral and sulcal regions. Then, at each vertex, for all aligned
subjects, we can get the frequency of subjects that belong to gyral or sulcal
region. Based on this frequency, the entropy can be calculated [7]. Finally, for
all the vertices, the average entropy can be obtained. Clearly, lower values of
the average entropy indicates better alignment of gyral and sulcal regions. In
the fine evaluation way, we use the curvature map correlation to evaluate
the agreement of the aligned folding patterns, as in [6]. That is, for each pair
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Fig. 5. Demonstration of the built 4D infant cortical surface atlas. (a) and (b) are in
the spherical space. (c) and (d) are the average cortical surface with the folding patterns
from (a) and (b), respectively. (e) and (f) are the equipped FreeSurfer parcellation and
HCP MMP parcellation, respectively. Numbers in the left denote the month(s) of age.

of aligned surfaces, their curvature map correlation is calculated, and then we
can average for all possible pair of aligned surface to get the average correlation
coefficient. Obviously, higher correlation coefficient indicates better alignment.
Table 1 reports quantitative evaluation of different atlases at different time points
in a coarse way, while Table 2 reports the quantitative evaluation in a fine way.
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Table 1. Atlas evaluation in a coarse way by entropy.

Age 01 03 06 09 12 18 24 36 48 60 72

FreeSurfer adult 0.421 0.416 0.470 0.487 0.495 0.494 0.479 0.441 0.477 0.505 0.445

One step alignment 0.451 0.413 0.436 0.489 0.491 0.428 0.371 0.364 0.425 0.437 0.401

Average 0.405 0.397 0.394 0.397 0.389 0.401 0.368 0.342 0.409 0.415 0.380

Top M average 0.403 0.394 0.394 0.396 0.386 0.398 0.363 0.341 0.408 0.413 0.378

Sparse center 0.403 0.392 0.392 0.393 0.381 0.398 0.366 0.335 0.408 0.408 0.370

Proposed 0.401 0.391 0.390 0.393 0.381 0.398 0.356 0.297 0.408 0.402 0.344

Table 2. Atlas evaluation in a fine way by average curvature map correlation.

Age 01 03 06 09 12 18 24 36 48 60 72

FreeSurfer adult 0.272 0.273 0.233 0.219 0.200 0.207 0.188 0.176 0.221 0.208 0.209

One step alignment 0.304 0.291 0.325 0.316 0.293 0.0.327 0.340 0.216 0.351 0.342 0.338

Average 0.336 0.346 0.366 0.367 0.356 0.352 0.356 0.217 0.356 0.356 0.349

Top M average 0.338 0.346 0.370 0.367 0.359 0.354 0.360 0.319 0.360 0.359 0.352

Sparse center 0.344 0.352 0.371 0.370 0.360 0.357 0.367 0.323 0.357 0.364 0.354

Proposed 0.345 0.352 0.373 0.377 0.366 0.358 0.372 0.327 0.374 0.371 0.373

As can be seen, FreeSurfer adult atlas has lower agreement among registered
subjects, indicating inappropriateness for infant brain analysis. Also, in both
coarse and fine evaluation ways, our atlas boosted registration accuracy, indi-
rectly indicating the folding patterns of infant population are better preserved.

4 Conclusion

In this paper, we built the 4D infant cortical surface atlas at densely sampled
time points, from neonate to 6 years old. By using sparse representation of
spherical patches, the surface folding patterns of infant population can be better
preserved in the built 4D atlas, thus also boosts the surface registration accuracy
and subsequent analysis. It worths noting that there are more recent registration
methods [9] which may further improve our results. In the future, we would test
other registration methods and includes more extensive validations, and we will
also release our 4D infant cortical surface atlas to the public.
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