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Abstract. Studies involving dynamic infant brain development has
received increasing attention in the past few years. For such studies,
a complete longitudinal dataset is often required to precisely chart the
early brain developmental trajectories. Whereas, in practice, we often
face missing data at different time point(s) for different subjects. In
this paper, we propose a new method for prediction of infant brain
development scores at future time points based on longitudinal imag-
ing measures at early time points with possible missing data. We treat
this as a multi-dimensional regression problem, for predicting multiple
brain development scores (multi-task) from multiple previous time points
(multi-linear). To solve this problem, we propose an objective function
with a joint �1 and low-rank regularization on the mapping weight tensor,
to enforce feature selection, while preserving the structural information
from multiple dimensions. Also, based on the bag-of-words model, we
propose to extract features from longitudinal imaging data. The exper-
imental results reveal that we can effectively predict the brain develop-
ment scores assessed at the age of four years, using the imaging data as
early as two years of age.

1 Introduction

The early postnatal period witnesses dynamic brain development, which has not
been sufficiently explored. Such assessments can be essential steps in identifying
and treating the early neurodevelopmental disorders, as well as understanding how
brain develops. Longitudinal neuroimaging analysis of the early postnatal brain
development, especially for scoring of an individual’s brain development, is a very
interesting and important problem. However, this is quite challenging, due to rapid
brain changes during this stage. In this paper, we present a novel method to extract
informative brain MRI features and propose a multi-task multi-linear regression
model for predicting brain development scores in future time points.

To conduct this study, we use longitudinal MRI data from healthy infant
subjects, with each subject scanned at every 3 months in the first year, every 6
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months in the second year, and every 12 months from the third year. At the age
of 48 months, five brain development scores are assessed for each subject, which
characterize how an individual’s brain has developed. We seek to predict these
five scores purely from the neuroimaging data in multiple previous time points.
However, we face quite a number of challenges. (1) In certain time points, there
are missing neuroimaging data for some subjects, due to subject’s no show-up
or dropout. This poses a major challenge for the task of prediction. (2) We have
multiple brain development scores to predict. As these scores are acquired from
same subjects, they are essentially inter-related and can benefit each other for
the prediction tasks. Hence, we have a multi-task problem at hand. (3) Each sub-
ject is scanned at multiple time points in the first 48 months; therefore, we need
to build multiple models (multi-linear), which are also inter-related. (4) The neu-
roimaging data at each time point are extremely high-dimensional, and therefore
we need an intuitive feature extraction and dimensionality reduction technique
to avoid the so-called Small-Sample-Size (SSS) problem, in which the number
of subjects is way much less than the number of features. (5) Often all features
acquired from neuroimaging data are not necessarily relevant and useful for the
prediction tasks. Specially, the features from the very earlier time points can be
less effective in predicting the future scores. Hence, we need to enforce selecting
the most important features for a reliable and accurate prediction model.

Accordingly, we design a novel framework to address all the above chal-
lenges. Specifically, first, we propose a model based on Bag-of-Words (BoW)
[11] to extract meaningful low-dimensional features from the high-dimensional
neuroimaging data, denoted as brain fingerprints. Then, we propose a novel
Multi-Task Multi-Linear Regression (MTMLR) framework to take advantage of
the existing inherent structure and inter-relation between the tasks and between
the time points, by using low-rank tensor regularization as a natural underpin-
ning for preserving this underlying structural information. We also include a �1
regularization on the same tensor to enforce selection of the most relevant fea-
tures. Furthermore, our MTMLR formulations can deal with incomplete data by
neglecting the time points with no data for any specific subject. The obtained
prediction results indicate that our framework can accurately predict the brain
development scores as early as at 24 months of age.

2 Materials and Feature Extraction

To conduct this study, we use the longitudinal MRI data from 24 healthy infant
subjects. For each subject, T1-, T2-, and diffusion-weighted MR images are
acquired at nine different time points (i.e., 0, 3, 6, 9, 12, 18, 24, 36 and 48
months), and five brain development scores are acquired for each subject at
48 months, including Visual Reception Scale (VRS), Fine Motor Scale (FMS),
Receptive Language Scale (RLS), Expressive Language Scale (ELS), and Early
Learning Composite (ELC). Note that the fifth score (i.e., ELC) can be inter-
preted as the composite of the other four. As discussed earlier, we have missing
imaging data for some of the subjects at certain time points. Figure 1 illustrates
the formation of our dataset, in which black blocks indicate missing data.
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Fig. 1. Longitudinal infant dataset, containing 24 subjects (columns), each scanned at
9 different time points (rows). Each block contains the cortical morphological attributes
of all vertices on the cortical surface for a specific subject at a specific time point. Black
blocks show the missing data at the respective time points.

Fig. 2. Longitudinal cortical thickness maps on the inflated cortical surface for a rep-
resentative subject.

All images are processed using an infant-specific computational pipeline
for cortical surface reconstruction and registration, similar to [8]. Then, five
attributes are extracted for each vertex on the cortical surfaces. These attributes
are: the sulcal depth as Euclidian distance from the surface hull (EucDepth)
[6], local gyrification index (LGI) [6], curve sulcal depth along the streamlines
(StrDepth) [6], mean curvature [7], and cortical thickness [7] (Fig. 2).

The attributes for all vertices on the cortical surface of each subject lead to an
extremely high-dimensional set of data. To slash the dimensionality of the feature
vector, we consider each vertex as a 5D vector, containing its 5 attributes. Using
a model similar to BoW [11], we group the similar 5D vectors to create a high-
level profile for each cortical surface. Specifically, we create a pool from these
vectors from all subjects in the dataset, and cluster them into d = 100 different
clusters, based on weighted Euclidean distance. Then, a d-dimensional vector can
be simply used to represent each subject, corresponding to the frequencies of its
vertices lying in each of these d clusters. But it is important to note that not all
of the 5 attributes on the surface are equally important. That is why we employ
a weighted Euclidean distance to conduct the clustering. To calculate the weights
for each attribute, corresponding to the relevance of that attribute with the brain
development score, we employ a paired t-test between the attribute values and
the score to be predicted (e.g., ELC). The percentages of the vertices having
a p-value of less than 0.05 are calculated for each attribute. These percentage
values show the importance of the attributes. We normalize these values to have
a sum equal to 1, and use them to weight the attributes in the distance function.

After the above procedure, we have a d-dimensional feature vector for each
time point of each subject. This vector encodes the structural characteristics of
the cortical surface, and is denoted as the fingerprint of the subject’s brain. It
intuitively encodes the formation of attributes on the cortical morphology, and
hence can be used to predict the brain development scores (see the next Section).
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3 Joint Sparse and Low-Rank Regularized MTMLR

With the problem description discussed earlier, we have N subjects, scanned at
T different time points, with S different brain development scores assessed from
each subject. We extract d different features from the subjects at each time point
(Sect. 2). Figure 3 illustrates different settings for a regression problem, in which
the loss function L(.), and the regularization of the mapping coefficients R(.) are
defined on vectors, matrices or tensors depending on the problem nature (See the
notations1). We seek to find the best mapping for the prediction of the scores,
knowing that joint learning of multiple relevant tasks can outperform learning
each task separately [3,10].

As can be seen in Fig. 3(c), a MTMLR task is defined by aggregating the
predictions from each time point t from the tth fiber of the data tensor, Xt, using
the respective mapping coefficients, Wt. All these mapping coefficients Wt,∀1 ≤
t ≤ T , are stacked together to form a tensor of order three, W. As it is apparent,
tensor W has ample intertwined dependencies along its different dimensions,
since each of its fibers hold mapping coefficients from different time points of
same subjects predicting the same set of scores. Hence, it is a quite feasible
assumption that this tensor should be rank deficient. But the rank function
is not a well-defined function and is often approximated by the nuclear norm.
As a result, to include this in the optimization objective, we can define the
regularization term as R(W) = λ‖W‖∗. However, all features from all time
points might not be beneficial in building the prediction model, we propose to
include a joint sparse and low-rank regularization. As discussed in the literature
[5,12], a mixture of �1 and nuclear norms often makes the model less sensitive
to the feature size and variations. Hence, the regularization term would be:

R(W) = λ1‖W‖∗ + λ2‖W‖1. (1)

The loss function, evaluating the level of misprediction, would require to
aggregate over all combinations of scores and subjects across different time

Fig. 3. Illustration of different regression models: (a) Linear Regression, (b) Multi-Task
Regression, (c) Multi-Task Multi-Linear Regression.

1 Bold capital letters denote matrices (e.g., A), small bold letters are vectors (e.g., a),
and non-bold letters denote scalars (e.g., a). Tensors are represented by calligraphic
typeface letters (e.g., W). ‖.‖∗ and ‖.‖1 designate the nuclear and �1 norms, respec-
tively, while 〈., .〉 denotes the inner product. W(n) denotes the mode-n matricization
of the tensor W, i.e., unfolding W from its nth dimension to form a matrix.
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points. As stated before, in our longitudinal study, we have missing data in
several time points. To deal with this incomplete data, we define a mask matrix,
A, analogous to the block in Fig. 1. Each element of this matrix (at

i) would indi-
cate if there exists the neuroimaging data for subject i at time point t. As a
result we have:

L(Y,X ,W) =
S∑

s=1

N∑

i=1

T∑

t=1

at
i.
(
ys
i − 〈xt

i,w
s,t〉)2. (2)

Optimization: In order to optimize the objective function with the loss function
(2) and regularization (1), we use the Alternating Direction Method of Multi-
pliers (ADMM) [1]. To do this, we utilize a convex surrogate for the rank of a
tensor, which is approximated using the nuclear norm. Similar to previous works
[10,12], a good convex proxy for that is defined as the average of the nuclear
norms of each matricization of W:

‖W‖∗ =
1
O

O∑

n=1

‖W(n)‖∗, (3)

where O is the tensor order (O = 3 in our case). This reduces the problem to
minimizing the matrix nuclear norms (sum of eigenvalues of the matrix), which
is widely studied in the literature [9,10]. Therefore, the objective function would
become:

min
W

L(Y,X ,W) +
λ1

O

O∑

n=1

‖W(n)‖∗ + λ2‖W‖1. (4)

To optimize the above objective, we require a set of auxiliary variables, lead-
ing to:

min
W,U,{Vn}O

n=1

L(Y,X ,U) +
λ1

O

O∑

n=1

‖Vn‖∗ + λ2‖W‖1

s.t. U = W ∧ Vn = W(n),∀n ∈ {1, . . . , O}.

(5)

Using ADMM [1], we write the augmented Lagrangian function. Then, we
iteratively optimize for each of the optimization variables, W,U , {Vn}On=1, while
fixing the others. Solving for U , we would have a linear-quadratic function, which
is convex and can be optimized efficiently. Solving for W would require mini-
mization of the �1 norm, which can be done using the soft thresholding operator
as a proximal operator for �1 norm [1]. Solving for each of the {Vn}On=1 variables
requires separate minimization of the matrix nuclear norms. This can also be
done using the Singular Value Thresholding (SVT) algorithm [2].

Lemma 1. Minimizing the optimization objective in Eq. (5) using ADMM would
converge to the optimal value.

Proof. The objective in (5) is convex, since all its associated terms are con-
vex functions. It is previously proven [1,4] that the alternative optimization in
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ADMM converges to the optimal value, under this condition, if there are two
variables associated with the alternative optimization. Considering our objective
function, one can figure out that W is the only variable that is contingent on
the others (through the constraints). Hence, the other variables are optimized
independent from each other at each given iteration. So, if we hypothetically
stack all matrices {Vn}On=1 into a tensor V, then concatenate this tensor with U
and name it Z = [U ,V], the optimization procedure using ADMM is analogues
to an alternating optimization between two variables Z and W. Accordingly,
ADMM would converge to the optimal solution for the objective in Eq. (5). 	


4 Experiments

First, to evaluate the attributes that we have used to describe the cortical sur-
faces, we examine their weights obtained in Sect. 2. Figure 4 shows the percentage
of the vertices with p < 0.05 for predicting ELC at different time points. It is
obvious that, at earlier ages, the curvature appears to be more relevant, while,
at the later time points, the cortical thickness shows quite important. As dis-
cussed earlier, we used these weights (normalized to sum to 1) to extract our
BoW features for each subject at each time point, denoted as brain fingerprint.

To conduct the prediction experiments, we performed 10-fold cross-validation
and calculated the root mean square error (RMSE) and the absolute corre-
lation coefficient (R) between the predicted and the actual values for all five
scores. The obtained results of using the neuroimaging data up to a spe-
cific time point are listed in Table 1, with the tuning hyerparameters fixed, as
λ1 = λ2 = 1/

√
min(N,d,T ). Note that the scores are all normalized with the min

and max of possible values for each score separately, such that all scores range
in [0, 1]. The mean ± standard deviation of the scores after normalization are
0.54 ± 0.26, 0.60 ± 0.29, 0.52 ± 0.25, 0.58 ± 0.21 and 0.62 ± 0.27, respectively. As
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Fig. 4. Percentage of the vertices that are not rejected at the 5% significance level for
predicting the Early Learning Composite (ELC) score from each of the five features,
at different time points. The last one in the second row shows the average value across
all time points for the features.
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Table 1. The RMSE and correlation coefficient, R, performance metrics for the pre-
diction results, through 10-fold cross-validation.

0–3M 0–6M 0–9M 0–12M 0–18M 0–24M 0–36M 0–48M

VRS RMSE 0.21 ± 0.16 0.20 ± 0.11 0.20 ± 0.09 0.18 ± 0.12 0.18 ± 0.12 0.18 ± 0.10 0.17 ± 0.12 0.17 ± 0.10

R 0.60 0.68 0.66 0.67 0.69 0.71 0.72 0.72

FMS RMSE 0.20 ± 0.15 0.19 ± 0.17 0.19 ± 0.13 0.21 ± 0.11 0.18 ± 0.17 0.18 ± 0.16 0.18 ± 0.12 0.18 ± 0.11

R 0.58 0.61 0.66 0.66 0.69 0.70 0.70 0.71

RLS RMSE 0.22 ± 0.13 0.21 ± 0.12 0.21 ± 0.15 0.21 ± 0.17 0.21 ± 0.13 0.20 ± 0.15 0.20 ± 0.12 0.20 ± 0.09

R 0.59 0.60 0.62 0.65 0.65 0.66 0.66 0.67

ELS RMSE 0.20 ± 0.13 0.19 ± 0.10 0.20 ± 0.09 0.19 ± 0.12 0.18 ± 0.12 0.17 ± 0.13 0.18 ± 0.10 0.17 ± 0.12

R 0.61 0.65 0.67 0.68 0.68 0.70 0.71 0.71

ELC RMSE 0.21 ± 0.11 0.20 ± 0.11 0.18 ± 0.10 0.17 ± 0.09 0.19 ± 0.10 0.18 ± 0.10 0.19 ± 0.12 0.17 ± 0.09

R 0.63 0.66 0.68 0.70 0.72 0.73 0.73 0.74
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Fig. 5. Scatter plots of the actual (horizontal axis) and the predicted (vertical axis)
values of the five scores (From left to right: VRS, FMS, RLS, ELS and ELC), at the
24M time point, for 10 different runs.

can be seen in the table, after the age of 24 months, the results are consistently
predicted with a relatively good approximation (for both the RMSE and R).
One of the main reasons why the results have not been improved much after
that might be due to the fact that we have too much missing data in the later
time points. Additionally, the scatter plots for 10 different runs of 10-fold cross-
validation for predicting the scores at the age of 24M are depicted in Fig. 5. This
Figure demonstrates that, in general, the scores are predicted reasonably good.

Table 2. Comparison results from
different methods with the R mea-
sure.

VRS FMS RLS ELS ELC

Proposed 0.71 0.70 0.66 0.70 0.73

MTMLR∗ 0.65 0.62 0.68 0.61 0.66

MTMLR1 0.48 0.56 0.39 0.51 0.53

SFS+MTR 0.39 0.43 0.35 0.40 0.46

SFS+SVR 0.31 0.35 0.23 0.26 0.31

SFS+RR 0.19 0.25 0.25 0.21 0.28

To compare the proposed method with
other baseline techniques on our application,
we adopt several methods with the same
10-fold cross-validation experimental settings
on the 0–24M experiment (as in 8th column
of Table 1). The methods in comparison are
the same formulation as ours but only with
the nuclear norm regularization (denoted as
MTMLR∗), only with the �1 norm regular-
ization (denoted as MTMLR1), concatenat-
ing all the features from all time points and
conducting a sparse feature selection followed
by only a multi-task regression (denoted as
SFS+MTR), support vector regression (denoted as SFS+SVR), or simple ridge
regression (SFS+RR). The R measure results, showing the correlation of the
predicted and the original values, are provided in Table 2. As it is apparent from
the results, the proposed method yields the best results for almost all of the five
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brain development scores. This is attributed to the fact that, using our joint
regularization technique, we can preserve the underlying structural information
hidden in the multi-dimensional data, while enforcing feature selection to use the
most beneficial features. The three latter methods concatenate the features from
different time points and hence they are losing a great deal of structural infor-
mation. On the other hand, since the dimensionality of the feature vector will
become large, the SFS technique might not necessarily capture the best features.
The last two methods further lose the dependency between the tasks, as they
predict each task separately, and hence achieve lower prediction performances.

5 Conclusions

In this paper, we proposed a multi-task multi-linear regression model with a
joint sparse and nuclear norm tensor regularization for predicting postnatal brain
development scores from multiple previous time points. Our proposed tensor reg-
ularization helps better leveraging structure information in multi-dimensional set
of data, while enforcing feature selection to ensure that most beneficial features
are used in building the model. We also discussed the convergence properties of
the proposed optimization algorithm. Furthermore, we presented a method to
extract meaningful low-dimensional features from the cortical surfaces of infant
brains, denoted as brain fingerprints. As shown by the results, the combination of
our brain fingerprinting and regression model can lead to reasonable predictions,
while outperforming all baseline models.

References

1. Boyd, S., et al.: Distributed optimization and statistical learning via the alternating
direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

2. Cai, J.F., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix
completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

3. Caruana, R.: Multitask learning. In: Thrun, S., Pratt, L. (eds.) Learning to Learn,
pp. 95–133. Springer, New York (1998)

4. Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction
method of multipliers: theoretical and computational perspectives. Pac. J. Optim.
11(4), 619–644 (2015)
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