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Abstract. Topographic regularity is a fundamental property in brain
connectivity. In this work, we present a novel method for studying topo-
graphic regularity of functional connectivity with resting-state fMRI
(rfMRI). Our main idea is to incorporate topographically regular struc-
tural connectivity in independent component analysis (ICA), and our
method is motivated by the recent development of novel tractography
and fiber filtering algorithms that can generate highly organized fiber
bundles connecting different brain regions. By leveraging these cutting-
edge fiber tracking and filtering algorithms, here we develop a novel
kernel-regularized ICA method for extracting functional topography with
rfMRI signals. In our experiments, we use rfMRI scans of 35 unrelated,
right-handed subjects from the Human Connectome Project (HCP) to
study the functional topography of the motor cortex. We first demon-
strate that our method can generate functional connectivity maps with
more regular topography than conventional group ICA. We also show
that the components extracted by our algorithm are able to capture co-
activation patterns that represent the organized topography of the motor
cortex across the hemispheres. Finally, we show that our method achieves
improved reproducibility as compared to conventional group ICA.

1 Introduction

Topographic regularity is a fundamental property in the wiring of mammalian
brains [1–4], but has received relatively little attention in connectome research
with MRI data, which typically focuses on macro-scale brain connections. For
specific sensory systems in human brain, task fMRI has been successfully applied
to extract the topography of cortical areas such as the primary visual cortex [5],
but such task fMRI tools have limitations for patients and are hard to generalize
to other brain regions. There have thus been increasing interests recently in
extracting brain topography using resting-state fMRI (rfMRI) [6–8]. If successful,
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this will be widely applicable for studying the perturbation of the functional
topography in various brain disorders.

Functional topography has been observed and reported previously on rfMRI
using Linear regression [6] and correlation-based functional connectivity [7,8].
However, the reliance of these methods on seed regions makes them sensitive
to seeds selection and difficult to use in large-scale analysis of general brain
regions. More importantly, rfMRI signals are not mere reflection of the co-
activation between brain regions with topographic correspondences because they
are affected by spontaneous neuronal activity from various brain processes even
after removing physiological noise.

To overcome these difficulties, our idea is to directly decompose the rfMRI sig-
nal and extract those components that follow topographic regularity via a novel
semi-blind independent component analysis (ICA) method [9–11]. The compo-
nents from conventional ICA are valuable in revealing the co-activation of different
brain regions in the presence of complex neuron activities [11], albeit with lim-
ited link to functional topography. In our work, we build upon the recent devel-
opments in computing the topographically regular fiber tractography [12,13] with
cutting-edge diffusion MRI data from the Human Connectome Project (HCP) [14].
Using these structural topography, we construct a kernel matrix to augment the
ICA methods and compute functional topography from resting fMRI signals. Our
method is group-based and generally applicable to different brain regions as long
as a set of topographically regular fiber tracts can be computed. In our experi-
ments, we demonstrate our method on studying the functional topography of the
motor cortex between two hemispheres, which have well-known topographic corre-
spondences from post-mortem studies [7]. On a dataset from 35 right handed HCP
subjects, we show that our kernel regularized ICA extracts functional topography
agreeable to previously reported results and it also extracts topographically orga-
nized functional co-activations between the motor cortices.

2 Methods

2.1 Modeling Topographic Regularity in Structural Connectivity

Novel algorithms have been developed recently for modeling structural topog-
raphy with tractography. In [12], Aydogan and Shi observed that fiber tracts
within topographically regular fiber bundles are often locally parallel and they
showed that by enforcing fiber tracts to form as parallel as possible fiber bundles,
the optical radiation in visual pathway agrees significantly better with the retino-
topic maps established from task fMRI studies than the standard tractography.
In a more recent work [13], topographic regularity of structural connectivity has
been modeled using spectral graph theory. They also applied the topographic
regularity model to fiber filtering and they showed that the filtered bundles agree
better with known topography in neuroanatomy. An example of the regular fiber
tracts connecting the motor cortices of an HCP subject is shown in Fig. 1.
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Fig. 1. Axial view of the fiber
bundles connecting the motor cor-
tices generated by the topographic
tract filtering method in [13].

We adopt the mean strength weighted
structural connectome [15] to represent the
prior belief on the functionally connectedness
of two locations. The conventional structural
connectome is usually defined for ROIs. Since
we are interested in voxel-wise connectivity,
we slightly customize the mean strength of
structural connectivity as a kernel weighted
mean strength. Suppose we have a topograph-
ically regular tractogram, or fiber bundle,
generated by the tract filtering method in
[13], denoted as T = {t1, t2, ..., tM}, and a
pair of voxels pi and pi′ . We can compute
the distance from the two voxels to each of
the fiber tracts, and the distances can be
denoted as {d(pi, t1), d(pi, t2), . . . , d(pi, tM )}
and {d(pi′ , t1), d(pi′ , t2), ..., d(pi′ , tM )}. The
mean strength of the structural connectivity
for this pair of voxels is defined as follows:

KW (i, i′) =
1
M

M∑

j=1

e− d2(pi,tj)

σ2 e− d2(p
i′ ,tj)

σ2 (1)

where d() is point-to-set Euclidean distance and σ is a scale parameter which
models the relative strength of connection from a fiber tract to a voxel. A small
sigma would eliminate the effect of fibers relatively far from the voxel. In this
work, we tend to favor a relatively small sigma to eliminate false connectivity as
much as possible at the cost of missing certain true connections. Compared to the
ROI based mean strength weighted structural connectome [16], this formulation
relaxes the 0–1 valued connectivity into a continues-valued kernel combination.

2.2 Incorporating Structural Topography into ICA

Suppose we have a set of pre-whitened fMRI signals X = {xi|i = 1, 2, ...}, we
can rewrite the signals are modeled as linear combinations of a set of mutually
independent spatial maps.

xi(t) =
∑

j

aj(t)sij (2)

where {sj = [s1j , s2j , ..., sNj ]T |j = 1, 2, ...} are the independent spatial maps
and N is the total number of voxels in the cortical region(s) of interest. This
formulation has been successfully applied to group study of functional connectiv-
ity [11]. Especially, it has been shown that the temporal catenation with spatial
ICA is capable of identifying activations similar to task stimulated activations in
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resting state fMRI scans and it can also identify default mode networks formed
by multiple spontaneously activated anatomically defined brain regions.

We propose to impose the topographically regular structural connectivity as
our prior in modeling the temporally catenated group ICA spatial maps. Our
prior term is defined as follows:

R(S) =
1
2

∑

j

|sTj KW sj |2 (3)

where KW is the N × N topographic structural connectivity matrix defined in
Eq. (2). In our group analysis setting, KW is the group averaged connectivity
matrix. Note that sTj K

W sj =
∑N

i=1

∑N
i′=1 KW (i, i′)sijsi′j and KW (i, i′) ≥ 0.

Hence, by maximizing R(S) we encourage large sij and si′j magnitudes at voxel
pairs with strong topographic structural connection. This formulation also per-
mits the spatial maps at two topographically connected sites to have different
signs.

In most of the ICA formulations, we usually optimize over the de-mixing
matrices W. Therefore, we can rewrite the regularization term as follows:

R(W) =
1
2

∑

j

∣∣wjXKWXTwT
j

∣∣2 . (4)

By maximizing this term in addition to the non-gaussianity in the ICA formula-
tion, we expect to find the independent components that are mainly co-activated
at the topographic voxel pairs in different brain regions. The overall objective
function for our topographic regularity regularized ICA can be written as follows

W∗ = argmax E(φ(WTX)) + λR(W), s.t.: ∀j, ‖wj‖2 = 1 (5)

where E(·) is the expectation operator, φ(·) is the non-Gaussianity measure, the
first term is called negentropy, and λ is a positive penalty parameter. We chose
φ(u) = −e−u2/2 for robustness [17]. Both the negentropy and our topographic
regularity measure R(·) may be non-concave for the maximization problem, and
the solution to such optimization would still rely on gradient ascent:

Wt+1 = Wt + Δt
D[E(φ(WTX)) + λR(W)]

DW
(6)

where Δt is a time step in gradient ascent and

D[E + λR]
DW

= E(φ′(WTX)XT )T + λdiag(WCWT )(C + CT )WT (7)

where C = XKWXT and φ′ is the first-order derivative of φ. Each row of W may
is normalized at each iteration and we also further perform the symmetric de-
correlation [17] to avoid multiple identical solutions by using W = UD− 1

2UTW,
where WTW = UDVT is the SVD of WTW. Although this solution converges
slower than the fixed point FastICA algorithm, its convergence is stable with a
small Δt.
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3 Experimental Results

3.1 Data Preparation and Experiment Configuration

In this paper, we mainly experiment on the motor cortex of both hemispheres to
evaluate our method for extracting somatotopic functional connectivity. We used
the rfMRI scans of 35 unrelated right-handed subjects from Human Connectome
Project (HCP). We extracted the motor cortex from the outputs of the HCP
structural preprocessing pipeline [18]. The HCP structural preprocessing pipeline
aligns the cortical meshes in T1 native space to the standard 32K Conte69 mesh
and the CIFTI file contains time series corresponding to each vertex in the 32K
Conte69 mesh. This allows us to perform time catenation for group ICA and
group average in group correlation analysis on motor cortices.

The structural connectivity matrices were computed by applying the topo-
graphic tract filtering algorithm [13] to the corpus callosum fiber bundle gener-
ated by the iFOD1 tractography algorithm of MRtrix3 [19]. The fiber orientation
distributions (FODs) used in the tractography were generated by the algorithm
in [20]. We empirically chose λ = 0.01 in Eq. (5) and σ = 1 in Eq. (2). For both
conventional group ICA and our kernel-regularized ICA, we mainly show results
with 20 components in Sect. 3.2. The impact of number of components will be
evaluated in the reproducibility experiments in Sect. 3.3.

3.2 Somatotopic Organization in Functional Connectivity

Topographic regularity in motor cortex is called somatotopic organization. Strong
somatotopy has been shown via seeded correlation [7]. Specifically, the vertices on
the motor cortex of one hemisphere is first treated as seed points to be correlated
with all the vertices on motor cortex of the other hemisphere. Afterwards, the
maximally correlated vertex pairs are picked out to form a functional connectivity
map (fcMap). This process applies to both sides of motor cortex. In our experi-
ment, we compute the fcMap by casting it as a bipartite graph matching problem
with the matching cost defined as 1 − |R(xi, xi′)|, where R(·, ·) is the correlation
coefficient of corresponding components from ICA. A global optimal solution for
this problem is then computed with the Hungarian algorithm. Due to the bipar-
tite graph matching formulation, we call the Hungarian algorithm based fcMap
bilateral fcMap. Using group ICA computed from conventional methods and our
kernel-regularized ICA, we have computed the bilateral fcMap for the HCP data
set and the results are visualized in Fig. 2(a) and (b), respectively. We can clearly
see that fcMap obtained from novel ICA method demonstrate much more regular
functional topography that agrees with previous findings [4,7].

In Fig. 3, we also compare the extracted spatial maps from conventional group
ICA and our method. Due to space limitation, we only present some represen-
tative components here. We can see that the spatial maps produced by our
method successfully captures the functional topography between the left and
right motor cortex. These spatial maps are thus not only useful for computing
the fcMap shown in Fig. 2, but also hold great potential for detecting detailed
and topographically organized co-activation between different brain regions.
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Fig. 2. A comparison of group bilateral fcMaps computed with (a) conventional group
ICA and (b) our kernel-regularized group ICA.

Fig. 3. Representative spatial maps from the conventional group ICA (top row) and
our method (bottom row).

3.3 Reproducibility

We further evaluate the reproducibility of our method. We rerun the conventional
group ICA and our method 20 times for different number of components. We used
5, 10, 20, 30, and 40 components in the experiments. We adopt three measures for
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reproducibility: the Coefficient of Variation (CoV), Structural Connectivity (SC)
fidelity and FC fidelity. The CoV is a common intra-class reproducibility measure
for connectome [16]. It is defined as the average ratio of the standard deviation
of each edge weight in the FC matrices against the mean of each edge weight
over all runs of experiments for fixed parameters. The SC fidelity is defined as
the correlation between the ICA based group connectivity matrices and the SC
matrix calculated using Eq. (2). The FC fidelity is defined as the correlation
between the ICA based group FC matrices and the FC matrix calculated from
Pearson correlation. These two measures quantify the fidelity of the connectivity
matrices in terms of FC and SC respectively. The results are shown in Fig. 4.
We can observe that our method gives more valid and reproducible FC matrix,
compared to the conventional ICA. Interestingly, we find that our method can
produce a connectivity matrix that well approximates both the FC and SC
matrices. Besides, the number of components reaches overall best performance
is around 25. The relatively large CoV is perhaps due to the local algorithms
we chose for optimization. This problem can be alleviated by using stochastic
gradient ascent or other global optimization strategies.

Fig. 4. Reproducibility measures. The baselines in SC and FC fidelity plots are the
correlation value between SC matrix and correlation based FC matrix. The spreads at
each point in the fidelity plots denote the standard deviation of the value.

4 Conclusion

In this work, we proposed a framework to extract functional topography by
incorporating structural topographic regularity in ICA. This gives rises to a
novel kernel regularized semi-blind ICA for extracting functional topography.
The experimental results show that our method extracts functional connectopy
agreeable with previous findings and it also extracts topographically organized
spatial maps in the primary motor cortex. For future work, we will apply this
method to general brain regions connected with topographically organized fiber
bundles such as the visual cortex.
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