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Abstract. The deformable registration of a preoperative organ volume
to an intraoperative laparoscopy image is required to achieve augmented
reality in laparoscopy. This is an extremely challenging objective for the
liver. This is because the preoperative volume is textureless, and the
liver is deformed and only partially visible in the laparoscopy image.
We solve this problem by modeling the preoperative volume as a Neo-
Hookean elastic model, which we evolve under shading and contour cues.
The contour cues combine the organ’s silhouette and a few curvilinear
anatomical landmarks. The problem is difficult because the shading cue
is highly nonconvex and the contour cues give curve-level (and not point-
level) correspondences. We propose a convergent alternating projections
algorithm, which achieves a 4% registration error.

1 Introduction

Hepatic laparosurgery presents at least two main challenges for the surgeons. The
first challenge is that they see locally, as the liver is large and the laparoscope
is close to it. The second challenge is the absence of tactile feedback, as the
liver can only be manipulated by tools. Consequently, the surgeons’ navigation
on and through the liver may deviate from the resection path planned on the
preoperative volumetric MRI or CT. Augmented Reality (AR) can ameliorate
this problem by augmenting the laparoscopy image with the preoperative data.
These contain the planned resection path and the subsurface tumours and vessels
which are invisible to the laparoscope.

To apply AR, one must (i) register the preoperative volume to an initial
laparoscopy image and (ii) track the organ in the live laparoscopy video. When
(ii) fails, the algorithm branches back to (i). Recent works [1,2] showed very
convincing results regarding (ii). Note that (ii) is optional, as (i) on its own
facilitates AR on a single image. However, (i) still forms an open problem for
both monocular and stereo laparoscopy. We are interested in the monocular
case which forms the current standard. Any monocular solution extends easily
c© Springer International Publishing AG 2017
M. Descoteaux et al. (Eds.): MICCAI 2017, Part I, LNCS 10433, pp. 326–334, 2017.
DOI: 10.1007/978-3-319-66182-7 38



3D-2D Deformable Registration 327

to stereo. The problem is unsolved for three main reasons. First, the soft organ’s
state is different in the preoperative and intraoperative modalities (due to breath-
ing, gas insufflation, gravitational forces and evolution of the disease). Second,
the preoperative volume’s textureless surface cannot be directly matched to the
laparoscopy image. Third, a monocular laparoscope does not perceive depth. For
the liver, (i) turns out to be harder to solve because the liver is highly deformable
and only partially visible in the laparoscopy image.

The state-of-the-art for step (i) in monocular laparoscopy is manual rigid
registration [3]. However, there also exist advanced registration methods, but
designed to work in different conditions. For instance, [4] requires a stereo-
scope for deformable registration using contours; [5] needs multiple intraoper-
ative images of a fully visible and rigid organ for rigid registration using the
silhouette; [6] necessitates an intraoperative scanner for rigid registration using
shading; [7] requires rigid views to be able to build a silhouette visual hull for
deformable registration. None of the existing methods thus solve registration in
the de facto conditions of monocular laparoscopy.

We propose a semi-automatic deformable registration framework for the liver
in monocular laparoscopy. Our algorithm uses the Neo-Hookean elastic model
for the liver’s preoperative volume as deformation law, and shading and contour
as visual cues from the single laparoscopy image. We use two types of contour
cues: the silhouette and curvilinear anatomical landmarks. Both types of contour
are challenging to use because they do not directly give point correspondences.
We solve this by embedding an ICP (Iterative Closest Point) mechanism in
our algorithm. More specifically, the silhouette changes and slides as the model
is evolved. Therefore, even though it is a necessary constraint, it is weak, as
a large set of different deformations will satisfy it. The anatomical landmarks
form stronger constraints by being stationary on the model. However they may
also often be occluded. The anatomical landmarks we propose are the ridge
contours (formed due to the negative imprints of the surrounding organs) and
the falciform ligament separating the left and right lobes. We require the user
to mark the liver’s visible contour segments in the image. The user may also
mark a few corresponding points on the anatomical landmarks, if available. Our
algorithm then cycles through the constraints given by the deformation law and
the visual cues and solves them by optimal projections, including the contours’
ICP. We model shading using the Lambertian model with light fall-off following
the inverse-square distance law. We propose a new projection operator for the
shading constraint, which is challenging to handle because of its nonconvexity.
Our algorithm is the first one to combine a deformable model with the contour
and shading cues to achieve registration on a single laparoscopy image.

2 Proposed Problem Formulation

2.1 Preliminaries

Metric spaces. Let x ∈ R
k be a point with k ∈ {1, 2, 3} and X ∈ S be a shape

(a point set) with S = ∪n>0 R
k×n the set of non-empty shapes of any size n.
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We define the distance metric ρ : Rk × R
k → R

+ as ρ(x, y) = ‖x − y ‖ for
all x, y ∈ R

k with ‖ · ‖ the Euclidean norm. We define the distance of a point
x ∈ R

k to a shape Y ∈ S as dist(x, Y) = min { ρ(x, y) | y ∈ Y }. We use the
modified Hausdorff distance [9] of a shape X ∈ S to a shape Y ∈ S:

dist(X , Y) = max { mean { dist(x, Y) |x ∈ X }, mean { dist(y, X ) | y ∈ Y } } (1)

Constraints. Each registration constraint has a function φ : S → R defining its
solution set Ω = {X | φ(X ) = 0, X ∈ S } and a projection map Π : S → Ω.

Laparoscope. A laparoscope is composed of a camera and a light source. We
use the pinhole model for the camera’s geometry and denote its known projection
function as π : R3 → R

2. π is written from the intrinsics of the camera, computed
using images of a checkerboard and Agisoft’s Lens software. We use a linear
model with saturation for the camera’s photometry. We denote as τ ∈ R

+ this
linear model’s unknown coefficient. We express everything in the camera frame.
The point light source model is used for the light and collocated with the camera.
We denote as is ∈ R

+ its unknown intensity (W/m2).

2.2 Organ Model and Deformation Law

Organ model. The organ model is a volumetric shape with tetrahedral topol-
ogy. The topology is fixed and initialised from the organ’s preoperative radi-
ological data segmented using MITK [8]. We denote as M0 ⊂ R

3 the liver’s
preoperative volumetric model and as M∗ ⊂ R

3 the liver’s unknown ground-
truth intraoperative volume seen in the laparoscopy image. We later propose an
algorithm Register(M0) → M with M the evolved model.

Deformation law. We deform the liver’s volumetric model M tetrahedron-wise
using the isotropic Neo-Hookean elastic model [10]. We thus have a deformation
function φdeformation per tetrahedron. We use generic values for the human liver’s
mechanical parameters. We set Young’s modulus to E = 60, 000Pa [11] and,
assuming that the liver is almost incompressible, Poisson’s ratio to v = 0.49. We
use the Neo-Hookean elastic model because of its simplicity and robustness to
extreme deformations.

2.3 Visual Cues

Contour. The deformable model M allows us to predict image contours such
as C ⊂ R

2. These contours must resemble the observed image contours, here
C∗ ⊂ R

2. A generic contour constraint is thus φcontour(M) = dist(C, C∗). We
use two types of contour on the liver’s preoperative model. The first type is the
silhouette Csilhouette ⊂ π(M). The second type is an anatomical curvilinear land-
mark. The falciform ligament’s contour Cligament is available directly from the
preoperative radiological data. A ridge contour Cridge ⊂ π(κ(M)) is computed
automatically using a thresholded Gaussian curvature operator κ. Usually ridge
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contours κ(M) have very distinctive profiles. If such a distinctive contour seg-
ment is visible in the image, the user also marks its model counterpart segment
by clicking the two end points on κ(M). This also allows us to exploit these two
end points in registration. Consequently, we use multiple contour segment cor-
respondences and, if any, a few point correspondences. The end point constraint
function is φpoint(M) = dist(x, �∗). Here x ∈ M is an end point of a contour
segment C and �∗ is the sight-line passing through this point’s image position
on C∗

ridge-segment. The end points form globally attractive convex constraints.

Shading. We use the Lambertian model without the ambient term. This is
because no other light source than the laparoscope exists in the abdominal cav-
ity. We assume that the unknown albedo a ∈ R

+ (surface reflection coefficient) of
the visible liver surface is constant. We remove specular pixels with a simple sat-
uration test. We want that the liver model M shades as in the laparoscopy image
I. The visible surface emerges as a triangular mesh in the tessellated M. We thus
apply the shading constraint triangle-wise. We have a shading function φshading

for each visible triangle � ⊂ M, which we write as φshading(M) = ρ(η, η∗).
Here η∗ ∈ R

+ is the median of the pixels’ measured intensities (gray level)
inside the projected triangle π(�) in the laparoscopy image I and η ∈ R

+ is the
computed Lambertian intensity for the corresponding model triangle �:

η = − γ

‖Q‖2 n� q̄ (2)

Here Q ∈ R
3 is the triangle’s center and q̄ = Q/‖Q‖. The denominator models

light fall-off with the inverse-square law. Because the laparoscope hovers at close
range (5 cm to 15 cm) to the liver, light falls off strongly across the visible surface.
Our shading model (2) combines all the photometric unknowns into a single
parameter γ = is τ a. It is estimated using least median regression between the
observed and predicted shading images.

3 Proposed Optimisation Solution

We propose a convergent alternating projections algorithm. A sequence of pro-
jection mappings form a nonexpansive asymptotically regular mapping [12]. Our
algorithm cycles through the constraints’ projection mappings and this gener-
ates a convergent sequence of shapes. Shading is a local constraint which can
only be applied when close to the solution. We therefore introduce it after the
convergence of a first round of optimisation using the contour constraints.

3.1 Refining Algorithm

Cost. We search the closest M to all constraints’ solution sets Ωi, i = 1, . . . m:

M ∈ argmin
M

m∑

i=1

dist(M, Ωi ) (3)
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Algorithm. We solve (3) with the algorithm in Fig. 1. The algorithm
has four stages: marking (line 00), rough automatic initialisation (line 01),
contour-based refinement (lines 02–05) and contour-and-shading-based refine-
ment (lines 06–10). First, the user marks visible contour segments on the image
and a ridge contour segment on the liver model. Marking takes approximately
1 min. Second, the initialisation registers the liver’s rigid model to the input
laparoscopy image by putting it in a canonical pose. In hepatic laparosurgery,
the laparoscope is inserted in a port around the belly button and is directed to the
liver. The canonical pose thus describes an approximate configuration of the liver
relative to the belly button computed from the preoperative radiological data.
Third, the contour-based refinement (c−refine) registers the liver model close
to a solution by iterating on the deformation and contour constraints’ projec-
tion mappings. Fourth, the contour-and-shading-based refinement (cs−refine)
improves the registration using the locally valid shading cue by iterating on the
deformation, contour and shading constraints’ projection mappings. An iteration
is very fast to compute because each projection is computed in closed-form and
involves few parameters.

3.2 Constraint Mappings

Deformation. We solve a tetrahedron’s deformation using an approximated
projection mapping Πdeformation(M) → Ωdeformation. We write this approximated

Procedure: Register
Inputs: Liver’s preoperative volumetric model M0, laparoscopy image I
Output: Registered preoperative volumetric model M
00: {C∗} ← mark image( I ) , M ← M0 , M ← mark model( M )

01: M ← to canonical pose( M )

02: set i = 0 and repeat

03: Mi+1 ← Mi

04: for each mapping Π in c−refine do , Mi+1 = Π( Mi+1 ) , end

05: until dist( Mi+1, Mi ) � εc or i + + � maxiter

06: set i = 0 and repeat

07: compute photometric parameter γ

08: Mi+1 ← Mi

09: for each mapping Π in cs−refine do , Mi+1 = Π( Mi+1 ) , end

10: until dist( Mi+1, Mi ) � εcs or i + + � maxiter

Fig. 1. Registration algorithm. εc = 10−3, εcs = 10−3 and maxiter = 102 are respec-
tively the thresholds in parameter space and the maximum number of iterations to
stop refinements.
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projection mapping by linearising the non-linear φdeformation at current M and
solving it [10]. This yields the exact deformation step along the gradient direction
of φdeformation to correct the model’s shape.

Contour. We minimise the distance between a contour pair with a mapping
Πcontour(M) → Ωcontour. This mapping uses an iteration of ICP. The mapping
projects each 3D point related to C onto the sight-line drawn from C∗ closest to
the 3D point along its surface normal. We use a mapping Πpoint(M) → Ωpoint

to solve a contour segment’s given end point matches, if any. This mapping
projects a 3D point onto its sight-line through the closest path.

Shading. It is possible to solve the shading constraint of a triangle by updating
either its depth or orientation. Once the contours are aligned, we assume that
the triangle’s orientation is reasonably close to its final value. Consequently, so
is the term n� q̄. We thus solve the shading constraint by updating the depth of
the triangle’s centroid. Πshading(M) → Ωshading is derived by substituting (2)
into φshading under the previous assumption. This yields the depth correction δ:

δ =
√

− γ

η∗ n� q̄ − ‖Q‖ (4)

which we use to translate the triangle along the direction q̄.

4 Experimental Results

We conducted quantitative simulations using two patients’ segmented liver mod-
els from their preoperative CT scans and qualitative in-vivo experiments with

25

Patient A

20

Patient A

27

Patient B

0 0 0

Fig. 2. Quantitative registration experiments with the preoperative liver model. White
arrows show the laparoscope’s look at directions.
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Fig. 3. 3D errors versus different initialisations (left) which also cover the range of the
canonical pose. Manual rigid registration error for patient B’s deformed shape seen in
Fig. 2 (right).

Fig. 4. Qualitative in-vivo registration experiments. The augmented images show the
registered tumours and veins seen through the translucent liver models. The second
row is for our algorithm and the third row for the rigid manual registrations.

the laparosurgery images of a patient. Quantitative evaluation on in-vivo hepatic
laparosurgery images is difficult and does not exist in the literature.

Quantitative results. Patients’ liver models are deformed to different shapes
used as ground-truths and their synthetic images are rendered. Each column in
Fig. 2 shows one registration obtained from the canonical pose. In Fig. 2, the first
row shows the ground-truth images with marked contours (yellow for silhouette,
red for ridges, blue for ligament) inside the field of view rectangle (cyan). The
second and third rows show the colour mapped volumetric registration errors
(mm) from a different viewpoint. We observe that the preoperative model’s
inner structures are registered within 1 cm error. This corresponds to about
4% registration error regarding the greatest transverse diameter of the liver.
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We tested our algorithm for different initial poses chosen with progressively
increasing displacements from the ground-truth. A 1% displacement in Fig. 3
corresponds to a 10 mm translation and 10 degrees of rotation about a random
axis. Figure 3 also shows (right) colour mapped rigid registration error (mm) for
patient B’s deformed shape seen in Fig. 2 which is worse than our algorithm’s
registration.

Qualitative results. Figure 4 shows the in-vivo liver registration experiments.
Each column shows a different registration. The second row shows the registered
liver models (initialised from the canonical pose) on the input images. The third
row shows the state-of-the-art manual rigid registration results. We observe that
the manual rigid registration cannot align the models as good as our algorithm.

5 Conclusion

We proposed the first preoperative to intraoperative deformable registration
algorithm from a single laparoscopy image by evolving a deformable model using
the contour and shading cues. Our algorithm registers inner structures of the liver
within 1 cm error. Registration takes 2 to 3 min including markings. As future
work, we shall study on (i) automating markings, (ii) localising and using laparo-
scopic tooltips’ positions as new constraints and (iii) adapting the preoperative
model to the topological changes occurring during the surgery.
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