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Abstract. In brain shape analysis, the striatum is typically divided into
three parts: the caudate, putamen, and accumbens nuclei for its analy-
sis. Recent connectivity and animal studies, however, indicate striatum-
cortical inter-connections do not always follow such subdivisions. For
the holistic mapping of striatum surfaces, conventional spherical regis-
tration techniques are not suitable due to the large metric distortions
in spherical parameterization of striatal surfaces. To overcome this dif-
ficulty, we develop a novel striatal surface mapping method using our
recently proposed Riemannian metric optimization techniques in the
Laplace-Beltrami (LB) embedding space. For the robust resolution of
sign ambiguities in the LB spectrum, we also devise novel anatomical
contextual features to guide the surface mapping in the embedding space.
In our experimental results, we compare with spherical registration tools
from FreeSurfer and FSL to demonstrate that our novel method pro-
vides a superior solution to the striatal mapping problem. We also apply
our method to map the striatal surfaces from 211 subjects of the Human
Connectome Project (HCP), and use the surface maps to construct a cor-
tical connectivity atlas. Our atlas results show that the striato-cortical
connectivity is not distinctive according to traditional structural sub-
division of the striatum, and further confirms the holistic approach for
mapping striatal surfaces.

1 Introduction

Striatum is a critical sub-cortical structure that connects the cortex and other
basal ganglia structures. It is an essential part of the cortico-striatal-thalamo-
cortical (CSTC) network that regulates human emotion and behaviors [1]. With
T1-weighted MRI, shape analysis has been applied to study morphometry
changes of the striatum in neurological [2] and mental disorders [3] by divid-
ing the striatum into three parts: the caudate, putamen, and accumbens nuclei.
Recent connectivity research [4,5] and animal studies [6], however, indicate that
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Fig. 1. A conceptual comparison of (A) the spherical registration method and (B) our
metric optimization method in the Laplace-Beltrami embedding space for the mapping
of two striatum surfaces M1 and M2. The fundamental advantage of the metric opti-
mization framework is that there is no extra distortion induced by the parameterization
process. All the metric changes are induced to match the two surfaces. On the other
hand, the spherical mapping process introduces large metric distortions purely for the
parameterization step, which can lead to large errors in the final maps.

striatum functions do not follow such subdivisions and it is more natural to map
the striatum as a holistic structure. In this work, we follow this line of research in
neuroscience and develop a novel striatum surface mapping method for studying
its connectivity and function.

The novel surface mapping method we develop is based on Riemannian met-
ric optimization on surfaces (RMOS) in the Laplace-Beltrami (LB) embedding
space we recently proposed in [7]. As illustrated in Fig. 1, our metric optimiza-
tion approach eliminates the large metric distortion during the parameterization
step of conventional spherical registration methods [8–10]. This fundamental
advantage stems from the isometry of the LB embedding [11]. This is especially
important for mapping the striatum as a holistic surface because of its drasti-
cally different geometry as compared to the unit sphere. To drive the striatum
surface mapping in the LB embedding space, we also develop novel anatomi-
cal contextual features using the relation of neighboring brain structures. This
helps establish anatomically meaningful maps and remove sign ambiguity in the
LB eigenfunctions, which is a critical problem in shape analysis using the LB
spectrum [12,13]. In our experimental results, we compare our novel striatum
mapping method with two spherical registration algorithms from FreeSurfer [8]
and FSL [10], and apply it to a large-scale dataset from Human Connectome
Project (HCP) [14] for the construction of a surface-based connectivity atlas of
the striatum.

2 Methods

Striatal Surface Reconstruction. To perform striatal surface mapping,
we first reconstruct a triangular mesh representation of the striatum in each
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hemisphere of the human brain from T1-weighted MRI (Fig. 2). Because pub-
licly available tools typically segment out the caudate, putamen, and accum-
bens nuclei of the striatum, we merge them into one mask and apply the
surface reconstruction method in our MOCA software tool [15] on NITRC.

Fig. 2. Surface representation
of (A) subdivision of the stria-
tum; (B) the whole striatum.

This algorithm ensures all surfaces have genus-
zero topology, and removes segmentation artifacts
without volume shrinkage. Finally we decimate
each mesh to 1000 vertices and 2994 edges for all
mapping tasks.

Metric Optimization in LB Embedding
Space. Let M1 and M2 denote the mesh repre-
sentation of two striatum surfaces, ξj

1 and ξj
2(j =

1, · · · , L) denote the L features defined on the two
surfaces to guide their mapping, and W1 and W2

denote their Riemannian metrics, i.e., the edge
weights. Given the Riemannian metrics, we can
compute the LB embeddings of Mi(i = 1, 2) as:
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where λi
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n denote the n-th eigenvalue and eigenfunction of Mi [7]. To
compute the surface maps u1 : M1 → M2 and u2 : M2 → M1, we will minimize
an energy function via metric optimization as follows:
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There are two terms in the energy function: feature term EF , and regularization
term ER with the coefficient γ for the smoothness of the Riemannian metrics.
The feature term measures the agreement of corresponding features. For the j-th
feature, the cost function Cj measures the similarity of the same feature at the
corresponding locations of the two surfaces induced by the surface maps u1 and
u2. In this work, we define the cost function as the l2 energy, but more general
choices such as mutual information are also possible. The regularization energy
is designed to avoid overly irregular distortion during the mapping process. In
this work, we define ER at each edge as the l2 difference between its metric ratio
and the mean value of its neighbors.
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Fig. 3. The main algorithmic steps to compute the stri-
atal surface maps.

As shown in Fig. 3,
there are three main
steps in the energy min-
imization. Given the cur-
rent metrics, we com-
pute the LB eigen-system
and construct their LB
embeddings in Step 1.
Also, the sign and order
ambiguities in the eigen-
functions are resolved in
this step by searching
for the optimal embed-
ding from possible
combinations of the
eigenfunctions. To bet-
ter estimate the right
combination, we compute
the feature energy EF

in Eq. 2 with the nearest
point map for every possible combination of the eigenfunctions, and search for
the optimal embedding only from the combinations for which the feature energy
is sufficiently low (below the lower 10 percentile in this work). To link the mis-
match of features with the metrics, we then compute the β-maps ũβ

i along the
gradient descent direction of EF and convert it into a distance energy ẼF in
Step 2. This is a critical step as the distance energy in the embedding space is a
function of the eigen-systems as defined in [13], so it allows the computation of
the gradient of the final energy E with respect to the metrics. This information
is sent back to the image space to update the metrics W1 and W2 in Step 3.
After that, the three steps are repeated until convergence. The final maps are
obtained via composition of the embeddings and the maps in the embedding
space. Because both surfaces are treated equally in the RMOS framework, the
maps are symmetric.

As shown in Fig. 1(B), this computational framework uses the high dimen-
sional LB embedding space as a canonical space instead of the 2D sphere
(Fig. 1(A)). The isometry of the LB embedding ensures that the numerical calcu-
lation we perform in the embedding space stays faithful to the original surfaces.
The surface registration algorithm in the framework is also fundamentally dif-
ferent from conventional nonlinear mesh deformation on the sphere [8,9]. To
calculate a general diffeomorphism between surfaces, iterative optimization of
the metrics on mesh edges was conducted instead of deforming the meshes in
the embedding space. This means that we only need to optimize a set of scalar
functions on the surfaces without the need of worrying about numerical difficul-
ties such as the flipping of triangles or self-intersection. This numerical advantage
is from the theoretical guarantee that the LB embedding is fully determined by
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the Riemannian metric on the surfaces and the Riemannian metric can be fully
determined by a diffeomorphism via the pullback metric.

Fig. 4. An illustration of Anatomical Neighbor Con-
text (ANC). (A) a striatum surface and its neighbor-
ing structures used for defining the ANC. Normalized
distance features to the ventricle, insula, and pal-
lidum are shown in (B), (C), and (D), respectively.

Anatomical Contextual
Features for Striatal Sur-
face Mapping. The met-
ric optimization framework is
flexible and can take gen-
eral features to guide surface
mapping in the LB embed-
ding space. For the map-
ping of striatal surfaces, we
will utilize contextual infor-
mation for robustness. Com-
pared with local features
derived from curvatures, the
context features provide a
global characterization about
“where to where” in the map-
ping process. Importantly,
they also help resolve the
sign ambiguity of the LB
eigen-system by providing a
unique description in differ-
ent parts of a structure, espe-
cially when there exist some
symmetries of the structure shape. Finally, the redundant characterizations from
all the features will increase robustness in mapping results.

For striatal surface mapping, we develop anatomical neighbor context (ANC)
features that characterize the geometric relation between neighboring brain
structures. At each vertex of a surface, a contextual feature will be represented
as a vector. Let di (i = 1, 2, · · · , C) denote the l2-distance transform of its i-th
neighbor. For each vertex Vj ∈ M, its ANC is defined as
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⎤
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By normalizing each distance transform by its maximal value on the surface, we
make the ANC feature invariant to scale differences. As an example, we show in
Fig. 4 the ANC features for a striatal surface with respect to three neighbors:
the lateral ventricle, insular cortex and pallidum. These features provide com-
plementary information in different parts of the striatum. Taken together, they
give a highly informative description about the corresponding locations across
different subjects.
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3 Results

Curvature-Driven Surface Mapping. As a first experiment, we demonstrate
curvature-driven mapping between two left striatal surfaces shown in Fig. 5(A)
and (B) using RMOS and spherical registration. The surfaces are colored by
mean curvature (MC) that is normalized by surface volume for surface mapping.
We computed the RMOS map with the maximum of 60 eigenfunctions, and
the regularization coefficient of 0.1. For spherical registration, the two surfaces
were first parameterized to the unit sphere (Fig. 5(E) and (F)) using SPHARM-
MAT [16], with the maximum SPHARM degree of 6 and other recommended
parameter settings. Then the source sphere was registered to the target sphere
by matching the MC using FreeSurfer’s mris register [8] and FSL’s msm [10]
under the default parameter settings.

Fig. 5. Curvature-driven mapping between two left striatal surfaces. (A) The source
and (B) target surfaces are colored by mean curvature (MC). Using the maps computed
by MC-driven RMOS, we pull back the MC of the target surface onto the source surface
(C), and project the source onto the target surface (D). The two striatal surfaces in
(A, B) were parametrized to (E, F) the unit spheres (colored by MC in (A, B)) using
SPHARM-MAT, (E) the source sphere was registered to (F) the target sphere using
(G) FreeSurfer and (H) FSL. Projection of the source striatal surface in (A) to the
target surface by the spherical map is shown in (I, J), respectively.

Large metric distortions were introduced in spherical parameterization as
shown in Fig. 5(E) and (F), which led to significant errors in the subsequent
spherical registration from the source to target sphere as shown in Fig. 5(G)
and (H) by FreeSurfer and FSL, respectively. It is more obviously observed, in
projection of the source to target striatal surface via the maps computed by
spherical registration (Fig. 5(I) and (J)), that spherical mapping failed in the
establishment of correspondences especially in the putamen part. This failure
was consistently observed in spherical mapping of other striatal surfaces. With
MC-driven RMOS, we can see in Fig. 5(C) and (D) that high quality surface
maps have been achieved with little metric distortion.
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Fig. 6. RMOS mapping from (A) a left striatal surface to (B) a right striatal surface
driven by (C) MC only and (D) ANC (with MC). (C) In projection of the left to right
striatal surface by the map of MC-driven RMOS, the green patch on the left putamen
in (A) was mapped onto the opposite side of the right putamen in (C). (D) ANC-driven
RMOS correctly maps the patch onto the same side of the right putamen in (D). The
surface views in (C) is opposite to (A, B, D) (lateral vs. medial views).

ANC-Driven RMOS Mapping. In this experiment, we demonstrate ANC-
driven RMOS mapping between left and right striatal surfaces, which is more
challenging because the symmetry between the left and right shapes makes it
more difficult to resolve the sign ambiguity in the early mapping process. As
shown in Fig. 6(C), MC-driven RMOS failed to establish anatomically correct
correspondences (for example, the green patch on the putamen) for a pair of
left and right striatal surfaces shown in Fig. 6(A) and (B). This is because MC
did not provide a unique description in different parts of the striatum, especially
in the putamen part. Using both the MC and ANC features developed in this
work, we can see that RMOS is able to correctly map the corresponding anatomy
(Fig. 6(D)).

Striatal Connectivity Atlas. In the final experiment, we constructed a
surface-based connectivity atlas of the left striatum from 211 subjects of the
Q1–Q3 release of HCP. We computed striatal connectivity using probabilistic
tractography with fiber orientation distributions (FODs) reconstructed from the
multi-shell diffusion MRI data [17]. We generated the connectivity maps to seven
cortical regions: orbital-frontal (medial only), middle/inferior-frontal, superior-
frontal, precentral, parietal, occipital, and temporal cortices [4] as done from the
thalamus in [7].

For construction of the connectivity atlas, RMOS maps between one reference
surface and the other 210 surfaces was computed using both the three ANC and
MC features with the same RMOS parameters above. Then the connectivities
on each surface were pulled back to the reference surface by the RMOS maps,
and we have a vector of the 211 connectivities to each cortical region for every
vertex on the reference surface. The probabilistic atlas of each cortical regions
was defined as the number of the connectivities to the cortical region higher than
10% divided by the total number 211 for every vertex. Then we thresholded the
probabilistic atlas at 25%, which are shown in Fig. 7(A). Finally, the labeled
atlas was computed by assigning each vertex to the cortical region to which it
had the highest probability of the connection.
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Fig. 7. Striato-cortical connectivity atlas of 211 subjects. From the connectivities on
all the striatal surfaces projected to the reference surface with the RMOS maps, (A) a
probabilistic atlas was computed and thresholded at 25% for each cortical region. The
labeled atlas by the highest probability of connection is shown in (B) and (C). The
accumbens boundary and the boundary between putamen and caudate are drawn on
the surface in (C) as solid and dashed curves, respectively.

Each cortical region is topographically connected to adjacent areas on the
striatal surface, but there is little connection at the lateral parts of the stri-
atal surface as observed in tractography around the striatum (Fig. 7(A)). This
is possibly due to the difficulty of current tractography techniques in detect-
ing extremely short connections to neighboring cortices. More importantly, the
striato-cortical connectivity patterns do not follow the conventional subdivison
from the FSL segmentation tool. In particular, the striatal connection to the
orbito-frontal cortex not only occupies the nucleus accumbens but also extends
to the ventral part of the putamen/caudate as shown in Fig. 7(C).

4 Conclusion

In this paper, we developed a novel holistic mapping method for studying stria-
tum structure and connectivity. Using the data from 211 HCP subjects, we con-
structed a tractography-based striato-cortical connectivity atlas. We successfully
established the detailed correspondences across the striatal surfaces using RMOS
driven by the novel ANC features. The projected connectivities to each cortical
region by the RMOS maps are highly clustered on functional ROIs that do not
follow the traditional structural subdivision of the striatum. For future work,
with our high-quality surface maps of the striatum, we will build a striatal con-
nectivity atlas using resting-state fMRI that provides more accurate functional
connections.
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