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Abstract. The registration of abdominal images is central in the analy-
sis of motion patterns and physiological investigations of abdominal
organs. Challenges which arise in this context are discontinuous changes
in correspondence across sliding organ boundaries. Standard regularity
criteria like smoothness, are not valid in such regions. In this paper, we
introduce a novel regularity criterion which incorporates local motion
segmentation in order to preserve discontinuous changes in the spatial
mapping. Based on local directional statistics of the transformation para-
meters it is decided which part of a local neighborhood influences a
parameter during registration. Thus, the mutual influence of neighboring
parameters which are located on opposing sides of sliding organ bound-
aries is relaxed. The motion segmentation is performed within the regu-
larizer as well as in the image similarity measure and is thus implicitly
updated throughout the optimization. In the experiments on the 4DCT
POPI dataset we achieve competitive registration performance compared
to state-of-the-art methods.
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1 Introduction

Abdominal image registration is an active field of research with many applica-
tions such as the analysis of respiratory dynamics or the physiology of abdominal
organs as for example the lung. The particular challenges which arise in this sce-
nario are discontinuous changes in the correspondence that occur between organs
sliding along each other. Standard smoothness regularity is thus inappropriate
at the boundaries between the sliding organs.

In this paper, we present a parametric image registration method comprising
a novel regularity criterion. The idea is that the spatial mapping is ought to
be locally homogeneous while this criterion should be relaxed at sliding organ
boundaries. With local homogeneity we mean that a displacement at a particular
image location should be aligned to the average displacement in its neighbor-
hood. To cope with sliding interfaces, we replace the average displacement by a
directional average where only displacements which are aligned up to a certain
degree are considered (see Fig. 1). The proposed directional average performs a
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Fig. 1. The dashed circles mark the neighborhood of ci while the radial shading visual-
izes the amount of influence a displacement has to the average. In the standard average
(left), all displacements in the neighborhood, colored in red, are taken into account
while in the directional average (right), only displacements which are approximately
aligned to ci are considered.

motion segmentation for each parameter separately. The homogeneity require-
ment for a certain parameter therefore only extends to an aligned neighborhood.

There are major trends which target the sliding organ problem. In [10,14],
image masks of parts in the image sliding along each other are used to register
them independently. However, the expected sliding interfaces have to be known
in advance. Various approaches [1,3,6,7,12] adapt their regularity criterion to
local image features, as for example image gradients, in order to reduce the
influence of the regularity across sliding organ boundaries. The assumption here
is that sliding interfaces occur where high intensity changes in the images are
present. This applies well to the interfaces between the lung and the thoracic
cavity for example. However, it does not hold for generic sliding interfaces. In
[5,9], this problem is addressed by motion segmentation, which is performed
exclusively on the spatial transformation. The generic recognized sliding inter-
faces are thus refined during the optimization. The motion segmentation and
the image registration are separately formalized and intertwined by alternating
optimization. To achieve a stable convergence remains, however, challenging. In
[4,13,16], stationary sparse regularity is applied without explicitly considering
sliding interfaces. The regularity only amounts to correct the image similarity
term at sliding organ boundaries.

The contribution of this paper is twofold. First, we formulate a novel reg-
ularity criterion which is based on motion segmentation which is exclusively
performed on the transform parameters and thus is implicitly integrated in the
registration objective. Hence, it obviates alternated optimization schemes. Sec-
ond, we modify the image similarity such that the dependency of gradients on
opposing sides of sliding interfaces is relaxed. In the experiments on a 4DCT
dataset, we compare our method to state-of-the-art registration methods and
show competitive registration results.



Directional Averages for Motion Segmentation 251

2 Background

We recap the kernel-framework for image registration on which we base our
method. It was elaborated in [3,4] and we borrow the notation used therein.
Let a reference and target image IR, IT : X → IR map the d-dimensional input
domain X ⊂ IRd to intensity values and a spatial mapping f : X → IRd transform
the reference coordinate system. Image registration is performed by optimizing

arg min
u

∫
X

L (IR (x + f (x)) , IT (x)) dx + ηR[f ], (1)

where L is a loss-function and R is a regularization term with η as trade-off
parameter. As transformation model a reproducing kernel Hilbert space (RKHS)
is defined

H :=

{
f

∣∣∣ f(x) =
∞∑

i=1

cik(xi, x), xi ∈ X , ci ∈ IRd, ‖f‖H < ∞
}

, (2)

where k : X ×X → IR is a reproducing kernel and ‖ · ‖H is the RKHS norm. For
more details about kernel methods we refer to [2]. In [3], the existence of a finite
dimensional solution to Eq. 1 with N pair-wise distinct sampled domain points
xi was shown applying a regularization term operating solely on the finite many
transform parameters c := {ci}N

i=1

R[f ] := g(p(c)), (3)

where g : IR → IR is a strictly increasing function and p : IRNd → IR is weakly
semi-continuous and bounded from below. As k, the combined Wendland kernel
of [3] is used. Note, that in a homogeneous region the direction of a transform
parameter is similar to an actual displacement if a radial basis function is used
as kernel.

3 Method

Within organ regions, the transformation should be locally homogeneous while
discontinuities across sliding interfaces are required. Thus, neighboring parame-
ters should point in similar direction to fulfill the local homogeneity require-
ment. However, at a certain misalignment this similarity requirement should be
relaxed. The assumption is that such misalignments appear for neighboring para-
meters which are located on opposing sides of sliding interfaces. As a criterion
for the misalignment, we propose that the angle

ω(ci, cj) = cos−1

(
cT
i cj

‖ci‖ε‖cj‖ε

)
(4)

between the average direction of different sliding regions has to exceed a certain
threshold θ, where the ε-norm1 ‖·‖ε =

√‖ · ‖2 + ε. We specify a sigmoid function
1 Although the ε-norm is not really a norm, we apply it because of numerical stability.
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Fig. 2. The geometrical interpretation of s and ω (a). The angle between ci and neigh-
boring cj is given by ω, while the sigmoid function s has the value 1 as long as the
angle ω < θ. In (b), s is plotted with increasing slopes σ = 1, 2, 4, 6, . . . , 20.

which is one if the angle ω is small and zero if ω exceeds a threshold θ

s(ω) = 1 − 1
2

(1 + tanh (σ (ω − θ))) , (5)

where σ controls the slope of s (see Fig. 2).

3.1 Directional Average Regularizer

We define the directional average regularizer using Eq. 3 as

Rda(f) :=
N∑

i=1

‖ci − μ(ci)‖ε . (6)

The directional average μ for a certain parameter ci becomes

μ(ci) =
1

Z(ci)

N∑
j=1,j �=i

cjk(xi, xj)s(ωij), Z(ci) = ε+
N∑

j=1,j �=i

k(xi, xj)s(ωij). (7)

For convenience, we write ωij for ω(ci, cj). Actually, μ(ci) is a weighted average
over the remaining parameters cj , where the kernel k serves as weighting func-
tion. As we use compact kernels, only neighboring parameters cj are considered.
The sigmoid function s additionally decides if a certain cj contributes to the
average dependent on the angle between ci and cj .

3.2 Directional Average Similarity Metric

With the directional average regularizer of Eq. 6 we specify what kind of para-
meter configurations should be preserved or penalized respectively. The problem
is, that it is only an additive term in the overall registration objective in Eq. 1
and the similarity metric does not take the directional average into account.
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This is critical because image similarity gradients across sliding interfaces influ-
ence a parameter update in the optimization. This can be verified when looking
at the derivative of

∂L
∂ci

=
∂L

∂IR(x + f(x))
∇IR(x + f(x))k(xi, x) (8)

where to the right side we differentiate L with respect to its first argument. The
gradient for a parameter ci is influenced by all neighboring points x regardless
of their alignment to ci. We unravel now the strict distinction between similarity
and regularization term and propose to modify the similarity metric as follows

−→D [IR, IT , f ] :=
∫

X
L(

IR(x + f(x)), IT (x)
)A(

f(x), c
)
dx. (9)

We simplify notation with fx = f(x) and specify the factor A as

A(fx, c) = 1 − 1
2

∥∥∥∥∥
fx

‖fx‖ε
− μA(fx, c)

‖μA(fx, c)‖ε

∥∥∥∥∥
ε

, (10)

where the average function μA is defined as

μA(fx, c) =

∑
j cjk(xj , x)s(ω(fx, cj))

ε +
∑

j k(xj , x)s(ω(fx, cj))
. (11)

The term A and the regularizer Rda mainly differ in two ways. First, A com-
pares a full displacement fx with surrounding parameter vectors cj ; there is no
explicit exclusion of a parameter ci in the directional average. Second, we avoid
to compare apples and pears by considering only normalized versions of fx and
μA. Thus, A evaluates to one if fx is aligned to neighboring parameter vec-
tors. In this case, the full image similarity is considered. Otherwise, A becomes
zero and the contribution of the image similarity is discarded. Since k smoothes
across sliding organ boundaries the direction of an actual displacement fx does
not necessarily correspond to those of its surrounding transform parameters. In
these particular regions, A masks out the contribution of such a point x to the
similarity metric.

4 Results

We evaluate our new Directional Averages Motion Segmentation (DAMS)
method on a publicly available abdominal 4DCT dataset. We register on three
scale levels using an average stochastic gradient descent optimizer [8] where
we upsample the transform parameters using nearest neighbor interpolation. A
prominent sliding organ boundary in the dataset is located between the lung
and the thoracic cavity well expressible by the structure tensor of the image.
Therefore, in the first scale level, we apply the anisotropic kernel introduced in
[3], where the basis functions are stretched with respect to the structure tensor of
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the reference image. In the remaining levels, we use the combined Wendland ker-
nel [3]. We apply the robust Cauchy loss L(x, x′) := β2

2 log
(
1 + (x − x′)2 /β2

)
where β = 1 controls the scale. In the directional average computation we have
set the angle θ = π

3 = 60◦. We will make our implementation and configuration
files publicly available2.

4.1 POPI Model

We test our method on the 4DCT POPI dataset [15] containing 10 3D-states of
a respiratory cycle of a thorax. We empirically set the registration parameters
for image number 7 and fixed them for all other time steps. The initial step sizes
for the optimizer have been adjusted to each case separately. Image number 1
was the target image. We compare our method to the FFD [11], the pTV [16],
the SKM [4] and the bKM [3] method. For the FFD method, we took the target
registration errors (TRE) from the POPI homepage3, for the other methods the
authors of [16] resp. [3,4] have kindly provided their TRE values. We calculated
the expected TRE [mm] of the 40 first provided ground truth landmarks which
are listed in Table 1. Our method performs on par with the tested methods in
terms of TRE.

Table 1. Expected TRE and std dev [mm]. Last column: average mean Ø.

0 2 3 4 5 6 7 8 9 Ø

No reg 0.48 2.4 0.49 2.6 2.16 6.6 4.33 10 5.75 12 6.01 14 5.03 12 3.68 6.2 2.07 4.5 3.35 14

FFD 0.79 1.5 0.81 2.2 1.14 2.8 1.11 2.4 1.11 3.2 1.20 3.2 1.20 3.0 0.88 2.3 0.92 2.0 1.02 3.2

SKM 0.66 1.5 0.65 1.7 1.17 2.9 1.07 2.3 1.13 3.1 1.00 2.6 1.05 3.1 0.75 1.7 0.83 2.1 0.92 2.1

bKM 0.66 0.3 0.64 0.4 1.11 0.7 1.01 0.5 1.08 0.6 0.95 0.4 1.02 0.6 0.75 0.4 0.81 0.4 0.89 0.5

pTV 0.66 0.3 0.67 0.4 1.07 0.5 0.98 0.4 1.08 0.5 1.06 0.5 1.07 0.6 0.76 0.4 0.82 0.4 0.91 0.5

DAMS 0.65 0.3 0.60 0.4 1.12 0.7 1.06 0.6 1.10 0.6 0.95 0.5 1.03 0.5 0.75 0.4 0.83 0.4 0.90 0.5

0mm 17mm

(a) Level 1

0mm 17mm

(b) Level 2

0mm 17mm

(c) Level 3

Fig. 3. The transformation magnitude of a coronal slice through case 7 is visualized
(all three scale levels) where we have overlayed the reference image to emphasize the
spine. A clean outline of the lung at the lower vertebrae is visible.

2 https://github.com/ChristophJud/DAMSRegistration.
3 http://www.creatis.insa-lyon.fr/rio/popi-model.

https://github.com/ChristophJud/DAMSRegistration
http://www.creatis.insa-lyon.fr/rio/popi-model
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(a) Parameters (b) Displacements

Fig. 4. Left: transform parameters {c0i }N
0

i=1 after the first scale level as yellow arrows
(amplified by 10). Right: sub-sampled f3 after the third scale level as yellow arrows.
Background: a coronal slice of the transformed target image.

In Fig. 3, we show a sample coronal slice through case 7 where we highlight
the transformation magnitude. The transformation becomes finer in higher scale
levels and greatly outlines the lung with a clear cutting transition at the lower
vertebrae. In Fig. 4, the parameters of the first scale level and final displacements
of the third level are plotted. One can clearly identify abrupt directional changes
of neighboring parameters at the lower left rib and the lower vertebra.

5 Conclusion

We presented a novel regularity criterion which is targeted to discontinuity pre-
serving image registration. The main contribution is the motion segmentation
which is performed exclusively on the spatial transformation and which we inte-
grated into the registration objective. It is based on a directional average of the
transform parameters and can be directly optimized using gradient descent. In
the experiments with a 4DCT dataset we have achieved competitive registration
performance. It would be interesting to investigate further possibilities to adjust
the similarity metric based on local motion segmentation.

References

1. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable
registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging
32(7), 1239–1248 (2013)

2. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning.
Ann. Stat. 36, 1171–1220 (2008)
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