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Abstract. Semantic segmentation has been popularly addressed using
Fully convolutional networks (FCN) (e.g. U-Net) with impressive results
and has been the forerunner in recent segmentation challenges. However,
FCN approaches do not necessarily incorporate local geometry such as
smoothness and shape, whereas traditional image analysis techniques
have benefitted greatly by them in solving segmentation and tracking
problems. In this work, we address the problem of incorporating shape
priors within the FCN segmentation framework. We demonstrate the
utility of such a shape prior in robust handling of scenarios such as loss
of contrast and artifacts. Our experiments show ≈ 5% improvement over
U-Net for the challenging problem of ultrasound kidney segmentation.

1 Introduction

Segmentation from medical volumes can get quite challenging depending on
modality and anatomy. Traditional approaches such as active contours have han-
dled the ill-posed nature of the segmentation problem using linear/non-linear
models of shape (e.g. [4,6]). Recently, fully convolutional networks (FCN) have
been successfully applied to 2D/3D medical image segmentation [13], optic flow
[7], restoration [2], etc. While FCNs have success in bringing contexts into learn-
ing, there are a few drawbacks which recent works have tried to address. Firstly,
local geometry such as smoothness and topology are not reliably and explicitly
captured. Secondly, there is noticeable need for enough of representative training
data to intrinsically model the foreground, background, shape, and the contex-
tual interactions of above entities. With limited training data, failure modes of
FCNs are hard to interpret or improve upon.

Motivated by traditional approaches, we propose to augment the FCN frame-
work with prior shape information. The advantage of explicitly modeling shape
within FCN is two fold: (1) we notice that generalization to appearance devia-
tions from the training data is much better and (2) data augmentation strategies
is essential for robust performance of FCNs. Especially for medical data, it is
quite hard to come up with realistic appearance variations to enable FCN to
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handle scenario such as low contrast and artifacts. With the shape model de-
coupled, it is much easier to build data augmentation strategies for the class of
shapes to capture invariances which can in turn boost prediction performance.
We demonstrate the efficacy of our approach on the difficult problem of kidney
anatomy segmentation from 2-D ultrasound B-mode images.

In summary, the key contributions of our paper are as follows:

(1) Learning a non-linear shape model and projection of arbitrary masks to
the shape manifold space. We also discuss two novel data augmentation
strategies to implement a shape convolution auto encoder.

(2) Incorporating the shape model explicitly in a FCN formulation through a
novel loss function that penalizes deviation of the predicted segmentation
mask from a learnt shape model.

(3) Demonstration of superiority of the proposed approach by as much as ≈ 5%
dice overlap with negligible increase in overall network complexity (<≈ 1%).

2 Related Work

With limited training data, failure modes of FCNs are hard to interpret or
improve upon. In a recent work [9], we have shown increased robustness to FCNs
by explicit, joint modeling of appearance and shape through parallel networks
tied together using weight sharing or novel loss functions.

Additionally, incorporating geometric characteristics (e.g., shape and
smoothness of a particular object) of the images is critical when solving image-
wide prediction problems such as segmentation, optic flow, etc. In [1], the authors
address the problem of local geometry by imposing smoothness and topology
priors for a multi-labelling problem of histology segmentation. For 3D shape
segmentation, the authors in [11] combine outputs of multiple FCNs, which are
label confidences, via a surface projection layer, which are processed through a
surface-based conditional random field for consistent labelling. Another body of
work concerns learning of shape priors using deep networks that are subsequently
used in a classical fashion within a variational framework. In [3,5], shape priors
are learnt using deep Boltzmann machines but used in a variational formulation
for image segmentation and image completion tasks correspondingly. In [14], a
segmentation network is proposed where a pre-trained analysis network is used
to obtain image features which are then passed through a FCN to obtain global
segmentation masks. These global masks are then refined by using the weights
from the low-level layers of the analysis network.

In our work, we accomplish shape-prior influenced segmentation by employ-
ing two CNNs in a cascade. The key differences of our work are as follows: (1)
incorporating shape regularization through an elegant formulation inside FCN
and not as a post-processing step on label confidences or incomplete shapes
like [5,11]. The motivation for the proposed method is that the output of FCN
may not lie on the manifold of true shapes, and hence they need to be projected
onto the correct manifold. This projection is realized by the auto-encoder (AE),
and it implicitly provides a shape prior during training. During the test time,
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the segmentation results are directly obtained from the output of the FCN. (2)
a generic formulation that can be appended to other geometry or topology pri-
ors [1] (3) realization of shape regularization using a simple network which is
trained using two interesting data augmentation strategies. In the next section,
we provide a reasoning for such an approach.

3 Our Approach

FCNs are extensions of CNNs for pixel wise predictions (e.g., [12,13] )that essen-
tially have heirarchical deconvolution layers that work on CNN feature maps to
give an “image” output. Each of these deconvolution layers have connections with
the respective convolution layers in order to preserve fine detail while upsam-
pling. FCNs have the utility of bringing spatial context into the predictions with a
significant advantage of being really fast for pixel predictions being just feed for-
ward operations. In standard FCN formulations such as U-Net [13], given train-
ing examples of pairs of images and segmentations masks Ik, Sk, k = 1, 2, . . . , N ,
the framework learns a predictor Ŝw[·] defined by parameters w that minimizes
the training loss, e.g., RMSE := 1

N

∑N
k=1 |Sk − Ŝw[Ik]|2.

In this work, we modify the above loss to incorporate a shape prior. While
there are many choices for linear/non-linear representations for a segmentation
shape prior [6], we use convolutional autoencoders (CAE) (e.g. used for de-noising
[8], human motion modeling, [10]) for shape representation to enable easy inte-
gration with existing FCN implementations.

Denote as M, the underlying space composed of valid shapes as defined by
the ground truth training masks Sk, k = 1, 2, . . . , N . Suppose that we are able
to learn a p-dimensional shape projection (encoder) E and a (decoder) R. Note
that for the purpose of being able to plug-in to a segmentation framework, the
projection E should be able to take any arbitrary shape S and project it to
a valid representation on M . Thus, the composition with the decoder R, i.e.
(R ◦ E)[S] is the projection of S onto a valid shape on M. One can see R ◦ E
playing the role of a convolutional de-noising autoencoder (CDAE) [8] within a
segmentation loss function. Denoting Ŝk = Ŝw[Ik], we modify the loss as:

L[w] = 1
N

∑N
k=1 |Ŝk − (R ◦ E)[Ŝk]|2 + λ1|E[Sk] − E[Ŝk]|2 + λ2|Sk − Ŝk|2. (1)

The first term drives the predicted shape Ŝk to lie close to the shape space M by
minimizing the projection error. The second term drives the distance between the
encoded representations of the ground truth mask and the predicted mask. The
last term tries to preserve variations in the ground truth shape from the learnt
shape space M. In vanilla implementations of FCN such as U-Net, since the loss
function is based on Euclidean distance, the network parameters have to predict
a complex transformation from the input image to a high dimensional shape.
Thus there is a need for enough representative training data to intrinsically
model appearance, shape, and the contextual interactions of above entities. In
the proposed approach, a good part of the network complexity is borne by the
autoencoder since the distance between the predicted shape Ŝk and the ground
truth Sk is based on the encoded representations (Fig. 1).
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Fig. 1. Projection onto the shape space M

4 Architectures

In this section, we explain neural network models built to realize our formulation
in (1). We build a cascade of two FCNs - one for segmentation and one for shape
regularization as shown in Fig. 2. Segmentation network operates on the input
image, while shape regularization network constraints the predicted shape to be
in the manifold M defined by the training shapes.

Fig. 2. Cascade network - SR-UNet

4.1 Segmentation Network

Our segmentation network is the vanilla U-Net architecture [13] (shown in
Fig. 3a), which has become one of the most successful and popular CNN architec-
ture for medical image segmentation. U-Net is nothing but a FCN with analysis-
synthesis blocks, and skip-level connections between responses from layers of the
analysis arm to the synthesis arms as shown in Fig. 3a.

4.2 Shape Regularization Network

The objective of this network is to operate on incomplete, under/over segmenta-
tion shape masks and force them to conform to the manifold of training shapes.
We propose the use of a convolutional auto encoder to realize shape regular-
ization as shown in Fig. 3b. The shape regularization network contains shape
encoder and decoder blocks, which project the incomplete shapes into latent
representations using compositions of convolutions and non-linear mappings. We
hypothesize that the encoder would provide a concise, compact latent space rep-
resentation that would not be affected by the errors in input shape from which
the decoder block can accurately reconstruct the completed shape. There are no
skip-level connections between the encoder and decoder blocks unlike the U-Net.
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(a) Segmentation network - U-Net architec-
ture

(b) Shape regularization network

Fig. 3. Network architectures

The information flow between different parts of the cascade network is shown
in Fig. 2. Outputs of the shape completion network from the encoder and recon-
struction layers - E[Ŝk] and (R ◦ E)[Ŝk] affect the first two terms in (1), while
segmentation network output contributes to the third term. The shape regular-
ization network is pre-trained separately on noisy augmented shapes (Sect. 4.3),
which is then plugged into the cascade architecture. It updates the segmentation
network through (1), producing a shape regularized U-Net (SR-UNet).

4.3 Implementation Details

Our segmentation network consists of convolutional and up/downsampling lay-
ers, totally 10 in number, equally distributed between the two arms of the U-Net.
The total number of trainable parameters is ≈ 14 × 106 and we use ReLUs and
batch normalization as activation units and for regularization respectively. Intu-
itively, we expect the shape completion network to be simpler and hence, we
build a convolutional auto encoder with ≈ 12 × 103 trainable parameters, con-
tributing to a network complexity increase of less than 1% compared to the
standard implementation. Typical λ values in (1) were around 0.5 and not much
difference in performance was noted with variation around these values. We next
describe the pre-training of shape completion network.

4.4 Data Augmentation for Shape Regularization Network

For the shape regularization network to achieve shape completion, it has to be
trained with inaccurate shapes as input and ground truth masks as the output.
We pursue two data segmentation strategies for creating these incomplete shapes:

(a) Random corruption of shapes We use a corruption kernel of high but
random mean intensity and roll it across the shape on random seed locations
and erode. We repeat this multiple times and create multiple instances of
corrupted shapes as shown in Fig. 4a.

(b) Intermediate U-Net predictions We sample the U-Net predictions only
on the training images at different epochs before convergence and treat the
inaccurate predictions as the input to shape completion network Fig. 4b.
The idea is to make the CAE learn to complete the failure modes of U-Net.
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(a) Random corruption of shapes (b) Intermediate U-Net predictions

Fig. 4. Data augmentation strategies for shape CAE training

5 Kidney Segmentation from U/S B-Mode Images

Accelerated clinical work-flow using automated methods of detection and seg-
mentation offer many advantages like operator independence, improved clinical
outcomes, etc. Automated kidney segmentation from 2D ultrasound longitudi-
nal scans is challenging due to many reasons - variability in kidney shape, size
and orientation, acquisition scan plane differences, variability in the internal
regions (renal sinus) and influence of adjacent structures like diaphragm, liver
and fat layers. Presence of any pathology or abnormality can severely modify
the observed texture which can further be compounded by ultrasound issues like
shadow artifacts, speckle, sensitivity to spurious scatterers, etc. Also, automated
algorithms are expected to work across different scan protocols with images from
different probes, varying acquisition or reconstruction settings.

Data. The goal of this experiment is to demonstrate the robustness and gen-
eralization properties of the our approach over the state-of-the-art U-Nets. The
data-set consists a total of 231 B-mode images obtained from two different scan-
ning sites with varying acquisition settings. The images contain cases of varying
challenges - pathology, shadow artifacts, incomplete kidney acquisition, other
abnormalities and contains images from adult and pediatric subjects. We use
100 images for training and the remaining images for testing our method. The
results show the competitive advantages of our algorithm on 131 images.

6 Results

We use Dice coefficient to compare our results with expert annotated ground
truth. We refer to the results of our shape regularized FCN as SR-UNet 1
and SR-UNet 2, which corresponds to results of two different data augmen-
tation strategies of random corruption and noisy U-Net predictions respectively
(without extensive experiments with hyper parameters). In Table 1, we see that
SR-UNet 1,2 improving Dice overlap by 4–5%, a significant improvement on a
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(A) (B) (C) (D)

Fig. 5. (A) Input ultrasound images (B) Ground truth masks for segmentation (C)
Segmentation masks predicted by U-Net (D) Segmentation masks predicted by U-Net
with shape regularization - Proposed approach

Table 1. Average Dice overlap on 131 test images.

Vanilla U-Net SR-UNet 1 SR-UNet 2

Average dice 79.29% 83.48% 83.95%

challenging problem. Unsurprisingly, shape completion network built using noisy
U-Net predictions is better as it explicitly works on failure modes but interest-
ingly, synthetic data augmentation is equally powerful. More importantly, Fig. 5
illustrates how SR-UNet is able to complete complex structures even in the
presence of significant pathology. For example in row 1, a shadow artifact has
removed nearly all information from the right side of the kidney. Nevertheless,
the cascaded network is able to arrive at a solution close to ground truth. Simi-
larly in row 3, the presence of cysts disrupts conventional U-Net while SR-UNet
is able to get a much more accurate result. Also in rows 2 and 4, a large portion
of kidney is affected by abnormality which affects U-Net segmentation, while our
method produces a near perfect segmentation in row 2 and an improvement in
row 4. We would like to highlight that our novel shape regularization approach
is generic and can be incorporated into any semantic segmentation neural net-
work. We have chosen to compare our method with U-Net which is a popular
representative technique for medical image segmentation.
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While few would argue that U-Net has proved extraordinarily effective on a
range of medical image analysis problems, our results indicate that at least in
limited data scenarios U-Net can struggle with shape, particularly when textural
and local information is unavailable due to pathology. A related undesirable
characteristic is the tendency to produce disconnected small islands. While other
techniques such as carefully engineered post-processing can also address these
issues, we feel that our approach provides a natural and robust way to integrate
desirable shape characteristics into the learning process of a deep neural network.

7 Discussion

Shape priors, when incorporated into the training loss of a neural network, can
significantly improve prediction results, as demonstrated by our U/S kidney
segmentation experiments. Though some cases can be really challenging, we feel
that our contribution is an important step in the use of FCNs in clinical settings
where meaningful and interpretable outputs are a necessity. Also, extension of
shape priors to 3D segmentation is a straightforward task in our formulation.
While we used a convolutional auto-encoder to obtain shape prior, alternatives
such as Boltzmann machines, linear shape dictionaries, etc., can be explored.
Also, shape is just one of the geometric attributes of anatomical objects and
much more meaningful priors (e.g., texture, size, etc.) can be embedded into
training objectives to achieve robustness and stability of neural networks.
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