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Abstract. We propose a method for constructing a multi-shape sta-
tistical shape model (SSM) for nested structures such that each is a
subset or superset of another. The proposed method has potential appli-
cation to any pair of shapes with an inclusive relationship. These types of
shapes are often found in anatomy such as the brain and ventricle. Most
existing multi-shape SSMs can be used to describe these nested shapes;
however, none of them guarantees a correct inclusive relationship. The
basic concept of the proposed method is to describe nested shapes by
applying different thresholds to a single continuous real-valued function
in an image space. We demonstrate that there exists a one-to-one map-
ping from an arbitrary pair of nested shapes to this type of function. We
also demonstrate that this method can be easily extended to represent
three or more nested structures. We demonstrate the effectiveness of pro-
posed SSM using brain and ventricle volumes obtained from particular
stages of human embryos. The performance of the SSM was evaluated in
terms of generalization and specificity ability. Additionally, we measured
leakage criteria to assess the ability to preserve inclusive relationships.
A quantitative comparison of our SSM with conventional multi-shape
SSMs demonstrates the superiority of the proposed method.
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1 Introduction

Statistical shape models (SSMs) have played an important role in medical image
segmentation. One crucial issue in construction of a SSM is the choice of shape
representation method. Many researchers have attempted to describe shapes, as
shown in a comprehensive review by Heimann and Meinzer [1], in both explicit
and implicit ways. The explicit method includes a point distribution model
(PDM) [2]. Implicit models include the level set distribution model (LSDM);
the applications of this model to segmentation were reviewed by [3].

SSMs for multiple shapes have grown quickly as a research topic in recent
years. One advantage of using multi-shape SSMs is that they can aid in seg-
mentation by considering the relationships between neighboring structures.
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A number of researchers have proposed multi-shape SSMs using both explicit
[4] and implicit [5,6] shape representations. Okada et al. [4] developed PDM for
eight abdominal organs, which considers the relationships between neighboring
organs via an organ correlation graph. Tsai et al. [5] proposed a simple extension
of LSDM for three brain structures by applying statistical analysis to the con-
catenated level set functions. Yang et al. [6] modeled the differences in the level
set functions for neighboring shapes and applied them to a neighbor-constrained
segmentation algorithm. However, these SSMs have a potential risk of creating
anatomically incorrect overlap between neighboring organs.

Several authors researched probabilistic shape representations [7–9] in which
the class with highest probability is assigned to each voxel. Such one-label-per-
voxel descriptions can intrinsically rule out organ overlaps. Pohl et al. [7] proposed
a logarithm of odds (LogOdds) based shape representation that embeds multiple
level set functions into a vector space and relates them to probabilistic atlases
(PA). Malcolm et al. [8] presented a label space that is a mapping of class labels
to vertices on a regular simplex, which forms the basis of a convex linear structure.
Changizi et al. [9] proposed an isometric log ratio (ILR) transformation, which is
an isometric and bijective mapping between the simplex and the vector space.

One interesting subject in the field of statistical multi-shape modeling is the
nesting of structures such that each shape is a subset or superset of another.
This type of inclusive relationship is often found in anatomy, such as the brain
and ventricle or bones and their medullary cavities. Most existing SSMs can
be applied to nested shapes. For example, Frangi et al. [10] extended PDM to
model multiple structures, including the outer surface of the left myocardium
and the surface of the blood pool inside it. However, none of the existing SSMs
for nested shapes guarantees a correct inclusive relationship for the generated
shapes. Several authors [11,12] proposed level set based active contour mod-
els for nested shapes, called multilayer level set methods, in which shapes are
represented by several distinct level contours from the same level set function.
However, it is difficult to define such function from an arbitrary training shapes,
and construction of SSM is outside the scope of these studies.

The work presented in this paper focuses on a level set based SSM for nested
structures. The basic concept of the proposed method is to embed nested shapes
into multiple level contours from a single continuous real-valued function. In
order to perform statistical shape analysis on the nested structures, we intro-
duce a one-to-one mapping from an arbitrary pair of nested shapes to such a
real-valued function. We also introduce extensions of this method to work with
three or more nested structures. In contrast to conventional multi-shape rep-
resentation techniques, the proposed method inherently preserves the inclusive
relationship of nested structures. Another important aspect of our method is
that the dimension of the shape representation is independent on the number of
nested objects.

The proposed method was applied to the statistical shape modeling of the
brain and ventricle of the human embryo. A quantitative comparison of the
performance of the proposed SSM to conventional SSMs demonstrated the effec-
tiveness of the proposed method.
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2 Methods

2.1 Level-set Based Shape Representation

First, we introduce the basic concept of a level-set based shape representation.
We define a shape as a closed set of points S ⊂ Ω inside an object where Ω ⊂ R

d

is a d-dimensional image domain. Suppose φS : Ω �→ R is a signed distance
function that maps a point x ∈ Ω to its signed distance from the surface ∂S,
which has a negative sign inside the shape and a positive sign outside the shape:

φS(x) =

{
−miny∈∂S ‖x − y‖ if x ∈ S

+ miny∈∂S ‖x − y‖ if x /∈ S
. (1)

In practice, the domain Ω is a set of finite image grid points, and Eq. (1) is effi-
ciently calculated for all points x ∈ Ω by using a Euclidean distance transform
[13]. The shape S is embedded as the zero sublevel set of the function φS(x), i. e.,

S = {x ∈ Ω | φS(x) < 0} . (2)

We refer to this function φS(x) as the level set function (LSF) in this study.

2.2 Level Set Function for Two Nested Objects

This section extends the level-set based shape representation method for a pair
of shapes that satisfy following properties: (i) one is a subset of the other, and
(ii) their boundaries do not come in contact with one another. We denote the
class of shape pairs to be modeled in this study as X , which can be expressed as

X = {(A,B) | ∅ �= A− ⊂ B ⊂ Ω}. (3)

Here, A and B are the closed sets, and A− = A ∪ ∂A is the closure of A which
is introduced to guarantee property (ii) above.

The basic concept of the proposed method is to embed a pair of nested shapes
(A,B) ∈ X as sublevel sets of a continuous real-valued function ψA,B : R3 → R,
defined using two distinct levels, t1 and t2 (t1 < t2). Thus, we are required to
design ψA,B , t1, and t2 such that the following equations are satisfied for any
(A,B) ∈ X :

A = {x ∈ Ω | ψA,B(x) < t1}, B = {x ∈ Ω | ψA,B(x) < t2}. (4)

There are innumerable examples of the functions ψA,B , t1, and t2 that will satisfy
Eq. (4), from which we choose one explicit solution. Let (φA, φB) be a pair of
signed distance functions associated with (A,B) ∈ X . The relationships between
ψA,B(x), φA(x), and φB(x), required to satisfy Eq. (4), are written as

ψA,B(x) = t1 ⇔ φA(x) = 0, ψA,B(x) = t2 ⇔ φB(x) = 0. (5)
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Fig. 1. Relationship of ψA,B(x) with φA(x) and φB(x) when λ = 1. The value ψA,B(x)
is related to the counterclockwise angle on a coordinate system composed of (φA, φB).

Considering the polar factorization (φA(x), φB(x)) =
(
r(x) cos(θ(x) + π/4),

r(x) sin(θ(x) + π/4)
)
, where θ(x) = arctan φA(x)+φB(x)

φA(x)−φB(x) because φA(x) > φB(x)
for all x ∈ Ω, the conditions of Eq. (5) can be rewritten as

ψA,B(x) = t1 ⇔ θ(x) = −π

4
, ψA,B(x) = t2 ⇔ θ(x) = +

π

4
. (6)

Thus, we can state that (ψA,B , t1, t2) = (θ,−π/4,+π/4) is one possible solution
of Eq. (4). This type of transformation is analogous to the calculation of shape
index from principal curvatures (see [14] for details). Finally, by generalizing this
solution with an additional parameter λ > 0, we see the following:

ψA,B(x) = arctan
(

λ · φA(x) + φB(x)
φA(x) − φB(x)

)
, (7)

(t1, t2) = (− arctan λ, + arctan λ) . (8)

The relationship between φA(x), φB(x), and ψA,B(x), when λ = 1, is illus-
trated in Fig. 1. Figure 2 explains the influence of the parameter λ on the function
ψA,B(x). The function ψA,B(x) has two horizontal asymptotes at ±π/2, and the
parameter λ defines the convergence speed. The parameter λ should be chosen
according to the amount of shape variation in the object to be modeled. λ should
be made smaller for objects with larger variation in order to relax the slope of
the function ψA,B(x), to aid in the correct capture of intersubject variability.

2.3 Level Set Function for k Nested Objects

The proposed shape representation can be extended to an arbitrary number
of nested objects. Suppose we have a sequence of k shapes (S1, . . . , Sk), where
(Si, Si+1) ∈ X ∀i ∈ {1, . . . , k − 1}, and with thresholds t1 < · · · < tk. For
convenience, in order to assign an arbitrary threshold (ti, ti+1) rather than
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Fig. 2. One-dimensional example of the function φA(x), φB(x) and ψA,B(x). (a) Level
set functions φA(x), φB(x). (b) Combined level set functions ψA,B(x) for different
parameters λ ∈ {0.2, 0.5, 1.0}. Horizontal lines indicate the thresholds for the functions.

(− arctan λ, + arctan λ) to the function ψSi,Si+1 , we apply a linear transfor-
mation to ψSi,Si+1 as

fi,i+1(x) = ti +
ti+1 − ti
2 arctan λ

· arctan
(

λ · φSi
(x) + φSi+1(x)

φSi
(x) − φSi+1(x)

)
. (9)

Then, the level set function for k nested shapes is defined by combining Eq. (9):

ψS1,...,Sk
(x) =

⎧⎪⎨
⎪⎩

f1,2(x) x ∈ S1

fi,i+1(x) x ∈ Si+1 \ Si (i ∈ {1, . . . , k − 1})
fk−1,k(x) x /∈ Sk

. (10)

3 Experiments

The proposed method was demonstrated in the context of statistical shape mod-
eling of the brain and ventricle of a human embryo. This study has been approved
by the Ethics Committee, Graduate School and Faculty of Medicine at Kyoto
University (R0316). Two-fold cross-validation study was carried out on 60 sets
of brain and ventricle labels, delineated on magnetic resonance (MR) microscope
volumes derived from the Kyoto Collection of Human Embryos [15]. The MR
volumes were acquired using T1-weighted spin echo sequences with a repeti-
tion time of 100 ms and an echo time of 10–16 ms in a system equipped with a
2.35-T/40-cm bore magnet [16]. We focused on the data with Carnegie stages of
15–20 that were selected based on the criteria from [17].

Prior to statistical shape modeling, shape labels were aligned by gener-
alized Procrustes analysis involving translation, rotation, and scaling using
21 semi-automatically defined landmarks. The image size after alignment was
200 × 250 × 250 with a 0.1 mm isotropic voxel size. The SSM was built through
applying principal component analysis (PCA) on the discretized level set func-
tions. The parameter for the proposed shape representation was λ = 0.5, and
the number of principal components was set to 3 throughout the experiment.
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Fig. 3. Comparison of SSM performance between single LSF (the proposed method),
multiple LSF, and LogOdds using different criteria: (a) generalization, (b) specificity,
and (c) leakage.

We refer to the proposed shape representation method as a single level set
function (single LSF), which was compared to the conventional methods, “mul-
tiple LSF” and “LogOdds”. Multiple LSF is a simple extension of the level set
for multiple shapes. It serially concatenates the vector of level set functions for
the brain and ventricle in the same manner as [5]. LogOdds is the probabilistic
shape representation method introduced by [7]. Note that the dimensionality of
the shape representation of multiple LSF and LogOdds is k-times larger than
that of our single LSF, where k is the number of nested objects.

The performance of the SSMs was measured using three criteria: generaliza-
tion, specificity, and leakage. Generalization is the ability to reconstruct unknown
shapes, and specificity is the ability to exclude unnatural shapes [18]. The sim-
ilarity measure between nested objects X = (Xint,Xext) and Y = (Yint, Yext),
which is required to calculate generalization and specificity, is defined as:

s(X,Y ) = JI(Xint, Yint) + JI(Xext, Yext) (11)

where JI(·, ·) is the Jaccard index between two sets. Leakage is introduced to
determine if the inclusive relationship holds for both the reconstructed shapes R
and the randomly generated shapes S, which is defined as 1

|R|
∑

X∈R Leak(X)+
1

|S|
∑

X∈S Leak(X) and is desired to be zero. The value Leak(X) is a rough
estimate of the area of the surface of the ventricle Xint that protrudes out of the
brain Xext:

Leak(X) = |{x ∈ Xint | ∃y ∈ Nx (y /∈ Xext)}| (12)

where Nx is the set of 6-neighborhood voxels of x.
Figure 3 displays the comparative results of the proposed method (Single

LSF) with the conventional methods for three criteria. The best performing SSM
was our single LSF, which was superior to (or at least comparable to) multiple
LSF and LogOdds for all criteria. The most notable feature of the proposed
method is that it is free of leakage, which was verified by these results. In order
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(a) Original (b) Single LSF (c) Multiple LSF (d) LogOdds

(similarity, leakage) (1.548, 0) (1.517, 203) (1.512, 3931)

Fig. 4. Example of the reconstruction of the brain (blue) and ventricle (yellow). From
left to right, an input label volume (a), the reconstruction results of SSMs based on
single LSF (b), multiple LSF (c), and LogOdds (d). The numerals indicate similarity
between the reconstructed shape and the original one (cf. Eq. (11)), and the leakage of
the reconstructed shape (cf. Eq. (12)).

to visualize the generalization capability, we display an example of reconstruction
of the test brain and ventricle shapes in Fig. 4. The proposed method achieves
superior shape reconstruction, which can be accounted for by the elimination of
leakage observed around the area indicated by the red arrows in Fig. 4.

4 Conclusion

We proposed a multi-shape SSM for nested structures. The effectiveness of our
method was demonstrated in the context of statistical shape modeling of the
brain and ventricle of a human embryo. Unlike traditional SSMs, the proposed
SSM has the ability to preserve inclusive relationships and displayed superior
performance with respect to generalization and specificity. In the future, we plan
to incorporate the proposed SSM into the segmentation algorithms of various
nested structures.
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