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Abstract. It is challenging to use incomplete multimodality data for
Alzheimer’s Disease (AD) diagnosis. The current methods to address
this challenge, such as low-rank matrix completion (i.e., imputing the
missing values and unknown labels simultaneously) and multi-task learn-
ing (i.e., defining one regression task for each combination of modalities
and then learning them jointly), are unable to model the complex data-
to-label relationship in AD diagnosis and also ignore the heterogeneity
among the modalities. In light of this, we propose a new Maximum Mean
Discrepancy (MMD) based Multiple Kernel Learning (MKL) method
for AD diagnosis using incomplete multimodality data. Specifically, we
map all the samples from different modalities into a Reproducing Kernel
Hilbert Space (RKHS), by devising a new MMD algorithm. The pro-
posed MMD method incorporates data distribution matching, pair-wise
sample matching and feature selection in an unified formulation, thus
alleviating the modality heterogeneity issue and making all the samples
comparable to share a common classifier in the RKHS. The resulting
classifier obviously captures the nonlinear data-to-label relationship. We
have tested our method using MRI and PET data from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset for AD diagnosis. The
experimental results show that our method outperforms other methods.

1 Introduction

Alzheimer’s Disease Neuroimaging Initiative (ADNI) has collected data from
various modalities, such as Magnetic Resonance Imaging (MRI), Positron Emis-
sion Tomography (PET), biospecimen, and many others, aiming to use these
data to better understand the pathological progression of Alzheimer’s Disease
(AD) and to develop accurate AD biomarkers. However, due to budget limitation
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and other constraints, not all the modality data were collected for each subject
in the study. For example, at baseline, while all the subjects underwent MRI
scans, only half of them had PET scans. Assuming that MRI or PET data of
one subject can be represented as a row vector, the ADNI neuroimaging multi-
modality data (e.g., MRI and PET) is block-wise missing, as shown in Fig. 1(a).
It is challenging to maximally utilize this kind of incomplete multimodality data
(i.e., some modalities are not available for certain subjects) for AD diagnosis.
Many AD studies using multimodality data simply dispose the subjects with
incomplete data and conduct AD study using only the subjects with complete
data [1,5,8,12,14], as shown in Fig. 1(b). This “disposal” method not only sig-
nificantly reduces the number of the subjects for AD analysis, but also wastes a
lot of information in the incomplete subjects, e.g., the red box in Fig. 1(c).
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Fig. 1. (a) Block-wise incomplete multimodality data, (b) Disposal method, (c) Impu-
tation method, (d) Multi-task learning method, and (e) Proposed method, which non-
linearly maps heterogeneous MRI and PET data into a common RKHS so that they
are comparable, and thus allowing to learn a common MKL-based classifier.

Unlike the disposal method, the imputation method and multi-task learning
method are designed to utilize all the samples in incomplete multimodality data
for AD study. The imputation method imputes the missing data, as shown in
Fig. 1(c), so that any machine learning method can be employed subsequently.
Unfortunately, current imputation methods, such as expectation maximization
and low-rank matrix completion, are only effective when the data are uniformly
missing, and become less effective while the data is block-wise missing, as in
our case [9,17]. Without the need of imputation, multi-task learning methods
[6,15,16], as shown in Fig. 1(d), first divide the incomplete multimodality data
into several subsets of complete data, and then jointly learn a classifier for each
subset to conduct AD diagnosis. The main drawback for the imputation and
the multi-task learning methods is their underlying assumption of linear data-
to-label relationship, which is insufficient to model the complexity of AD pro-
gression. Moreover, the data heterogeneity across the modalities (modality het-
erogeneity for short) is also ignored in their formulations. On the other hand,
though the advanced machine learning method such as Multiple Kernel Learning
(MKL), is able to model the complex data-to-label relationship of heterogeneous
multimodality data [2,7,13], it is currently only applicable to the set of complete
data.
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In this paper, we propose a new Maximum Mean Discrepancy (MMD) based
MKL, so that we can use MKL to conduct AD diagnosis when the data are
block-wise missing, as in our case. To do this, we design a new MMD mapping
criterion to map the data from different modalities into a common Reproducing
Kernel Hilbert Space (RKHS), as shown in Fig. 1(e). The traditional MMD only
considers to minimize the data distribution difference (i.e., a type of high order
data relationship) among the modalities [3], while our proposed MMD addi-
tionally enforces multiple kernel learning, feature selection and pair-wise sample
mismatch minimization. Through the MMD non-linear mapping, the complex
data-to-label relationship is captured, the modality heterogeneity is alleviated,
and all the data in different modalities become comparable in the RHKS, where
a common MKL-based classifier (for these data) is constructed for AD diagnosis.

2 Method

In this paper, we denote X = [xT
1 , · · · ,xT

m]T ∈ R
m×p and U = [uT

1 , · · · ,uT
n ]T ∈

R
n×q as the Region of Interest (ROI)-based MRI and PET data, respectively,

where m and n are the numbers of the samples of the MRI data and the PET
data, respectively, p and q indicate the numbers of features in MRI and PET
data, respectively, and the superscript T of a matrix indicates its transpose. In
addition, y ∈ {−1, 1}m and v ∈ {−1, 1}n denote the diagnostic labels of the
MRI and PET data, respectively.

2.1 Maximum Mean Discrepancy Based MKL

Many studies minimize the heterogeneity among the modalities by using Canon-
ical Correlation Analysis (CCA), which maps all the modalities into a common
space [7] via pair-wise distance minimization of all the samples. Since CCA uses
pair-wise distances, it is unable to deal with the multimodality data with dif-
ferent numbers of samples, as in our case. Thus, in this study, we design a new
MMD criterion to relief the modality heterogeneity between MRI and PET. Tra-
ditional MMD criterion [4] uses the data distribution mismatch minimization to
make the data from different modalities have similar data distribution in the
common RKHS, which does not require equal number of the samples from each
modality. The empirical estimation of MMD between X and U can be defined
as the minimization of the following formulation:

‖ 1
m

∑m

i=1
φ(xi) − 1

n

∑n

i=1
φ(ui)‖H, (1)

where H is a universal RKHS and φ is a nonlinear feature mapping of an universal
kernel. Recall from kernel methods, the inner product between φ(xi) and φ(xj)
is equivalent to a kernel function, i.e., k(xi,xj) = φ(xi)Tφ(xj).
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In MMD, the empirical estimation distance in the RKHS is regarded as the
distance between two different data distributions, as in Eq. (1). Actually, Eq. (1)
captures high order statistics of multimodality data (i.e., high order moments
of probability distribution) [4], so that the multimodality data are effectively
transformed into a high-dimensional or even infinite dimensional space through
the nonlinear feature mapping φ, where their distributions will be close so that
the heterogeneous data are comparable. When the value of Eq. (1) is close to
zero, the high order moments of the multimodality data (i.e., their distributions)
become matched. Mathematically, the minimization of Eq. (1) can be reduced
to the minimization of the following term:

‖ 1
m

∑m

i=1
φ(xi) − 1

n

∑n

i=1
φ(ui)‖H ⇔ tr(KS), (2)

where K =
[
K(1,1) K(1,2)

K(2,1) K(2,2)

]
∈ R

(m+n)×(m+n) is a composite kernel matrix with

{K(1,1) = [k(xi,xj)] ∈ R
m×m, K(1,2) = [k(xi,ug)] ∈ R

m×n, K(2,1) = K(1,2)T ,
K(2,2) = [k(ug,ul)] ∈ R

n×n, i, j = 1, ...,m, and g, l = 1, ..., n}, and S = s × sT

(where s = [1/m, ..., 1/m︸ ︷︷ ︸
m

,−1/n, ...,−1/n︸ ︷︷ ︸
n

]T ∈ R
(m+n)), and tr(·) is the trace

operator of a matrix.
Equation (2) uses all the ROI-based features of MRI and PET data to build

the kernel matrix K. However, not all ROIs are related the AD [9,11], so the
resulting K could be noisy. To address this, we design a feature-level version of
Eq. (2) to select a subset of MRI features and PET features for AD diagnosis,
via first building a kernel for each feature separately and then combining them
through their summation. Specifically, we first extend X ∈ R

m×p and U ∈ R
n×q,

respectively, to X̃ = [X,0m×q] ∈ R
m×(p+q) and Ũ = [0n×p,U] ∈ R

n×(p+q),
where 0 is a matrix with all zero elements. We then map X̃ and Ũ into the
RKHS by assigning a kernel function to each feature:

min
α

tr(
∑(p+q)

i=1
αiK̃iS), (3)

where αi is the weight of each kernel matrix K̃i ∈ R
(m+n)×(m+n) (corresponding

to each feature) and the kernel matrix K̃i has four components as the kernel
matrix K in Eq. (2). In addition, we also prefer to construct MKL for each
feature, rather than fixing a single type of kernel for them, to more flexibly
capture nonlinear data-to-label relationships, which leads to

min
β

tr(
∑(p+q)

i=1

∑M

j=1
βi,jK̂i,jS) ⇔ min

β
βTaaTβ, (4)

where M is the number of kernel types and K̂i,j ∈ R
(m+n)×(m+n) is

the kernel matrix of the i-th feature and j-th kernel type, β = [β1,1, ...,
β1,M , ...., β(p+q),M ]T ∈ R((p+q)×M)×1, a = [a1,1, ..., a1,M , ...., a(p+q),M ]T ∈
R((p+q)×M)×1 with its element given as ai,j = tr(K̂i,jS). By comparing
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Eqs. (2) and (3) with Eq. (4), we can see that the original MMD in Eq. (2) [4] has
been extended to feature selection based MMD in the MKL framework (i.e., in
Eq. (4)), by replacing K with

∑(p+q)
i=1 αiK̃i, and then with

∑(p+q)
i=1

∑M
j=1 βi,jK̂i,j .

In this way, the problem of minimizing distribution mismatch via MMD is con-
verted to the issue of a MKL with the optimal coefficient vector β in Eq. (4),
which is called MMD based MKL in this paper and can be achieved using MKL
algorithm [7]. Hence, MMD is embedded into the framework of MKL to capture
the nonlinear data-to-label relationship among incomplete multimodality data,
where the modalities have different numbers of samples.

2.2 Subject Consistency

In Sect. 2.1, we design a new MMD criterion in the MKL framework to map the
available MRI and the PET data (i.e., the left box in Fig. 1(e)) to the RKHS.
The pair-wise information between the MRI and PET data of the same subject is
not considered yet. As MRI and PET data are mapped into a common RKHS so
that they are comparable, we would also like to include the subject consistency
in our formulation, i.e., samples from the same subject (but different modalities)
should be close to each other in the RKHS. To do this, we constrain that the
corresponding MRI and PET data to be consistent in the RKHS. Specifically,
we consider the pair-wise sample mismatch minimizations (i.e., minimizing the
element-wise similarity for each of pair-wise samples) in the RKHS to conduct
subject consistency, i.e.,

min
β

βTddTβ (5)

where d = [d1,1, ..., d1,M , ...., d(p+q),M ]T ∈ R((p+q)×M)×1, di,j = (k̂i,j − k̂i+m,j)
(where k̂i,j and k̂(i+m),j , respectively, are the kernel values of the MRI data and
their corresponding PET data, i = 1, ..., (p + q), and j = 1, ...,M).

2.3 Joint Feature Selection and Classification

We use MKL-based max-margin classifier (i.e., SVM) to conduct joint feature
selection and classification under two constraints that have been described in
the previous sections, i.e., distribution mismatch minimization (Sect. 2.1) and
subject consistency (Sect. 2.2). Thus the final objective function of our proposed
method is defined as follows:

min
f,β

1
2‖f‖2H + C

∑(m+n)
i=1 L(ŷi, f(x̂i)) + λ1β

TaaTβ + λ2β
TddTβ + λ3‖β‖1,

s.t., βi ≥ 0, i = 1, ..., (m + n).
(6)

where C > 0 and λj(j = 1, 2, 3) are the tuning parameters, ŷ = [y;v] ∈ R(m+n)

is a vector of diagnostic labels for MRI and PET samples, X̂ = [X̃; Ũ] =
[x̂T

1 ; ...; x̂T
(m+n)] ∈ R(m+n)×(p+q) is the concatenation of extended MRI and PET

feature matrix (Sect. 2.1), f is the prediction function associated with a RKHS
H (i.e., f ∈ H and f(x̂) = wTφ(x̂) + b), and L is the hinge loss function.
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3 Experiments

We used the ADNI dataset (‘www.adni-info.org’) to conduct experiments and
compare with various previous works. The used dataset includes 412 MRI sub-
jects (i.e., 186 ADs and 226 Healthy Controls (HCs)) and 194 PET subjects
(i.e., 93 ADs and 101 HCs). More specifically, PET subjects have 218 missing
subjects (i.e., 93 ADs and 125 HCs), compared to 412 MRI subjects.

In this paper, we use ROI-based features from both MRI and PET images.
The MRI data were sequentially preprocessed by anterior commissure and poste-
rior commissure correction, skull-stripping, cerebellum removal, intensity inho-
mogeneity correction, segmentation, and registration. Subsequently, we dissected
a cerebrum into 90 regions by the AAL template, followed by computing the gray
matter tissue volume of each region to yield 90 features for an MRI image. We
linearly aligned each PET image to its corresponding MRI image, and then
used the mean intensity value of each ROI as PET feature. Finally, we used
90-dimension ROI-based features to represent, MRI and PET data, respectively.

3.1 Experiment Setting

We tested our model by conducting two kinds of binary classification experi-
ments, i.e., AD diagnosis using the incomplete MRI and PET data (namely the
incomplete data experiment) and AD diagnosis using the PET data with the
help of the MRI data (namely the transfer learning experiment). We employed
classification accuracy, sensitivity, specificity, and Area Under Curve (AUC) as
performance metrics to compare our proposed method with the other methods.

The comparison methods for the two experiments including Baseline
(i.e., SVM classification using the MRI data for the incomplete data experi-
ment, and using the PET data for the transfer learning experiment), Lasso [10]
(i.e., similar to the Baseline except it performs the Lasso feature selection prior
classification), and a multi-task learning method (i.e., regression-based incom-
plete Multi-Source Feature (iMSF) [11]). In addition, we also included an impu-
tation method (i.e., Low-Rank Matrix Completion with sparse feature selection
(LRMC) [9]) for the incomplete data experiment and a popular multiple kernel
learning method (i.e., SimpleMKL [7]) for the transfer learning experiment.

3.2 Experimental Results

We present the results of all the methods for the two classification experiments
in Fig. 2. The results of the incomplete data experiment indicate that the pro-
posed method performs consistently better than all the comparison methods
in terms of four evaluation metrics. For example, in terms of accuracy, our
method (i.e., 90.9%) on average outperforms the Baseline, Lasso, iMSF, and
LRMC methods by 9.1%, 5.9%, 4.7%, and 3.9%, respectively. The superiority of
our proposed method is probably due to the nonlinear data-to-label mapping,
modality heterogeneity alleviation, and joint feature selection and classification

http://www.adni-info.org
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Fig. 2. Comparisons between the proposed method and the comparison methods
in two classification experiments, i.e., the incomplete data experiment (Upper row)
and the transfer learning experiment (Bottom row). Error bars: standard deviations;
*: statistically significant.

in RKHS of our proposed model. We also observe that all the methods with fea-
ture selection (i.e., our proposed method, LRMC, iMSF, and Lasso) outperform
the Baseline method, which did not conduct any feature selection. This shows
that feature selection is necessary for AD study, which is consistent with the
findings in [9,11].

In the transfer learning experiment, we use the MRI data to assist AD diag-
nosis on PET data, so the method LMRC cannot be used for this experiment and
we use SimpleMKL, which conducts MKL for AD diagnosis using all the PET
and their corresponding MRI data, to be one of the comparison methods in our
experiments. According to the experimental results, our proposed method still
outperforms all the comparison methods. For example, the proposed method is
improved by 8.9% and 3.9%, respectively, in terms of four evaluation metrics,
if compared to Baseline and SimpleMKL (which achieves the best performance
of all the comparison methods). By comparing the nonlinear feature selection
methods (i.e., our proposed method and SimpleMKL) with the linear feature
selection methods (i.e., iMSF and Lasso), the nonlinear methods are better than
the linear methods in our experiments. This probably due to the fact that there
is nonlinear relationship between the data features and the labels.

In addition, we also perform paired t-tests between our results and the results
of other methods as significance test. We report the outcomes of the paired
t-test in Fig. 2, by marking statistically significant difference results (between
our method and all the comparison methods at 95% confidence level) with
asterisks (*). The results show that the most of the improvement of the pro-
posed method is statistically significant in our experiments.
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4 Conclusion

In this paper, we proposed a MMD-based MKL method for AD diagnosis using
incomplete multimodality neuroimaging data, which is able to capture the non-
linear data-to-label relationship, relief modality heterogeneity, and utilize all the
available samples from different modalities to learn a classifier. To do so, we
incorporate feature selection, data distribution and pair-wise sample mismatch
minimizations, and classifier learning, in a MKL formulation, to concurrently
map all the multimodality data into a common RKHS and learn a common clas-
sifier for all the modalities. The experimental results also confirmed the superi-
ority of our proposed method, compared with other methods.
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