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Abstract. This paper presents an algorithm to identify subsets of sub-
jects who share similarities in the context of imaging and clinical mea-
surements within a cohort of cognitively healthy individuals at risk for
Alzheimer’s disease (AD). In particular, we wish to evaluate how pat-
terns in the subjects’ cognitive scores or PIB-PET image measurements
are associated with a clinical assessment of risk of developing AD, image
based measures, and future cognitive decline. The challenge here is that
all the participants are asymptomatic, our predictors are noisy and het-
erogeneous, and the disease specific signal, when present, is weak. As a
result, off-the-shelf methods do not work well. We develop a model that
uses a probability distribution over the set of permutations to represent
the data; this yields a distance measure robust to these issues. We then
show that our algorithm produces consistent and meaningful groupings
of subjects based on their cognitive scores and that it provides a novel
and interesting representation of measurements from PIB-PET images.

1 Introduction

It is widely accepted that Alzheimer’s disease (AD) pathology, including amyloid
and neurofibrillary tangles, begins to develop decades before cognitive decline
reaches the stage of a clinical dementia diagnosis. Mild cognitive decline occurs
several years preceding a clinical diagnosis of mild cognitive impairment or
dementia [1,3,6]. Developing methods to reliably characterize biomarkers for AD
within asymptomatic individuals during this preclinical stage of AD is essential
for intervention trials. In this paper, we aim to characterize patterns in subjects’
PIB image measurements from eight regions of the brain and psychometric scores
in order to identify a subgroup that is at highest risk for dementia [2,4]. We ana-
lyze an asymptomatic, late middle-aged cohort that is at risk for Alzheimer’s
disease due to parental history. We evaluate (a) whether such subgroups can
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be reliably identified and (b) if the corresponding patterns are associated with
risk of dementia and cognitive decline over time. We utilize the psychometric
data (instead of imaging data alone) because it is less expensive and easier to
collect, which makes it better suited for general screening. Later, we also provide
evidence comparing our representation of the data (which is broadly applicable)
to clustering schemes run on the native representations (such as z-scores).

Fig. 1. For a ranking data
model, the dashed line (y =
x) partitions the plane into
two sections corresponding to
permutations. The red points
clearly display spatial cluster-
ing, but are poorly separated
by ranking geometry. Con-
versely, the blue points display
little spatial clustering but are
grouped well by ranking.

Motivation: The goal of this paper is find a rep-
resentation of the imaging/cognitive data (given
as z-scores) that makes clustering much easier –
we do not propose a “new” clustering algorithm.
Recall that most representations of data produce
clusters based on spatial proximity and a cluster is
represented by an average value for each feature.
One alternative, called sub-typing, uses patterns
such as “has higher values for feature X than fea-
ture Y”. A natural way to model these patterns
is to represent each example by a feature vector
of rankings that sorts each feature, e.g., from best
to worst. This process partitions the entire input
space into regions corresponding to permutations.
The key advantage of this perspective is that it
abstracts various distributional issues away. How-
ever, it can be lossy because points near the sep-
arator are classified in a either-or manner. For
example, consider the point (0, 1, 0.9): this point
is represented by the permutation [1 3 2] but that
representation loses the information that [1 2 3] is
probably almost as good a representation because
the second and third features values are similar.
We address this weakness by using probability dis-
tributions over permutations to model the data in order to get the sub-typing
characterizations while reducing that information loss. Additionally, such a for-
mulation is robust to missing/noisy data: missing data can be assumed to be
equally likely to appear anywhere in the permutation and small perturbations
provably do not change the underlying distribution much [8] (Fig. 1).

There is one remaining challenge that we have neglected so far: most subjects
in our dataset are middle aged and do not show significant AD-like brain atrophy
patterns yet. We therefore want to augment our representation with a distance
measure that, within clustering, encourages subjects/examples to “follow the
leader”. That is, we will assign a subject with a weakly defined pattern to the
same cluster as a subject with a clearly defined pattern as long as the two
patterns are consistent with one another. To do so, we introduce the notion of
a concentration distance metric. If U is a discrete probability space and p1, p2
are two probability distributions over U such that p1 is non-zero on X1 and
p2 is non-zero on X2, then a distance is a concentration distance metric if it
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penalizes differences between p1(x) and p2(x) more heavily for x ∈ (X1 ∩ X2)c

than for x ∈ X1∩X2. Intuitively, this means that the distance metric encourages
similarity between distributions where one is more concentrated than the other.

Contributions: We propose a model that is well-suited to handle many of the
challenges described above and in other datasets with a weak signal. By modeling
the data as permutations, our model achieves (1) a sub-typing characterization
and (2) abstracts many distributional issues away. By using probability distribu-
tions over the permutations, it becomes (3) highly tolerant to noisy and missing
data and mitigates the information loss inherent in representing data with a
single permutation. Finally, by exploiting the group structure of permutations,
Sn, of these probability distributions, we give a distance metric that makes the
clustering procedure (4) well adapted to data where the signal is weak.

2 Identifying Patterns in Sets of Distributions over Sn

At a high level, we have to compare different features which may be on very
different scales (e.g. cognitive scores, image measurements) to one another to
determine which is “better”. This is accomplished by converting each feature into
a z-score (zero mean, unit variance) which places an individual’s measurement
relative to the population. For interpretability, the z-score for some features
may be multiplied by −1 so that a positive score is a “good” result. Then each
subjects’ representative permutation can be found by sorting their z-scores. For
example, the z-scores (1.2,−0.5, 0) are represented by the permutation [2 3 1]
because the first feature has the “best” value and the second has the “worst”.

Constructing a Distribution over Sn: If X = (x1, x2, · · · , xp) is our feature
vector (z-scores), then representing X as a permutation, σ, may not be robust
because the underlying features may be noisy. Additionally, xi may be missing
for some subjects. To address these issues, we instead express X as distribution
in the space of permutations, centered on σ. To obtain the distribution, we per-
turb each feature and consider a set of normal random variables: Ni ∼ N (xi, γ).
We then sample di ∼ Ni (which can be thought of as a sample drawn from z-
score space) and then increment the number of times that that the permutation
representing those perturbed z-scores has been seen. We repeat this sampling
procedure many times and then normalize the counts to produce a probabil-
ity distribution over permutations. This sampling procedure approximates the
probability distribution of the ordering of the random variables N1, N2, · · · , Np.
An example of this conversion can be seen in Fig. 2. Finally, we must choose
γ used to construct the normal variables. If it is too small, the model tends
towards representing each subject as a single permutation. If it is too large, the
probability distributions becomes flat and we lose all discriminative power. We
choose this parameter using a 5-fold cross validation, clustering on the training
set, making assignments to the test clusters using a 1-NN classifier, and then
measuring the consistency of the (full) set of assignments between folds. Remark:
Most applications will use a distribution over the top-k features rather than the
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entire distribution because it is rare that all features are relevant. This repre-
sentation is consistent with our distance metric and reduces the runtime to be
polynomial, as long as k is constant.

Fig. 2. An example of conversion from z-
scores (left) to a probability distribution
based over permutations (right) for the z -
scores (−0.5, 0.0, 1.0) with γ = 0.5. Note
that most of the probability still places the
third feature as the “best”

Collecting Structural Informa-
tion of these Distributions: Each
subject is now represented as a proba-
bility distribution over permutations;
next, we will construct a concentra-
tion distance metric. To do so, we
need information about the structure
of the set of permutations. Collect-
ing this information from the distrib-
utions directly is inefficient, so we use
the Fourier transform for groups. This
is accomplished using Clausen’s fast
Fourier transform algorithm for the
Sn [5] which works by breaking Sn into cosets corresponding to Sn−1 recur-
sively until it gets to a single permutation (a coset for S1). Figure 3 shows an
example of this structure for S3. Further, this structure is nicely encoded into
the coefficients of the Fourier transform.

Fig. 3. Left coset
tree for S3 showing
its members as
leaves. Note that the
last element is fixed
by each S2 coset.

Harmonic analysis on Sn is defined via the notion of
representations. A matrix valued function ρ : Sn → C

dρ×dρ

is said to be a dρ dimensional representation of the
symmetric group if ρ(σ2)ρ(σ1) = ρ(σ2σ1) for any pair of
permutations σ1, σ2 ∈ Sn. A representation ρ is said to
be reducible if there exists a unitary basis transforma-
tion which simultaneously block diagonalizes each ρ(σ)
matrix into a direct sum of lower dimensional represen-
tations. If ρ is not reducible, then it is said to be irre-
ducible. Irreducible representations are the elementary
building blocks of all of Sn’s representations. A com-
plete set of inequivalent irreducible representations are
denoted by R. The Fourier transform of a function f :
Sn → C is then defined as the sequence of matrices
f̂(ρ) =

∑
σ∈Sn

f(σ)ρ(σ) ρ ∈ R. The inverse transform is
f(σ) = 1

n!

∑
ρ∈R dρ tr

[
f̂(ρ)ρ(σ)−1

]
σ ∈ Sn. Much practical interest in Fourier

transform can be attributed to various properties of the irreducible represen-
tations, such as conjugacy and unitarity. Additional details of the fast Fourier
transform for Sn and its irreducible representations are available in [7].

Distance matrix: We now have the structural information of our prob-
ability distributions encoded nicely by the Fourier transforms. Let q =
(q1, q2, · · · , qd) be a partition of n; the weight that we use for the compo-
nent of the Fourier transform corresponding to q is q1! which matches the
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size of the corresponding coset. These weights essentially make matching the
probability in the Sk cosets much more important than in the Sk−1 cosets.

Fig. 4. The computed dis-
tance matrices for this exam-
ple using our concentra-
tion distance metric (above)
and a Hilbert-Schmidt norm
(below). As we can see, the
normal distance metric actu-
ally has the opposite effect
of what is desirable; it makes
s5 more dissimilar from s1
and s3.

Importantly, a normal distance metric, such as the
Hilbert-Schmidt norm, fails to satisfy properties of
a concentration metric. Consider an example with
five subjects whose movie preferences were s1 =
(1, 0, 0, 0), s2 = (0, 1, 0, 0), s3 = (0, 0, 1, 0), s4 =
(0, 0, 0, 1), s5 = (1, 0, 1, 0). If we consider a value
of 1 to be an indicator that the person watched the
movie and a 0 to mean that they have not, it is
clear that s1 and s3 likely have similar preferences
to s5 while s2 and s4 do not. We want our distance
metric to accurately capture this information. A
comparison of our distance metric to a normal one
can be seen in Fig. 4.

Spectral Clustering: Given our distance mea-
sure, we perform a simple clustering using the algo-
rithm described in [9]. There are two main benefits
to using spectral analysis for obtaining the clus-
ters. The first is that the space in which our dis-
tance metric lies is not well studied at all and, as a
result, the assumptions, such as convexity, that nor-
mal clustering methods often make may not be rea-
sonable. Also, we do not expect many subjects in
our dataset to show a disease specific signal, so not
‘normalizing’ the cluster size is helpful. Importantly, this is a standard method
and most of the sensitivity in our results (to be discussed shortly) is due to our
representation and distance metric.

3 Experimental Evaluations

Fig. 5. The eight regions with PIB
data

Datasets: The larger of our two primary
datasets (n = 1211) is comprised of test scores
on eight psychometric exams: Rey Auditory
Verbal Learning Test Long-Delay Free Recall
(RAVLT), Letter Fluency (CFL), Stroop
Color-Word Interference condition (Stroop),
Boston Naming Test (BNT), Trailmaking Test
Part B (TMT B), Brief Visuospatial Memory
Test-Revised Delayed recall (BVMT), WMS-R
Logical Memory Delayed recall (LM), and
WAIS-R Digit Sybmol (DS). These scores were adjusted for demographic infor-
mation (age, gender, and literacy score) using linear regression so that the data
modeled cognitive phenotypes independent of demographic information. This
data was collected every two years and the cognitive slopes for these variables
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are computed as the average rate of change across the study (6+ years). The
smaller dataset (n = 183) consisted of imaging measures of regional beta-amyloid
plaque burden from [C-11] PiB-PET scans (PIB) for eight brain regions (Fig. 5),
global atrophy, and total white matter lesion volume. We also have cerebrospinal
fluid (CSF) biomarkers of amyloid (amyloid-beta 42) and neural injury (total
tau and phosphorylated tau) for this group. Each subject also has demographic
data (age, gender, total years of education) and a clinical consensus diagnosis of
either cognitively normal (CN) or early mild cognitive impairment (eMCI).

Overall design and evaluation criteria: Our goal was to evaluate whether
a clustering procedure, using either of our datasets, could group the subjects
into clusters which associate with longer term cognitive decline trends. Distance
metric: For each dataset, we will use two different distance metrics. The first will
be a normal �2 norm and the second will be the sub-typing based concentration
measure that we defined. Stability: In order to choose γ for the concentration
metric, we defined a procedure to measure the stability of the clusters to per-
turbations in the initial dataset. If a clustering algorithm is finding well-defined
clusters, it will be relatively stable. Conversely, if the clusters are poorly sep-
arated, the clusters will change dramatically when the input data is changed.
Clearly, we should expect that stability is a prerequisite to finding meaningful
clusters. Evaluation: The clusters will be evaluated in terms of the percentage
of subjects who are eMCI in each cluster (a clinical classification of risk for AD
which is used because most of the sample are middle-aged and asymptomatic)
and future cognitive decline. Additionally, the clusters defined using the psy-
chometric data will also be compared on the imaging metrics; this serves as an
additional validation because the relationship between biomarkers of AD and
dementia are more direct. For the psychometric data, our method found results
associated with both the risk assessment and cognitive decline; normal methods
do not find consistent clusters. For the imaging data, our method found clusters
associated with the clinical assessment of risk for AD; normal methods’ results
are only associated with future cognitive decline. These comparisons suggest that
our representation has advantages over simpler methods.

Fig. 6. (Left) Results of covariates used in clustering, grouped by test. This immedi-
ately allows us to see the patterns that define the clusters; for example, cluster 1 had
lower scores on RAVLT and cluster 3 had higher scores. (Right) We see that Cluster 1
has a significantly higher percentage of eMCI subjects.



Modeling Cognitive Trends in Preclinical Alzheimer’s Disease 689

Psychometric Scores and �2 norm: This configuration yielded clusters whose
assignments differed by 35–45% between folds in the 4-fold stability procedure.
In fact, the signal is so weak that a full suite of baselines (hierarchical, k-means
with numerous distance measures, and spectral clustering) produce results that
are not meaningful. Given that the results are either highly unstable or produce
small (<5 subject) clusters for a variety of methods, it is reasonable to conclude
that these distance measures are not producing well separated clusters.

Psychometric Scores and Concentration metric: This metric identified
three clusters and the assignments differed by only 10–15% between folds when
three clusters were desired. This immediately suggests that this metric is bet-
ter suited for the dataset. Cluster Characteristics: The cluster characteristics
in terms of the psychometric tests and risk for developing AD are summarized
in Fig. 6. It is important to observe that, by design, the three clusters did not
differ on demographic information including age, sex, or literacy estimates. But
the clusters differed significantly in the composition of subjects with a eMCI
diagnosis (p < 0.001). Generally, we found that Cluster 1 exhibited significantly
worse performance on measures of verbal episodic memory (RAVLT) and atten-
tion/processing speed than Clusters 2 and 3, Cluster 3 had worse performance
than Clusters 1 and 2 on measures of executive functioning and visual memory,
and subjects in cluster 2 had worse performance on one measure of language.
Cognitive Slopes: Clusters 1 and 3 both exhibited more negative slopes on the
measures that they performed worse on. This is not surprising given that lower
cognitive performance may be an indicator of an early start of cognitive decline.
However, this result does support the longitudinal stability of these clusters
despite the progressive nature of the disease; starting with lower values and hav-
ing a more negative slope means that the signal within the cluster is getting
stronger. Interestingly, Cluster 2’s performance on BNT increased more quickly
than for the other clusters. This group may be a normally aging group show-
ing normal practice effects at repeated visits over time. Image Features: Due to
fewer data points available for imaging variables, we grouped clusters 1 and 3
together and compared the pooled data to cluster 2. The analysis was done
using ANCOVA with age and gender as covariates. Clusters 1 and 3 had greater
amyloid burden (PIB) in the superior and middle regions of the temporal lobe
bilaterally (p values between 0.03 and 0.04). These clusters also had greater
global atrophy and higher levels of both ttau/ab42 and ptau/ab42 in the CSF,
profiles typical of AD. There were no significant differences for the other PIB
measurements or total lesion white matter volume.

Summary: These findings suggest that the order of severity of measures can
reveal meaningful groupings in such data, where alternatives yield unsatisfac-
tory results [12]. Cluster 1 demonstrated the profile consistent with those found
in preclinical AD, including verbal memory and attention deficits [11]. Addition-
ally, this cluster also shows a greater rate of decline on verbal memory measures,
and had a higher proportion of eMCI subjects. This suggests that this cluster is
likely at highest risk for AD. Cluster 3 showed lower scores on measures of exec-
utive functioning, as well as greater decline in speed and executive functioning
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measures over time. It is possible these individuals are at higher risk for a non-
AD related cognitive disorder, such as vascular cognitive impairment. Finally,
cluster 2 showed worse performance on language measures, but improved over
subsequent visits. This may correspond to a normal aging group.

PIB Imaging Measurements: We also compare the �2 norm to our concen-
tration metric for clustering the subject based on their PIB imaging data. With
the �2 norm, the assignments were very stable for producing two clusters, but
highly unstable for three. The concentration metric produced consistent assign-
ments for either two or three clusters. For the sake of comparison, we analyze the
two cluster results for both metrics. Cluster Characteristics: For the �2 norm,
the clusters differed significantly on all of PIB measurements and the average
values in Cluster 1 were lower than those of Cluster 2. The clusters produced
by the concentration metric actually did not differ on all of the measurements;
Cluster 2 had higher values in the anterior cingulate region and lower values in
supramarginal and superior temporal regions. This difference is expected due to
a degree of information loss in our distance measure. Risk of AD: Our metric
found that Cluster 2 was at higher risk than Cluster 1 (p = 0.039) while the �2
metric did not (p = 0.87). Interestingly, this suggests that simply having elevated
measurements does not correspond an increased risk but having larger measure-
ments in some regions than in others does. Cognitive Slopes: For the �2 norm,
subjects from Cluster 1 experienced slower decline on the Stroop and DS tests
and a slower increase on CFL than subjects from Cluster 2; further, their LM
scores increased while Cluster 2’s decreased. This suggests that broadly elevated
PiB levels are associated with steeper cognitive decline, but regional PiB levels
(e.g., elevated frontal, but lower temporal measurements) were not.

4 Conclusions

This paper demonstrates that using a subtype based distance measure can (a)
find well separated clusters in data (psychometric tests) that normal distance
metrics cannot and (b) that it finds different clusters than normal distance met-
rics (PIB data). The significance of the sub-typing distance metric is demon-
strated by the fact that regional differences in PiB levels (which is exactly what
the sub-typing metrics consider) are associated with risk of AD and not with
future cognitive decline and that generally increased PIB levels exhibit the oppo-
site pattern. We propose a harmonic analysis based algorithm that operates on
the permutation-based representation of z-scores derived from the native feature-
vector representation of the subjects [10]. We show how a concentration met-
ric based distance derived via a Fourier transform of a probability distribution
over the permutations reveals interesting structure in the data, and enables a
follow-up clustering scheme to identify scientifically meaningful clusters, that are
associated with a clinical assessment of developing AD, future cognitive decline,
and differences on image based features.
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