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Abstract. We introduce CASED, a novel curriculum sampling algo-
rithm that facilitates the optimization of deep learning segmentation or
detection models on data sets with extreme class imbalance. We evaluate
the CASED learning framework on the task of lung nodule detection in
chest CT. In contrast to two-stage solutions, wherein nodule candidates
are first proposed by a segmentation model and refined by a second detec-
tion stage, CASED improves the training of deep nodule segmentation
models (e.g. UNet) to the point where state of the art results are achieved
using only a trivial detection stage. CASED improves the optimization
of deep segmentation models by allowing them to first learn how to dis-
tinguish nodules from their immediate surroundings, while continuously
adding a greater proportion of difficult-to-classify global context, until
uniformly sampling from the empirical data distribution. Using CASED
during training yields a minimalist proposal to the lung nodule detec-
tion problem that tops the LUNA16 nodule detection benchmark with
an average sensitivity score of 88.35%. Furthermore, we find that mod-
els trained using CASED are robust to nodule annotation quality by
showing that comparable results can be achieved when only a point and
radius for each ground truth nodule are provided during training. Finally,
the CASED learning framework makes no assumptions with regard to
imaging modality or segmentation target and should generalize to other
medical imaging problems where class imbalance is a persistent problem.
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1 Introduction

Death rates attributed to lung cancer are three times higher than for any other
cancer in the United States [16]. Diagnosis of this pathology is informed by
the presence of malignant pulmonary nodules that appear in thoracic computed
tomography (CT) images [6]. There is a current trend toward regular monitoring
programs of high-risk groups using methods such as low-dose CT [19]. This
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has been proposed to help catch the pathology in its early stages where, in
developed countries, diagnosis dramatically increases the 5-year patient survival
rate by 63–75% [19]. It is likely that radiologists who are tasked with locating
and classifying pulmonary nodules would see a dramatic increase in workload
with the saturation of such protocols. Fast and accurate automated lung nodule
detection methods would then improve lung image evaluation throughput and
objectivity by assisting radiologists in their assessment.

One of the major challenges in designing effective automated lung nodule
detection methods is the massively unbalanced nature of the data. For exam-
ple, over the entire Lung Image Database Consortium image collection (LIDC-
IDRI) [2,3,5] less than 1% of image voxels contain positive nodule examples. The
class imbalance problem has received wide attention in the machine learning and
data mining communities, where typical solutions include class over- and under-
sampling, weighted losses, and posterior probability recalibration [9]. Sampling
schemes have been studied in medical imaging classification (e.g. [7] and refer-
ences therein) and segmentation [8], whereas loss function adjustments were key
to results in [12]. In Computer-Aided Detection (CADe) applications, specialized
knowledge can be used, such as limiting the domain of detection to the lung only
(requiring a lung masking model) [19], or training a highly sensitive candidate
nodule screening model and then refining predictions by cascading false positive
reduction stages [13,19]. A common theme across these approaches is that they
tend to be problem-dependent, and sizable efforts must often be expended to
find the balancing technique yielding the best performance.

This paper proposes a generic approach to tackle class imbalance, by using,
during training, an online adaptation of the distribution of majority and minority
class examples, in the spirit of curriculum learning [4]. The Curriculum Adaptive
Sampling for Extreme Data imbalance (CASED) is a novel sampling curricu-
lum that allows for a 3D fully convolutional network (FCN) to yield segmenta-
tions high enough in quality to make detection a mere consequence. In contrast
to approaches where an off-the-shelf segmentation model [14] or FCN [10] is
trained to only provide candidates to a second, independently-trained convo-
lutional neural network (CNN) for classification, CASED combines curriculum
learning and adaptive data sampling in a way that makes the second classifier
redundant. This is achieved by allowing the FCN to first learn how to distin-
guish nodules from their immediate surroundings while continuously introducing
training examples that the model has trouble classifying. This approach yields
a surprisingly minimalist proposal to the lung nodule detection problem that
tops the LUNA16 challenge [1] leader-board with a score of 88.35%. Further-
more, weakly-supervised training, with only a point and radius provided for
each training nodule, yields results competitive with those of full segmentation.

2 Method

CASED adheres to the observation that the solution to object detection is fully
contained in the solution to object segmentation. That is, given an ideal segmen-
tation, a determination of the location, extent, and identity of an imaged object
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becomes trivial. However, training a model to yield even acceptable medical
image segmentations is a considerably harder task than detection for two main
reasons. First, manual segmentation of training data is a laborious and expensive
endeavour. And second, the model must be able to describe the complex varia-
tions of texture ranging over the extent of a given object and its surroundings.
Fortunately, the first problem is less significant here as large datasets of anno-
tated lung CT scans are available [3]; however, robustness to weakly labeled data
is important. Regarding the second problem, recent work on FCNs (e.g. FCN-8s
for natural images [10], U-Net for biomedical images [12]) has shown that their
ability to model multi-scale context over finite image regions makes them ideal
candidates for medical image segmentation problems. It behooves one to ask
then, in the context of lung nodule detection, why has it not yet been shown
that FCNs alone are a competitive solution to this problem? We hypothesize the
answer lies in the extreme data imbalance associated to the problem, which has
not yet been sufficiently addressed. In the following we present CASED as an
approach to overcome this issue.

Curriculum. One of the more attractive properties of FCNs is their ability to
handle images of arbitrary size. This feature allows us to reduce data imbalance
by training on small image patches where the output stride of the model con-
tains at least one positive nodule voxel. As one would start teaching a child to
read the alphabet by restricting their gaze to a large letter A, the model first
learns how to represent nodules given only their immediate surroundings. An
important consequence of training the FCN on image patches is that we are
able to randomize training examples across both patient images and also image
regions. Training only on patches that contain nodule examples will result in an
extremely sensitive model but with low specificity because it would not learn how
to represent the majority of the input image space. Therefore, a curriculum [4]
is introduced where the proportion of training patches that contain nodules to
those that do not is decreased according to a schedule that tends toward the
data distribution as the number of training examples seen approaches infinity.

Adaptive Sampling. After training the FCN using this curriculum with random
sampling of background patches, it generally converges to a solution that still
gives systematic and predictable false positives. Furthermore, the vast majority
of voxels in typical lung images are correctly and confidently predicted as non-
nodule, so random sampling would be far more likely to show examples that
would have little to no effect on loss optimization. Hence, we introduce a sam-
pling strategy that favours training examples for which prediction using recent
model parameters produces false results, an instance of hard negative mining
(HNM) [17].

Figure 1 shows a flowchart of the CASED framework. Let {xi} be a training
set of M patches. Patch generators are shown in red boxes. The generators gr

and gn represent distributions over the set of all patches and the set of patches
that contain nodules, respectively. FCN models are shown in blue boxes where
the training model shares its weights with a predictor that is run in parallel
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Fig. 1. Schematic diagram of CASED framework

for the purposes of HNM. The green boxes represent samplers with distribu-
tions that vary with the mini-batch iteration τ . The sampler pτ (xi | gr) selects
patches based on both τ and the training loss Lτ (xi). The function fr(Lτ (xi), τ)
specifying pτ (xi | gr) must be on the range [0, 1] and fr(Lτ (xi), τ) → M−1 as
τ → ∞. The sampler pτ (xi) defines the curriculum and chooses between gr and
gn according to a mixing that depends on τ . The mixing coefficient pτ (gn) is
specified by fn(τ) with range [0, 1] and convergence to M−1 as τ → ∞. The
distribution governing the sampler pτ (xi) is given by

pτ (xi) = pτ (xi | gr)(1 − pτ (gn)) + p(xi | gn)pτ (gn)
= pτ (xi | gr) + (p(xi | gn) − pτ (xi | gr)) pτ (gn),

(1)

where p(xi | gn) = 1 if xi contains a nodule, and 0 otherwise. In the limit, as τ
goes to infinity, pτ (xi) converges to a uniform distribution over xi, which makes
CASED a valid curriculum [4].

3 Data and Implementation

We study CASED as applied to the task of lung nodule detection using the pub-
licly available LIDC image collection [2,3,5]. The LIDC contains 1010 patients
and a total of 1018 clinical thoracic CT scans. Each scan has been analyzed
through a two-phase nodule annotation process by four expert radiologists. In
the first phase each radiologist independently marks nodules as belonging to
one of three classes (nodule < 3mm, nodule ≥ 3mm, and non-nodule ≥ 3mm),
where the measurement refers a nodule’s diameter. In the second phase, each
expert can refine their annotations after seeing the anonymous annotations of
the other three radiologists. The LIDC contains 2635 nodules annotated in this
way and there are 142 cases that either contain no detected nodules or nodule
< 3mm.

For segmentation we use a 3D U-Net architecture, based on the model pro-
posed in [12]. Figure 2 illustrates the model used. The model is comprised of three
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Fig. 2. Schematic diagram of our 3D U-Net-based architecture.

distinct components: (1) downstream feature extraction path, (2) upstream fea-
ture pooling path, and (3) linear pixel classifier. In the downstream path, we use
layers of “convolution” and “pooling”. Each layer effectively encodes a progres-
sively larger image neighbourhood of the input image as we go deeper. In the
upstream path, we use layers of “convolution” and “strided transposed convolu-
tion” layers. Multi-scale features extracted in the downstream path are combined
to provide pixel-level features in the input image space. Finally, the linear pixel
classifier uses a simple “sigmoid” layer to provide per-pixel prediction of nodule
or non-nodule.

CASED training requires minimal data preprocessing. For a given CT scan,
image intensities are transformed to Hounsfield units and linearly rescaled. The
scan is then resized to 1.25 mm isotropic voxels. For training, binary segmen-
tation maps are built from the expert annotations listed in the provided XML
files and are also transformed into the 1.25 mm isotropic space. The binary seg-
mentation maps are nodule-wise refined to only label as nodule those voxels
that correspond to the intersection of all available annotations. For example, if
a nodule only has an annotation from one rater, that annotation is used; how-
ever, if a nodule has annotations from multiple raters the intersection of those
annotations is used.

Training is done by optimizing voxel-wise binary cross-entropy over each
prediction patch (of size 83) and its corresponding reference segmentation using
stochastic gradient descent with Nesterov momentum. We use mini-batches with
16 image patches of size 683 as input. Nodule patches are defined as those for
which there is a labeled nodule voxel within the 83 output stride. All other
patches are called background. The curriculum is initialized with pτ (gn) = 1.0
and is decayed after each mini-batch iteration. Finally, “background” patches are
sampled based on whether they contain a false positive prediction using recent
model parameters.

At test time, an equally minimalist approach to postprocessing is required.
Given a test image, the model outputs a soft segmentation map estimating the
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Table 1. The LUNA16 cross-validation sensitivity at different number of false pos-
itives per scan. The scores for other methods are taken from the result section of
LUNA16 website [1]. Method with asterisk superscript does not provide any descrip-
tion on LUNA16 scoreboard.

Method False positives per scan Average

0.125 0.25 0.5 1 2 4 8

CASED 0.759 0.825 0.866 0.903 0.926 0.946 0.959 0.883

CASED-Sphere 0.701 0.762 0.813 0.862 0.897 0.923 0.939 0.842

AIDENCE* 0.739 0.788 0.828 0.879 0.910 0.938 0.963 0.864

ZNET [15] 0.661 0.724 0.779 0.831 0.872 0.892 0.915 0.811

ETROCAD [15,18] 0.250 0.522 0.651 0.752 0.811 0.856 0.887 0.676

M5LCAD [11,15] 0.306 0.360 0.540 0.691 0.762 0.797 0.798 0.608

probability that a given voxel belongs to the nodule class. This map is thresh-
olded giving a binary segmentation on which connected component analysis is
performed to yield candidate nodules. The center of mass and average value of
the segmentation map over each candidate is found to yield a list of point and
confidence predictions. The points are finally transformed back into the native
image space. Because the model is fully convolutional, the input size at test need
only be divisible by 8. Given sufficient GPU memory the entire CT scan can be
passed as input without tiling and full prediction takes only a few seconds.

4 Experiments and Results

We evaluate the CASED framework using the 2016 Lung Nodule Analysis Chal-
lenge (LUNA16) 10-fold cross-validation split [1]. Each fold contains 88–89 CT
scans. The reference standard for LUNA16 consists of all nodule ≥ 3mm that
have been detected by at least three of four raters. Evaluation is based on the
detection sensitivity at various false positive rates per scan. A detailed explana-
tion of the evaluation can be found on the LUNA16 website [1].

For each test fold, we train on eight and validate on one of the remaining folds.
We also use model ensembling to improve the reliability of the results. Finally,
we repeat the experiment using spherical segmentations defined by the location
and radius of each nodule instead of the reference annotations (CASED-Sphere).

Table 1 summarizes the results of these experiments for the lung nodule detec-
tion task and provides a comparison to the results of other methods submitted
to the LUNA16 leader board. The CASED learning framework shows a 8.9%
relative increase in average sensitivity over the best published results for a given
model, ZNET [15]. The free-response receiver operating characteristic (FROC)
curve for CASED appears in Fig. 3. Finally, we demonstrate robustness to seg-
mentation quality by showing that a 3.8% relative increase over ZNET is achieved
with CASED-Sphere.



CASED 645

Fig. 3. Left: The free-response receiver operating characteristic (FROC) curve for
CASED. The blue line and shaded area represent the mean and variance of the nodule
detection sensitivity over 1000 bootstrapped samples at different false positive rates.
Right: Lung CT overlaid by probability map. In the color spectrum, as we move toward
right (red) the probability of being nodule increases.

5 Conclusions

This paper proposes CASED, a new curriculum sampling algorithm for the
highly class imbalanced problems that are endemic in medical imaging applica-
tions. We demonstrate that CASED is a robust learning framework for training
deep lung nodule detection models. Evaluated on the LUNA16 challenge, we
achieve the current state-of-the-art leader-board performance with an average
sensitivity score of 88.35%. Since the CASED algorithm does not require any
assumption on image modality, it can be applied to any arbitrarily large dataset
wherein the unbalanced nature of data poses major problems for designing auto-
mated methods.
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