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Abstract. To interpret a breast MRI study, a radiologist has to examine over
1000 images, and integrate spatial and temporal information from multiple
sequences. The automated detection and classification of suspicious lesions can
help reduce the workload and improve accuracy. We describe a hybrid mass-
detection algorithm that combines unsupervised candidate detection with deep
learning-based classification. The detection algorithm first identifies image-
salient regions, as well as regions that are cross-salient with respect to the
contralateral breast image. We then use a convolutional neural network (CNN)
to classify the detected candidates into true-positive and false-positive masses.
The network uses a novel multi-channel image representation; this representation
encompasses information from the anatomical and kinetic image features, as well
as saliency maps. We evaluated our algorithm on a dataset of MRI studies from
171 patients, with 1957 annotated slices of malignant (59%) and benign (41%)
masses. Unsupervised saliency-based detection provided a sensitivity of 0.96 with
9.7 false-positive detections per slice. Combined with CNN classification, the
number of false positive detections dropped to 0.7 per slice, with 0.85 sensitivity.
The multi-channel representation achieved higher classification performance
compared to single-channel images. The combination of domain-specific unsu‐
pervised methods and general-purpose supervised learning offers advantages for
medical imaging applications, and may improve the ability of automated algo‐
rithms to assist radiologists.
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1 Introduction

Magnetic Resonance Imaging (MRI) of the breast is widely-used as a screening exami‐
nation for women at high risk of breast cancer. A typical breast MRI study consists of
1000 to 1500 images, which involve a lot of time for interpretation and reporting.
Computer-assisted interpretation can potentially reduce the radiologist’s workload by
automating some of the diagnostic tasks, such as lesion detection. Previous studies
addressed automatic lesion detection in breast MRI using a variety of methods. These
can be broadly categorized into: image processing approaches [1–3], machine learning
approaches [4, 5], or a combination of both [6–8]. Deep convolutional neural networks
(CNN) have been previously applied to breast MRI images for mass classification [9],
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as well as parts of an automated lesion segmentation pipeline [10]. Cross-saliency anal‐
ysis has been shown to be advantageous for unsupervised asymmetry detection, and was
applied to lesion detection in breast mammograms and brain MRI [11].

We describe a new hybrid framework for the automatic detection of breast lesions
in dynamic contrast enhanced (DCE) MRI studies. The framework combines unsuper‐
vised candidate proposals by analyzing salient image areas, with a CNN classifier that
filters out false detections using multiple image channels. Our work comprises four
major contributions: (1) an unsupervised lesion detection algorithm, using patch-based
distinctiveness within the entire breast, and between the left and right breasts; (2) a new
multi-channel representation for DCE MRI images, which compactly captures anatomy,
kinetic, and salient features in a single image that can be fed to a deep neural network;
(3) a hybrid lesion detection framework that provides high detection accuracy and a low
false positive rate by combining the unsupervised detection and the multi-channel repre‐
sentation with a deep neural network classifier; (4) the evaluation of proposed methods
on a large dataset of MRI studies, including publicly available data.

2 Methods

2.1 Datasets

To train and evaluate our system, we used a dataset of 193 breast MRI studies from 171
female patients, acquired through a variety of acquisition devices and protocols. Two
publicly available resources [12–14] provided the data of 78 patients (46%). Each study
included axial DCE T1 sequences with one pre-contrast series and at least 3 post-contrast
series. Three breast radiologists interpreted the studies using image information alone,
without considering any clinical data. Each identified lesion was assigned a BI-RADS
score. The boundaries of the lesions were manually delineated on each relevant slice,
with an average of 11 ± 10 annotated slices per patient. Overall, there were 1957 anno‐
tated lesion contours in 1845 slices; 59% of them were labeled as malignant (BI-RADS
4/5) and 41% were labeled as benign (BI-RADS 2/3). The average lesion size was
319 ± 594 mm2. We partitioned the patients into training (75%, 128 patients, 1326 slices)
and testing (25%, 43 patients, 519 slices) subsets. The partitioning was random, while
ensuring a similar distribution of benign and malignant lesions in each of the subsets.

2.2 Image Representation

We used our multi-channel image representation previously described in [9]. The rationale
of this representation is to capture both anatomical and metabolic characteristics of the
lesion in a single multi-channel image. Figure 1 shows the three image channels that repre‐
sent the DCE study: (1) peak enhancement intensity channel; (2) contrast uptake channel:
difference between peak enhancement and baseline images; (3) contrast washout image:
difference between the early and the delayed contrast images.
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Fig. 1. Axial DCE T1 sequences acquired before contrast injection (a), at peak enhancement (b)
and after contrast washout (c). The kinetic graph (d) shows the pattern of contrast uptake and the
temporal location of each sequence. The multi-channel image representation combines the peak-
enhancement image (b) with the contrast uptake image (e) and contrast washout image (f).

2.3 Lesion Detection Framework

Figure 2 shows the components of the lesion detection framework.
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Fig. 2. Analysis steps of the lesion detection framework (top) and their outputs (bottom)

Image Preprocessing and Segmentation
The two-dimensional slice images were normalized to reduce data variability due to the
mixture of studies from different sources. For each of the data subsets, the global 1%
and 99% percentiles of pixel intensity were calculated for each channel, and contrast
stretching was applied to convert all images to the same dynamic range. The breast area
was segmented using U-Net, a fully convolutional network designed for medical image
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segmentation [15]. The network was implemented using Lasagne, a python framework
built on top of Theano. We trained the network on a subset of slices with manually
delineated breast contours. The training process of 20 epochs on a batch size of 4 images
required about 1 h on a Titan X NVIDIA GPU. The remainder of the detection pipeline
was applied only to the region within the segmented breast.

Saliency Analysis
For each MRI slice image, two patch-based saliency maps were created [11]: (1) patch
distinctiveness and, (2) contralateral breast patch flow. The patch distinctiveness sali‐
ency map is generated by computing the L1-distance between each patch and the average
patch along the principal components of all image patches [16]. For a given vectorized
patch px,y around the points (x, y), this measure is given by:
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where 𝜔T
k
 is the kth principal component of the entire image patch distribution.

Contralateral patch flow calculates the flow field between patches of the left and right
breasts, using the PatchMatch algorithm [17]. The algorithm uses the smooth motion
field assumption to compute a dense flow field for each pixel by considering a k x k patch
around it. Initially, for each pixel location (x, y), it assigns a random displacement vector
T that marks the location of its corresponding patch in the other image. The quality of
the displacement T is then measured by computing the L2 distance between the corre‐
sponding patches:
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The algorithm attempts to improve the displacement for each location by testing new
hypotheses generated from the displacement vectors of neighboring patches in the same
image. The algorithm progresses by iterating between the random and propagation steps,
keeping the location of the best estimate according to the L2 distance. We applied the
algorithm to find, for each patch in the source image, the corresponding nearest neighbor
patch in the target image. The nearest neighbor error (NNE) was used to estimate the
cross-image distinctiveness of the patch:

NNE
(
px,y

)
= min

T
D
(
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)
(3)

Candidate Region Detection
Candidate regions were detected on the saliency maps using a scale-invariant algorithm
that searches for regions with high density of saliency values. For a given range of
window sizes (wi, hj) and a set of threshold values {t1, t2,.. tn}, the algorithm efficiently
computes, for each pixel (x, y) and a region sx,y of size wi x hj around it:
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Score(x, y) = max
wi,hjtk

∑
(sx,y > tk)

wi ⋅ hj

∑
sx,y (4)

Non-maximal suppression was then applied to the Score image to obtain the locations
of all local maxima. We used window sizes in the range of 5 to 50 pixels and normalized
threshold values from 0.3 to 0.9. The region detection algorithm was applied to each of
the two saliency maps, producing two binary detection masks, which were combined
by an ‘or’ operator to generate candidate detections per slice.

CNN-Based Candidate Classification
The detected candidates were cropped from their slice images using square bounding
boxes, extended by 20% to ensure that the entire lesion was included in the cropped
image. The extracted lesion images were resized to fit the CNN input, and 32 × 32 × 5
multi-channel images were created with 3 channels of the DCE image and 2 channels
of the corresponding saliency maps. The CNN architecture consisted of 9 convolutional
layers in 3 consecutive blocks, similar to [18]. The first block had two 5 × 5 × 32 filters
with ReLU layers followed by a max pooling layer, the second block had four 5 × 5 × 32
filters with ReLU layers followed by an average pooling layer, and the final block had
three convolutional layers of size 5 × 5 × 64, 6 × 6 × 64, and 3 × 3 × 64 respectively,
each followed by a ReLU layer. The network was terminated by a fully connected layer
with 128 neurons and a softmax loss layer. The network output assigned either a ‘mass’
or ‘non-mass’ label to each bounding box. As the training data was unbalanced, with
many more examples of ‘non-mass’ regions, we trained an ensemble of 10 networks,
each with a different random sample of ‘non-mass’ regions. Majority voting of the
ensemble determined the final classification.

For each slice, the output of the framework was a binary detection map, with regions
that were proposed by the saliency analysis and classified as ‘mass’ by the CNNs. The
detection output per study was generated by summing the slice detection maps along
the longitudinal axis. This produced a projected heatmap showing the spatial concen‐
tration of detected regions. Thresholding this heatmap was used to further reject false
detections.

2.4 Experiments

We trained the ensemble of convolutional networks on a set of 1564 bounding boxes of
masses and 11,286 of non-masses, detected by the saliency analysis. The training set
was augmented by adding three rotated and two flipped variants for each image. The
networks were trained using MatCovNet, using a stochastic gradient descent solver with
a momentum of 0.9. The average training time of 100 epochs was 20 min on NVIDIA-
Titan-X black GPU. To evaluate the performance of the detection framework on the test
set of 43 patients, all DCE slices of the test studies were processed by the entire pipeline.
Overall, there were 5420 test slices, an average of 126 slices per patient. We compared
the detection maps per slice and per study to the annotated ground-truth.
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3 Results

The unsupervised saliency analysis correctly detected 0.96 of true lesions in the entire
dataset, with an average of 9.7 false positive detections per slice. The detection rates on
the training and testing sets were similar. The average accuracy of mass/non-mass clas‐
sification, obtained by the CNN on the validation set during the training process, was

Table 1. Classification performance using single and multi-channel image representations

Channels Accuracy AUC
1 0.79 ± 0.05 0.88 ± 0.05
3 0.84 ± 0.03 0.92 ± 0.03
5 0.86 ± 0.02 0.94 ± 0.01

Table 2. Evaluation results on the test set

Patients/
studies

Slices/lesions Sensitivity False-
positives

Saliency-based detection 43/50 5420/625 0.96 9.7/slice
Slice-based CNN detectiona 43/50 5420/625 0.85 0.7/slice

Study-based CNN detectiona 43/50 5420/625 0.98 7/study

aEnd to end analysis, which includes the unsupervised stage.

(a) (b)

(c) (d)

Fig. 3. An example of true-positive and false-negative detection. A BI-RADS 5 invasive ductal
carcinoma lesion in the right breast, shown in two peak-enhancement slices of the same sequence
(a, c), along with the corresponding cross-saliency maps (b, d) and the ground-truth contour (red).
In (b), the detection algorithm identified the region of the lesion, and correctly classified it (green),
while rejecting false detections (yellow). The same lesion at a consecutive slice was missed by
the saliency analysis (d).
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0.86 ± 0.02, with area under the receiver operator characteristics curve (AUC) of
0.94 ± 0.01. Table 1 shows that training with the 5-channel image representation
achieved the highest accuracy. The evaluation of the entire detection framework on the
test set slices yielded a sensitivity of 0.85 with 0.7 false-positives per slice. The CNN
was able to reject 89% of the false candidate regions detected by the saliency analysis.
Comparing the detection heatmaps per study with the projected ground-truth showed an
improved sensitivity of 0.98 with an average of 7 false-positive detections per study
(Table 2). Figure 3 shows a representative example of true-positive and false-negative
detections.

4 Discussion

Despite the potential of computer-assisted algorithms to improve the reading process of
breast imaging studies, and although existing systems have been shown to improve
sensitivity, they have not significantly affected the diagnostic accuracy (AUC) or the
interpretation times of both novice and experienced radiologists [19]. Recent advance‐
ments in deep learning technologies provide an opportunity to develop learning-based
solutions that will effectively support the diagnostic process. However, as most deep
learning research has focused on natural images, using deep networks as a ‘black-box’
solution for detection and classification problems in the medical imaging domain may
not provide optimal results. Our suggested hybrid approach, which combines tailored
computer vision algorithms of cross-saliency analysis with deep network classifiers,
allows the incorporation of domain-specific insights about the data to improve perform‐
ance. In our framework, both the multi-channel representation of DCE images and the
cross-saliency analysis of left and right breasts are examples of such insights. The great
majority of published work on lesion detection in breast MRI uses proprietary datasets,
typically small in size, which could not be used as a common benchmark for comparison.
The reported results show a large variability in sensitivity and false positive rate, ranging
from 1 to 26 false positives per study at a sensitivity range of 0.89 to 1.0 [1, 2, 10]. An
objective performance comparison between methods requires publicly available large
datasets with ground-truth annotations. In this work, we used MRI studies from the TCIA
repository [12], enriched by additional proprietary studies. Additionally, sharing
domain-specific deep learning models that have been trained on proprietary data may
be an alternative mechanism for collaboration among medical imaging researchers. Our
current work is missing a comparison to state-of-the-art detection methods such as faster
R-CNN, which provides both region proposals and classification within the same convo‐
lutional network. The plans for our future work include such a comparison to test our
hypothesis on the advantages of the hybrid approach.

In conclusion, we propose a combination of multi-channel image representation,
unsupervised candidate proposals by saliency analysis, and deep network classification
to provide automatic lesion detection in breast MRI with high sensitivity and low false-
positive rate. When evaluated on a large set of studies, this method could facilitate the
incorporation of cognitive technologies into the radiology workflow.
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