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Abstract. In this paper, for the first time, we introduce a multiple
instance (MI) deep hashing technique for learning discriminative hash
codes with weak bag-level supervision suited for large-scale retrieval. We
learn such hash codes by aggregating deeply learnt hierarchical repre-
sentations across bag members through an MI pool layer. For better
trainability and retrieval quality, we propose a two-pronged approach
that includes robust optimization and training with an auxiliary sin-
gle instance hashing arm which is down-regulated gradually. We pose
retrieval for tumor assessment as an MI problem because tumors often
coexist with benign masses and could exhibit complementary signatures
when scanned from different anatomical views. Experimental validations
demonstrate improved retrieval performance over the state-of-the-art
methods.

1 Introduction

In breast examinations, such as mammography, detected actionable tumors are
further examined through invasive histology. Objective interpretation of these
modalities is fraught with high inter-observer variability and limited repro-
ducibility [1]. In this context, a reference based assessment, such as presenting
prior cases with similar disease manifestations (termed Content Based Image
Retrieval (CBIR)) could be used to circumvent discrepancies in cancer grading.
With growing sizes of clinical databases, such a CBIR system ought to be both
scalable and accurate. Towards this, hashing approaches for CBIR are being
actively investigated for representing images as compact binary codes that can
be used for fast and accurate retrieval [2–4].

Malignant carcinomas are often co-located with benign manifestations and
suspect normal tissues [5]. In such cases, describing the whole image with a sin-
gle label is inadequate for objective machine learning and alternatively requires
expert annotations delineating the exact location of the region of interest.
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Fig. 1. Overview of DMIH for end-to-end generation of bag-level hash codes. Breast
anatomy image is attributed to Cancer Research UK/Wikimedia Commons.

This argument extends to screening modalities like mammograms, where mul-
tiple anatomical views are acquired. In such scenarios, the status of the tumor
is best represented to a CBIR system by constituting a bag of all associated
images, thus veritably becoming multiple instance (MI) in nature. With this as
our premise we present, for the first time, a novel deep learning based MI hashing
method, termed as Deep Multiple Instance Hashing (DMIH).

Seminal works on shallow learning-based hashing include Iterative Quantiza-
tion (ITQ) [6], Kernel Sensitive Hashing (KSH) [2] etc. that propose a two-stage
framework involving extraction of hand-crafted features followed by binarization.
Yang et al. extend these methods to MI learning scenarios with two variants:
Instance Level MI Hashing (IMIH) and Bag Level MI Hashing (BMIH) [7]. How-
ever, these approaches are not end-to-end and are susceptible to semantic gap
between features and associated concepts. Alternatively, deep hashing methods
such as simultaneous feature learning and hashing (SFLH) [8], deep hashing net-
works (DHN) [9] and deep residual hashing (DRH) [3] propose the learning of
representations and hash codes in an end-to-end fashion, in effect bridging this
semantic gap. It must be noted that all the above deep hashing works targeted
single instance (SI) hashing scenarios and an extension to MI hashing was not
investigated.

Earlier works on MI deep learning in computer vision include work by Wu
et al. [10], where the concept of an MI pooling (MIPool) layer is introduced to
aggregate representations for multi-label classification. Yan et al. leveraged MI
deep learning for efficient body part recognition [11]. Unlike MI classification that
potentially substitutes the decision of the clinician, retrieval aims at presenting
them with richer contextual information to facilitate decision-making.

DMIH effectively bridges the two concepts for CBIR systems by combining
the representation learning strength of deep MI learning with the potential for
scalability arising from hashing. Within CBIR for breast cancer, notable prior
art includes work on mammogram image retrieval by Jiang et al. [12] and large-
scale histology retrieval by Zhang et al. [4]. Both these works pose CBIR as an
SI retrieval problem. Contrasting with [4,12], within DMIH we create a bag of
images to represent a particular pathological case and generate a bag-level hash
code, as shown in Fig. 1. Our contributions in this paper include: (1) introduc-
tion of a robust supervised retrieval loss for learning in presence of weak labels
and potential outliers; (2) training with an auxiliary SI arm with gradual loss
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trade-off for improved trainability; and (3) incorporation of the MIPool layer
to aggregate representations across variable number of instances within a bag,
generating bag-level discriminative hash codes.

2 Methodology

Lets consider database B = {B1, . . . , BNB
} with NB bags. Each bag, Bi, with

varying number (ni) of instances (Ii) is denoted as Bi = {I1, . . . , Ini
}. We aim

at learning H that maps each bag to a K-d Hamming space H : B → {−1, 1}K ,
such that bags with similar instances and labels are mapped to similar codes.
For supervised learning of H, we define a bag-level pairwise similarity matrix
SMI = {sij}NB

ij=1, such that sij = 1 if the bags are similar and zero otherwise.
In applications, such as this one, where retrieval ground truth is unavailable we
can use classification labels as a surrogate for generating SMI.
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Fig. 2. DMIH architecture.

Architecture: As shown in Fig. 2, the pro-
posed DMIH framework consists of a deep CNN
terminating in a fully connected layer (FCL).
Its outputs {zij}ni

j=1 are fed into the MIPool
layer to generate the aggregated representation
ẑi that is pooled (max∀j {zij}ni

j=1, mean (·), etc.)
across instances within the bag. ẑi is an embed-
ding in the space of the bags and is the input of
a fully connected MI hashing layer. The output
of this layer is squashed to [−1, 1] by passing
it through a tanh{·} function to generate hMI

i ,
which is quantized to produce bag-level hash
codes as bMI

i = sgn (hMI
i ). The deep CNN men-

tioned earlier could be a pretrained network,
such as VGGF [13], GoogleNet [14], ResNet50
(R50) [15] or an application specific network.

During training of DMIH, we introduce an
auxiliary SI hashing (aux-SI) arm, as shown in
Fig. 2. It taps off at the FCL layer and feeds directly into a fully connected SI
hashing layer with tanh {·} activation to generate instance level non-quantized
hash codes, denoted as {hSI

ij }ni
j=1. While training DMIH using backpropagation,

the MIPool layer significantly sparsifies the gradients (analogous to using very
high dropout while training CNNs), thus limiting the trainability of the preced-
ing layers. The SI hashing arm helps to mitigate this by producing auxiliary
instance level gradients.

Model Learning and Robust Optimization: To learn similarity preserv-
ing hash codes, we propose a robust version of supervised retrieval loss based
on neighborhood component analysis (NCA) employed by [16]. The motiva-
tion to introduce robustness within the loss function is two-fold: (1) robustness
induces immunity to potentially noisy labels due to high inter-observer vari-
ability and limited reproducibility for the applications at hand [1]; (2) it can
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effectively counter ambiguous label assignment while training with the aux-SI
hashing arm. Given SMI, the robust supervised retrieval loss JMI

S is defined as:
JMI

S = 1 − 1
N2

B

∑NB

i,j=1 sijpij where pij is the probability that two bags (indexed

as i and j) are neighbors. Given hash codes hi =
{
hk
i

}K

k=1
and hj, we define a

bit-wise residual operation rij as rkij = (hk
i − hk

j ). We estimate pij as:

pij =
e−LHuber(hi,hj)

∑NB

i�=l e−LHuber(hi,hl)
, where LHuber(hi,hj) =

∑

∀k
ρk(rkij). (1)

LHuber(hi,hj) is the Huber norm between hash codes for bags i and j, while the
robustness operation ρk is defined as:

ρk(rkij) =

{
1
2 (rkij)

2, if |rkij | � ck

ck|rkij | − 1
2c2k, if |rkij | > ck

(2)

In Eq. (2), the tuning factor ck is estimated inherently from the data and is
set to ck = 1.345 × σk. The factor of 1.345 is chosen to provide approximately
95% asymptotic efficiency and σk is a robust measure of bit-wise variance of rkij .
Specifically, σk is estimated as 1.485 times the median absolute deviation of rkij
as empirically suggested in [17]. This robust formulation provides immunity to
outliers during training by clipping their gradients. For training with the aux-SI
hashing arm, we employ a similar robust retrieval loss JSI

S defined over single
instances with bag-labels assigned to member instances.

To minimize loss of retrieval quality due to quantization, we use a differen-
tiable quantization loss JQ =

∑M
i=1(log cosh(|hi|− 1)) proposed in [9]. This loss

also counters the effect of using continuous relaxation in definition of pij over
using Hamming distance. As a standard practice in deep learning, we also add
an additional weight decay regularization term RW , which is the Frobenius norm
of the weights and biases, to regularize the cost function and avoid over-fitting.
The following composite loss is used to train DMIH:

J = λt
MIJ

MI
S + λt

SIJ
SI
S + λqJQ + λwRW (3)
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Fig. 3. Weight trade-off.

where λt
MI, λt

SI, λq and λw are hyper-parameters that
control the contribution of each of the loss terms.
Specifically, λt

MI and λt
SI control the trade-off between

the MI and SI hashing losses. The SI arm plays a
significant role only in the early stages of training
and can be traded off eventually to avoid sub-optimal
MI hashing. For this we introduce a weight trade-off
formulation that gradually down-regulates λt

SI, while
simultaneously up-regulating λt

MI. Here, we use λt
SI =

1 − 0.5 (1 − t/tmax)2 and λt
MI = 1 − λt

SI, where t is the current epoch and tmax is
the maximum number of epochs (see Fig. 3). We train DMIH with mini-batch
stochastic gradient descent (SGD) with momentum. Due to potential outliers
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that can occur at the beginning of training, we scale ck up by a factor of 7 for
t = 1 to allow a stable state to be reached.

3 Experiments

Databases: Clinical applicability of DMIH has been validated on two large scale
datasets, namely, Digital Database for Screening Mammography (DDSM) [12,18]
and a retrospectively acquired histology dataset from the Indiana University
Health Pathology Lab (IUPHL) [4,19]. The DDSM dataset comprises of 11,617
expert selected regions of interest (ROI) curated from 1861 patients. Multiple
ROIs associated with a single breast from two anatomical views constitute a bag
(size: 1–12; median: 2), which has been annotated as normal, benign or malig-
nant by expert radiologists. A bag labeled malignant could potentially contain
multiple suspect normal and benign masses, which have not been individually
identified. The IUPHL dataset is a collection of 653 ROIs from histology slides
from 40 patients (20 with precancerous ductal hyperplasia (UDH) and rest with
ductal carcinoma in situ (DCIS)) with ROI level annotations done by expert
histopathologists. Due to high variability in sizes of these ROIs (upto 9 K × 8 K
pixels), we extract multiple patches and populate a ROI-level bag (size: 1–15;
median: 8). From both the datasets, we use patient-level non-overlapping splits
to constitute the training (80%) and testing (20%) sets.

Model Settings and Validations: To validate proposed contributions, namely
robustness within NCA loss and trade-off from the aux-SI arm, we perform abla-
tive testing with combinations of their baseline variants by fine-tuning multiple
network architectures. Additionally, we compare DMIH against four state-of-the
art methods: ITQ [6], KSH [2], SFLH [8] and DHN [9]. For a fair comparison, we
use R50 for both SFLH and DHN, since as discussed later it performs the best.
Since SFLH and DHN were originally proposed for SI hashing, we introduce addi-
tional MI variants by hashing through the MIPool layer. For ITQ and KSH, we
further create two comparative settings: (1) Using IMIH [7] that learns instance-
level hash codes followed by bag-level distance computation and (2) Utilizing
BMIH [7] using bag-level kernalized representations followed by binarization.

For IMIH and SI variants of SFLH, DHN and DMIH, given two bags
Bp and Bq with SI hash codes, say H(Bq) = {hq1, . . . , hqM} and H(Bp) =
{hp1, . . . , hpN}, the bag-level distance is computed as:

d(Bp, Bq) =
1
M

M∑

i=1

(min
∀j

Hamming(hpi, hqj)). (4)

All images were resized to 224 × 224 and training data were augmented with
random rigid transformations to create equally balanced classes. λt

MI and λt
SI

were set assuming tmax as 150 epoch; λq and λw were set at 0.05 and 0.001
respectively. The momentum term within SGD was set to 0.9 and batch size
to 128 for DDSM and 32 for IUPHL. For efficient learning, we use an expo-
nentially decaying learning rate initialized at 0.01. The DMIH framework was
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Fig. 4. Retrieval results for DMIH at code
size 16 bits.
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Fig. 5. PR curves for DDSM and
IUPHL datasets at code size of 32.

Table 1. Performance of ablative testing at code size of 16 bits. We report the nearest
neighbor classification accuracy (nnCA) estimated over unseen test data. Letters A-E
are introduced for easier comparisons, discussed in Sect. 4.

Method
Variants DDSM IUPHL

R T VGGF R50 GN VGGF R50 GN

Ablative
Testing

A ◦ ◦ 68.65 72.76 71.70 83.85 85.42 82.29
B ◦ • 75.38 77.34 72.92 85.94 90.10 88.02
C • ◦ 70.65 76.63 70.02 83.33 85.94 86.46
D ◦ � 66.65 69.67 68.26 83.33 88.54 84.90
E • � 67.05 76.59 72.84 84.38 89.58 85.42

DMIH-mean • • 78.67 82.31 76.83 87.50 89.58 89.06

DMIH-max • • 81.21 85.68 78.67 91.67 95.83 88.02

DMIH(λq = 0) • • 75.34 79.88 73.06 87.50 89.58 88.51

DMIH NB • • 83.25 88.02 79.06 94.79 96.35 92.71

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off)
◦ = Equal weights, • = Decaying SIL weights,
� = No SIL branch

Networks R50: ResNet50, GN: GoogleNet

implemented in MatConvNet [20]. We use standard retrieval quality metrics:
nearest neighbor classification accuracy (nnCA) and precision-recall (PR) curves
to perform the aforementioned comparisons. The results (nnCA) from ablative
testing and comparative methods are tabulated in Tables 1 and 2 respectively.
Within Table 2, methods were evaluated at two different code sizes (16 bits and
32 bits). We also present the PR curves of select bag-level methods (32 bits) in
Fig. 5.

4 Results and Discussion

Effect of aux-SI Loss: To justify using the aux-SI loss, we introduce a variant of
DMIH without it (E in Table 1), which leads to a significant decline of 3% to 14%
in contrast to DMIH. This could be potentially attributed to the prevention of
the gradient sparsification caused by the MIPool layer. From Table 1, we observe
a 3%–10% increase in performance, comparing cases with gradual decaying trade-
off (B) against baseline setting (λt

MI = λt
SI = 0.5, A, C).

Effect of Robustness: For robust-NCA, we compared against the original
NCA formulation proposed in [16] (A, B, D in Table 1). Robustness helps handle
potentially noisy MI labels, inconsistencies within a bag and the ambiguity in
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assigning SI labels. Comparing the effect of robustness for baselines sans the
SI hashing arm (D vs. E) we observe marginally positive improvement across
the architectures and datasets, with a substantial 7% in ResNet50 for DDSM.
Robustness contributes more with the addition of the aux-SI hash arm (proposed
vs. E) with improved performance in the range of 4%–5% across all settings. This
observation further validates our prior argument.

Effect of Quantization: To assess the effect of quantization, we define two
baselines: (1) setting λq = 0 and (2) using non-quantized hash codes for retrieval
(DMIH - NB). The latter potentially acts as an upper bound for performance
evaluation. From Table 1, we observe a consistent increase in performance by
margins of 3%–5% if DMIH is learnt with an explicit quantization loss to limit
the associated error. It must also be noted that comparing with DMIH - NB,
there is only a marginal fall in performance (2%–4%), which is desired.

As a whole, the two-pronged proposed approach, including robustness and
trade-off, along with quantization loss delivers the highest performance, proving
that DMIH is able to learn effectively, despite the ambiguity induced by the
SI hashing arm. Figure 4 demonstrates the retrieval performance of DMIH on
the target databases. For IUPHL, the retrieved images are semantically similar
to the query as consistent anatomical signatures are evident in the retrieved
neighbors. For DDSM, in the cancer and normal cases the retrieved neighbors
are consistent, however it is hard to distinguish between benign and malignant.
The retrieval time for a single query for DMIH was observed at 31.62 ms (for
IUPHL) and 17.48 ms (for DDSM ) showing potential for fast and scalable search.

Table 2. Results of comparison with state-of-
the art hashing methods.
Method A/F L DDSM IUPHL

16-bit 32-bit 16-bit 32-bit

Shallow ITQ [6] R50 ◦ 66.35 67.71 78.58 80.28

R50 • 64.56 71.98 89.58 79.69

G ◦ 65.22 66.55 51.79 51.42

G • 59.73 61.03 57.29 58.85

KSH [2] R50 ◦ 61.88 64.81 87.74 86.51

R50 • 59.81 72.17 70.83 80.21

G ◦ 60.50 61.91 57.36 57.83

G • 55.34 55.67 60.94 58.85

Deep SFLH [8] R50 ◦ 73.54 77.46 83.33 85.94

R50M � 71.98 75.93 85.42 88.54

DHN [9] R50 ◦ 65.64 74.79 82.29 86.46

R50M � 72.88 80.43 88.02 90.62

DMIH-SIL R50 ◦ 76.02 78.37 87.92 88.58

DMIH R50M � 85.68 89.47 95.83 93.23

Legend A/F: A: Architecture, F: Features

R50: ResNet50, R50M:

ResNet50+MIPool, G: GIST

L: ◦ = IMIH, • = BMIH,

� = End-to-end

Comparative Methods
In the contrastive experiments
against ITQ and KSH, hand-
crafted GIST [21] features under-
performed significantly, while the
improvement with the R50 fea-
tures ranged from 5%–30%. How-
ever, DMIH still performed 10%–
25% better.

Comparing the SI with the
MI variations of DHN, SFLH and
DMIH, it is observed that the per-
formance improved in the range
of 3%–11%, suggesting that end-
to-end learning of MI hash codes
is preferred over two-stage hashing
i.e. hashing at SI level and com-
paring at bag level with Eq. (4).
However, DMIH fares comparably
better than both the SI and MI
versions of SFLH and DHN, owing
to the robustness of the proposed
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retrieval loss function. As also seen from the associated PR curves in Fig. 5,
the performance gap between shallow and deep hashing methods remains sig-
nificant despite using R50 features. Comparative results strongly support our
premise that end-to-end learning of MI hash codes is preferred over conventional
two-stage approaches.

5 Conclusion

In this paper, for the first time, we propose an end-to-end deep robust hashing
framework, termed DMIH, for retrieval under a multiple instance setting. We
incorporate the MIPool layer to aggregate representations across instances to
generate a bag-level discriminative hash code. We introduce the notion of robust-
ness into our supervised retrieval loss and improve the trainability of DMIH by
utilizing an aux-SI hashing arm regulated by a trade-off. Extensive validations
and ablative testing on two public breast cancer datasets demonstrate the supe-
riority of DMIH and its potential for future extension to other MI applications.
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