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Abstract. Timely detection and treatment of microaneurysms (MA) is
a critical step to prevent the development of vision-threatening eye dis-
eases such as diabetic retinopathy. However, detecting MAs in fundus
images is a highly challenging task due to the large variation of imag-
ing conditions. In this paper, we focus on developing an interleaved deep
mining technique to cope intelligently with the unbalanced MA detection
problem. Specifically, we present a clinical report guided multi-sieving
convolutional neural network (MS-CNN) which leverages a small amount
of supervised information in clinical reports to identify the potential MA
regions via a text-to-image mapping in the feature space. These potential
MA regions are then interleaved with the fundus image information for
multi-sieving deep mining in a highly unbalanced classification problem.
Critically, the clinical reports are employed to bridge the semantic gap
between low-level image features and high-level diagnostic information.
Extensive evaluations show our framework achieves 99.7% precision and
87.8% recall, comparing favorably with the state-of-the-art algorithms.
Integration of expert domain knowledge and image information demon-
strates the feasibility to reduce the training difficulty of the classifiers
under extremely unbalanced data distribution.

1 Introduction

Diabetic retinopathy (DR) is the leading cause of blindness globally. Among an
estimated 285 million people with diabetes mellitus worldwide, nearly one-third
have signs of DR [1]. Fortunately, the risk of vision loss caused by DR can be
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Fig. 1. Difficult cases in MA detection. (a) A normal and obvious MA. (b) Blood vessel
joints similar to MA (blue arrow). (c) Light and texture varies. (d) Hemorrhage (green
arrow) may cause false positive detection (e) Blurred fundus image, which makes of
MA (white arrow) detection more difficult. (f) Reflection noise (yellow arrow). (Color
figure online)

notably reduced by early detection and timely treatment [2]. Micro-aneurysm
(MA), the earliest clinical sign of DR, is defined as a tiny aneurysm occurring
secondary to the capillary wall and appear as small red dots in the superficial
retina layers. MA counts is an important measure of progression of retinopathy in
the early stage and may serve as a surrogate endpoint for severe change in some
clinical trials [3]. However, manual segmentation and counting of MA is time-
consuming, subjective, error-prone and infeasible for large-scale fundus image
analysis and diagnose. Therefore automatic detection and counting of MA is a
core component of any computer-aided retinopathy diagnosis system.

However, several factors, including the variation in image lighting, the vari-
ability of image clarity, the occurrence of another red lesion, extremely low con-
trast and highly variable image background texture, made the segmentation of
MA difficult for an automated system. Figure 1 shows some examples of fundus
images containing challenging MAs for detection.

To address the above challenges, we proposed a multi-modal framework utiliz-
ing both expert knowledge from text reports and color fundus images. Different
from previous methods, our proposed framework is able to (1) integrate non-
image information from experts through clinical reports; and (2) accommodate
the highly unbalanced classification problem in medical data.

2 Methodology

Our framework consists of two phases. In Phase 1, a statistical image-text map-
ping model is generated using the algorithm described in Sect. 2.1. The model
maps visual features to different lesion types in the retina. The learned image-
text mapping model will generate a lesion estimation map, where features of
superpixels in the fundus images can be easily decoded to types and confidence
of lesions via the lesion estimation map. In Phase 2, we propose multi-sieving
convolutional neural networks (MS-CNNs), as described in Sect. 2.2, to perform
pixel-level binary lesion classification in fundus images. The challenge is the
highly unbalanced data where the number of pixels with lesions can be only
one-thousandth of that of healthy pixels. The color information from the raw
fundus images is coupled with the lesion estimation map from Phase 1, and fed
into MS-CNN for MA detection.
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Fig. 2. The illustration of learning the image-text mapping model. The top panel illus-
trates the training procedure of the image-text mapping model. A text-image mapping
model is learned through the feature space partitions’ lesion label distribution (mid-
dle panel is inspired by Hofmanninger and Langs’ work [4]). At test time, images are
segmented into superpixels which are also mapped to the feature space for lesion label
prediction (bottom panel).

2.1 Learning Image-Text Mapping Model

In this section, we adapt the image-text mapping model introduced in [4] to
extract expert knowledge from clinical reports. The input into the model is the
fundus images with their corresponding clinical text reports, and the output of
this model is a probabilistic map of the lesion types in the fundus image. Our
proposed image-text mapping model consists of five stages, as shown in Fig. 2: (1)
image preprocessing and feature extraction; (2) text information extraction from
clinical reports; (3) random feature space partitioning; (4) lesion distribution
model; (5) mapping features to lesion types.

First, we resize all image to the same size and apply histogram balance to
images to eliminate the large variation in imaging conditions. To improve the
computational efficiency, the fundus images are over-segmented into superpixels
using Simple Linear Iterative Clustering (SLIC) [5]. Features are extracted from
superpixels using a pre-trained AlexNet model provided in Caffe Model Zoo,
where we use the fully connected neural network layer of AlexNet [6] which has
a high representation power of image features. We use a rectangle patch at the
center of superpixels as the input into CNN because the shape of the superpixels
are not regular.

Then, we extract the lesion information from the clinical text reports writ-
ten in natural languages. Based on our observation, clinical text reports always
contain the names of lesions appearing in the corresponding fundus images and
in general lesions are only mentioned when they exist. So we represent the key-
words of lesion names from clinical text reports as binary arrays, with examples
shown in Table 1.
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Table 1. An example of clinical text reports and the lesion-related information
extracted. The highlighted words in the report content are key words of different kinds
of lesions. And then the text report is transformed to a binary array indicating whether
a certain kind of lesion appears in images, shown in right columns. MA, HE, SE, HH
represents microaneurysm, hard exclude, soft exclude and hemorrhage respectively.

Clinical reports MA HE SE HH

There exist microaneurysm and dot hemorrhages in
posterior pole, probable hard exclude at upper temporal

1 1 0 0

microaneurysm line shaped hemorrhages are seen near
vascular arcade, soft exclude are seen in upper temporal and
temporal side of optic nerve head

1 0 1 1

Next, given the image visual features and the corresponding lesion types in
fundus images from the previous steps, we partition the visual feature space by
assigning probability weights of each lesion type to each feature space partition.
Because the location information of the lesions is missing from the text reports,
a semantic mapping from visual features [4] is utilized to fill in this gap. To
this end, the feature space is first randomly and uniformly partitioned using
random fern [7] which generates an index value for each subspace. A fern is a
sequence of binary decision functions F . These functions map the feature vectors
of superpixels to an integer index of the partitioned space. Suppose there are
L binary functions in F , as each binary function Li (i = 1, . . . , L) produces a
bit in F , the resultant binary code represents values ranged from 1 to 2L. The
mapping between the superpixels and lesion types is obtained by assigning the
lesion types in the clinical reports to all superpixels in the corresponding fundus
image.

Inspired by term frequency-inverse document frequency (tf-idf ) model in
natural language processing [8] and Hofmanninger and Langs’ method [4], we
developed a model called “partition frequency-inverse lesion frequency” (pf-ilf
model) to identify the best feature partitions to represent each lesion type. Here
lesion types are treated as documents and feature space partitions as terms.
We use Laplacian smoothing to avoid zero partition frequency for some lesion
types. Inverse lesion frequency ilf for partition p is defined as the total num-
ber of lesion types divided by the number of lesions that fall in the partition
p. Then we can define the score pf-ilf of a partition p for a lesion type l as
pd-ilf(p, l) = 1+fp,l

L+maxk fk,l
× log2

L
np

, where fp,l is the number of superpixels with
the lesion label l that fall in the feature space partitions p. L is the total number
of lesion types, np is the number of lesions that fall into partition p. With the
proposed lesion distribution model using pf-ilf score, we can identify the most
representative feature space partitions p for a specific lesion type l, by ranking
the pf-ilf scores of all partitions for the lesion type l. The middle panel of Fig. 2
visualizes the random subspace partitioning of the visual feature space and the
mapping between feature space partitions and lesion types.
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Finally, we predict the lesion types in each superpixel using the image-text
mapping model, as illustrated in the middle and bottom panels of Fig. 2. For
each lesion type l, we pick the top k partitions with highest pf-ilf defined as
Pl(k). Suppose a superpixel s is mapped to a set of partitions Qs in the fea-
ture space. We define a final score of a superpixel s and a lesion type l as
S(s, l) = |Pl(k) ∩ Qs|, indicating the size of the intersection set between Pl(k)
and Q(s). Finally the superpixel s is labeled with the lesion type l with the
highest score S(s, l).

2.2 Multi-Sieving Convolutional Neural Network for MA Detection

In spite of its efficacy in large-scale image segmentation and object detection [6],
CNN still faces limitations when dealing with unbalanced data, such as detecting
the MAs in fundus images. Firstly, it favors balanced datasets, while the ratio
of positive examples (MA) to negative examples (non-MA) can be as low as
1:1000. Second, multiple misleading visual traits such as blood vessels can lead
to erroneous classification using only visual features of the fundus image. In
other words, non-image information would provide critical meta-data to guide
the classification model by integrating additional cues such as expert knowledge
from the clinical reports. The right image in the bottom panel of Fig. 2 visualizes
the clinical report guided segmentation from the image-text mapping model.

To address the unbalanced data challenge, we first propose Multi-Sieving
Convolutional Neural Networks (MS-CNNs) to address the unbalanced dataset
issue. MS-CNNs are a cascaded CNN model with the false positives from the
previous network fed into the next network as negative examples. Suppose all
positive samples are in set P and negative samples are in set N . For the first
phase, we select all samples in P and randomly select an equal number of samples
in N as initial training samples (P (0), N (0). Then for the nth phase, we first
perform classification using network trained in previous phase on all samples in
P (n−1) and N (n−1). This will generate many false positive predictions which will
be collected in a set FP (n). We select all positive samples in P again, but now
randomly select an equal number of negative samples from FP (n), which are
“hard” or challenging samples for the previous classifier.

3 Experimental Results

In this section, extensive experiments are carried out to evaluate the clinical
report guided multi-sieving CNN model for MA detection. We collect a dataset
including fundus images and clinical reports from a local hospital. This dataset
is used for training and testing the image-text mapping model. We also use the
standard diabetic retinopathy (DIARETDB1 [9]) database to test our clinical
report guided MS-CNN model.

The dataset collected from the local hospital contains 646 images. All images
have a resolution of 3504 × 2336. 433 of them are without obvious DR and the
rest images contain different lesion types. The DIARETDB1 dataset contains
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Table 2. Experimental results. The best results are highlighted using the bold font.

Method Recall Precision Accuracy

Latim [10] 0.805 0.744 0.805

Fujita Lab [11] 0.715 0.703 0.713

Aravind [12] 0.800 0.920 0.900

Ren [13] 0.821 0.961 0.962

Sehirli [14] 0.691 0.993 -

MS-CNN without expert guidance 0.842 0.988 0.951

MS-CNN (block 1) 0.179 1.000 0.178

MS-CNN (block 2) 0.878 0.997 0.961

89 non-dilated fundus images with different types of lesions. We evaluate the
efficacy of our proposed framework in terms of classification precision and recall.

All of our experiments were performed using the CNN with the same configu-
ration as AlexNet [6]. We train and test the image-text mapping model using the
dataset collected from the local hospital. 80% of images are randomly selected as
the training set and the rest for testing. Two annotators annotated disjoint sub-
sets of the local dataset based on the fluorescence fundus angiography. Because
text reports are not available in DIARETDB1, we use the same image-text map-
ping model trained using the local data to perform tests on the DIARETDB1
dataset. Following the experiment setup in [9], 28 images in the dataset are
pre-selected as the training data and the rest images are used as the testing
data. To show that the extra channel helps the MA detection, we trained and
tested two CNNs with the same architecture, but one with the extra expert
knowledge-guided channel, one with the extra channel filled with zeros to avoid
CNN structural change.

Fig. 3. (a) Illustration of expert knowledge learning result. The top row is the original
fundus images with different kinds of lesions. The bottom row is the corresponding
output of image-text mapping model. The original output images are gray level images
where different gray levels represent different lesion type. We transformed the original
output images to pseudo-color images for visualization purpose. (b) Illustration of
segmentation results of the first and second blocks of MS-CNN. White, red, and green
dots represent false positive, false negative, and true positive predictions respectively.
(Color figure online)
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To compare our method with existing approaches, we implemented, turned
and tested two state-of-the-art methods described in [10,11]. We also compared
with three methods published recently [12–14]. Our method achieved the highest
score in both recall and precision compared to all other methods, with compa-
rable accuracy to [13]. We also observe from Table 2 that without the clinical
report guided information, the proposed MS-CNN method already outperforms
all state-of-the-art methods in terms of recall. Furthermore, with the clinical
report guided information, our proposed method achieved the highest precision
compared with the best of the five methods [13]. We also observe that there
is a substantial increase of recall from 84.2% to 87.8% with a significant 5.7%
improvement when image-text mapping channel is added. This is critical to
medical image analysis, as false negatives can be detrimental for the disease
diagnosis. This indicates that some MAs are too vague to be distinguished from
background. Our image-text mapping model is able to find the right properties
of MA and thus provide necessary information to CNN. We also expected a
significant increase in precision, but only a slight increase from 98.8% to 99.7%
is observed. We believe that the multi-sieving scheme eliminated most of the
false positive predictions. More blocks in MS-CNN have also been experimented,
but the improvement in performance is negligible while the computational cost
increases linearly with the number of blocks. So we keep 2 blocks for the MS-
CNN framework (Fig. 3).

To demonstrate that multi-sieving scheme is effective, we extracted the
results from the first and the second block of MS-CNN. As expected, the recall
increases sharply from 17.9% using only 1 block to 87.7% using 2 blocks. But
we also noticed that precision decreases slightly from 100% to 99.7%. We have
to tradeoff between precision and recall. Since the main purpose of MS-CNN is
to increase recall, a slight decrease of precision is acceptable and overall perfor-
mance is improved.

4 Conclusions

The paper presents a novel clinical report guided framework for automatic
microaneurysm detection from fundus images. We first extract expert knowl-
edge from clinical text reports and map visual features to semantic profiles.
Integration of keywords information from text reports and features from fundus
images help to boost the detection accuracy with a promising performance in
terms of precision and recall. The proposed framework performs favorably by
overcoming MA detection challenges including unbalanced dataset and varying
imaging conditions faced by the existing approaches. This is mainly achieved by
multimodality information integration from clinical reports and visual features,
and a multi-sieving classification strategy. The framework proposed in this paper
is a generic approach that can be easily extended to detection of multiple kinds
of lesions in fundus images and other medical imaging modalities such as octical
coherence tomography (OCT) and angiography.
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