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Abstract. Convolutional Neural Networks (CNNs) are typically trained
in the RGB color space. However, in medical imaging, we believe that
pixel stain quantities offer a fundamental view of the interaction between
tissues and stain chemicals. Since the optical density (OD) colorspace
allows to compute pixel stain quantities from pixel RGB intensities using
the Beer-Lambert’s law, we propose a stain deconvolutional layer, hereby
named as SD-Layer, affixed at the front of CNN that performs two func-
tions: (1) it transforms the input RGB microscopic images to Optical
Density (OD) space and (2) this layer deconvolves OD image with the
stain basis learned through backpropagation and provides tissue-specific
stain absorption quantities as input to the following CNN layers. With
the introduction of only nine additional learnable parameters in the pro-
posed SD-Layer, we obtain a considerably improved performance on two
standard CNN architectures: AlexNet and T-CNN. Using the T-CNN
architecture prefixed with the proposed SD-Layer, we obtain 5-fold cross-
validation accuracy of 93.2% in the problem of differentiating malignant
immature White Blood Cells (WBCs) from normal immature WBCs for
cancer detection.

Keywords: Deep learning · Classification · Stain deconvolution ·
Cancer imaging

1 Introduction

In the past few years, Convolutional Neural Networks (CNN’s) have attained
immense success in medical imaging problems such as detection and classification
[2–6,12,15]. For example, in [3], a magnification independent framework and
CNN model is presented to detect H&E stained breast cancer cells. In [2], a
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simple 3-layer CNN architecture is presented with data augmentation to classify
Immunofluorescence images of HEp-2 cells. In [4,5], deep neural networks are
investigated for mitosis detection. Apart from classification and detection, CNNs
have also been used in medical image segmentation [13].

CNNs used in these problems are typically trained in the RGB colorspace.
However, the ideal discriminating features in medical microscopic images may
not be the pixel intensities in the RGB color space, but the stain quantities that
are absorbed and are characteristics of the tissue. Previous works have shown
that the stain quantities can be estimated in the Optical Density (OD) space
through the application of Beer-Lambert’s law [8–10,14]. This transformation
from RGB color space to the stain quantity space is commonly termed as stain
deconvolution. Motivated with the above, we propose Stain Deconvolution Layer
(hereby named as SD-Layer) that is a biomedically relevant CNN layer and can
be prefixed to any CNN model and performs the following functions:

(i) It transforms the input RGB images to the Optical Density (OD) space.
(ii) Initialized with the stain basis vector of one of the cell image, this layer

learns the optimal stain basis vectors of cell/tissue of interest for class labels
through backpropagation.

(iii) It deconvolves OD image with the learned stain color basis and provides
tissue-specific stain absorption quantities that are used as input to the fol-
lowing CNN architecture.

To the best of our knowledge, this is the first work where deep learning based
classification of medical images has been employed in the OD space using the
Beer-Lambert law based stain deconvolution. We evaluate the performance of the
proposed SD-Layer by prefixing it to two standard CNNs (AlexNet and T-CNN)
on the challenging problem of differentiating malignant immature White Blood
Cells (WBCs) from hematogones (benign immature WBCs) for cancer detection
in Acute Lymphoblastic Leukemia (ALL). ALL detection has been carried out
in the past using machine learning algorithms on hand-crafted features [11,15].

However, the datasets considered in these studies are typically small and
hence, generalization error of these on the real world unseen data may be higher.
In this paper, we have applied deep learning based proposed architecture on
nearly 9000 immature WBCs (total) for malignant versus normal WBC blast
classification with a 5-fold cross validation accuracy of 93.2%. This is to note that
the novelty of the paper lies in the proposed deep learning based architecture
that can be applied to other classification problems in medical imaging. The
remainder of the paper is organized as follows. In Sect. 2, we review some of the
relevant theory. In Sect. 3, we propose the SD-Layer formulation. In Sect. 4, we
evaluate the performance of the proposed SD-Layer. Section 5 presents a small
discussion, followed by some conclusions in Sect. 6.

2 Background

This section presents a brief review of the theory required to understand the
proposed work. Assume that a given stained slide is illuminated by light of
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intensity Io,c in color channel c (red, green, or blue) and I(p, c) denotes intensity
captured by the camera at pixel location p in channel c. Beer Lambert’s law is
defined as:

I(p, c) = Io,ce
−∑N

i=1 Q(p,i)S(i,c), (1)

where Q(p, i) is the quantity of the ith stain constituent absorbed at pixel loca-
tion p, S(i, c) is the characteristic absorbance of the ith stain constituent in the
channel c, Io,c can also be viewed as the maximum pixel intensity in channel
c where no staining chemical is absorbed, and N is the number of stain con-
stituents. From (1), it is noted that the observed pixel intensity I(p, c) varies
non-linearly with the quantity of staining chemical Q in the RGB colorspace.
However, the optical density O(p, c) defined as the negative log of (1) varies
linearly with Q as below:

O(p, c) = −log10
I(p, c)
Io,c

=
3∑

i=1

Q(p, i)S(i, c). (2)

In the matrix notation, this can be written as

O = QS, (3)

where O and Q are matrices of dimension MN×3, S is the stain color matrix
of dimension 3 × 3. Each row of S constitutes one stain basis vector, while each
column of Q refers to the quantity of each of these stain basis vectors present at
different pixel positions.

Generally, Beer-Lambert law based deconvolution proceeds as follows. A
given input image in RGB space is first converted to OD space via (2) to obtain
O. Next, Q and S are estimated through different matrix factorization strategies
such as Singular value decomposition (SVD) [9], non negative matrix factoriza-
tion (NMF) [8], and sparse NMF (S-NMF) [14]. In this paper, we use the widely
popular SVD based method to achieve stain deconvolution.

3 Proposed Stain Deconvolution Layer (SD-Layer)

In this section, we present the proposed SD-Layer that is built on the under-
standing of the staining based imaging of biological tissues.

Firstly, as has been discussed earlier, absorption of stain quantities at differ-
ent positions correspond to the tissue properties. Since variation in stain absorp-
tion by tissues/cells lead to the formation of corresponding medical image, it is
more appropriate to design a classifier using stain quantities. Thus, we propose
to train the CNN on the stain quantities absorbed Q obtained via deconvolution
of the OD space image O with the stain basis vectors in S as below:

Q = OS−1. (4)

Here, S can be obtained via SVD of O [9]. In practice, stain matrix S deter-
mined using (SVD) would vary from image to image due to several factors such



438 R. Duggal et al.

as illumination variation, over/under staining, ageing of the staining chemicals,
etc. [8]. Thus, full microscopic images are stain normalized prior to cell segmen-
tation and classification. However, stain normalization carried out on the full
slide (containing large number of cells) may still lead to stain variations at the
individual cell level. Since classification is required at the cell level, training a
CNN on Q, obtained using (4) via stain matrix S estimated on the full slide
reference image, may not yield desired classification accuracy. Thus, we would
like to fine tune the stain matrix S at the cell level via the proposed SD-Layer.

In order to realize this, we interpret the matrix multiplication between O
and S−1 in (4) as convolution between the rows of O and the columns of S−1 as
shown in Fig. 1. Thus, each column of S−1 is equivalent to a convolution filter
of dimension 1 × 1 × 3 and stride 1. This interpretation allows to learn S−1

optimally at the cell level through backpropagation. It is important to note that
accurate learning of S−1 is heavily dependent on its initialization. We found
that initializing the convolution filters using the columns of S−1, determined
through SVD on the reference image, led to good results. We experiment with
other initializations in the experiments section.

To sum up the discussion, the SD-Layer (shown in Fig. 2) performs two func-
tions. Firstly, it transforms the input image from RGB to OD space using (2).
Secondly, it determines the stain quantities present at each pixel using (4). The
stain matrix, initialized through stain deconvolution of the reference image, is

×0.5614 0.9294 0.4334 −0.4641 −0.7960 −0.3886−0.8050 0.1960 0.5600−0.3697 0.5727 −0.7316 = −1.1690 −0.0165 −0.0148
QQ

0.5614 0.9294 0.4334∗−0.4641 −0.8050 −0.3697 0.5614 0.9294 0.4334∗−0.7960 0.1960 0.5727 0.5614 0.9294 0.4334∗−0.3886 0.5600 −0.7316

∅ ∅ ∅

∅ ∅ ∅

Fig. 1. Interpreting matrix multiplication in (4) as convolution. Each element of Q can
be viewed as convolution of rows of O with columns of S−1.
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Fig. 2. Illustration of SD-Layer. φi’s are learnable 1× 1× 3 sized convolutional filters.
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optimally learned at the cell level through backpropagation. This introduces
only 9 additional learnable parameters that is insignificant compared to the
total number of weights in the model. Thus, the gain in classification accuracy
as presented in the next section is due to the more biologically relevant input
image representation rather than the enhanced model capacity.

4 Experiments

In this section, we evaluate the performance of SD-Layer appended to the front
end of two CNN architectures: AlexNet [7] and Texture-CNN [1]. AlexNet is
a widely studied standard CNN model. It consists of 5 convolution layers fol-
lowed by 2 fully connected layers, followed by a softmax layer. For input image
dimension of our dataset, AlexNet contains ≈146 million weights.

Texture-CNN (T-CNN) was recently proposed in [1] and was shown to
achieve superior results on texture datasets. It modifies AlexNet, by comput-
ing features from the 3-D activation map of the last convolutional layer instead
of simply flattening it. These features act as order-less texture descriptors. So,
for a 3-D map of dimension H × W × D, computing channel-wise mean results
in D number of features wheras flattening would give HWD features. With the
reduced number features that are fed to the subsequent fully connected layers,
T-CNN contains ≈20 million learnable parameters.

(a) (b)

Fig. 3. Example images from our dataset. (a) Nucleus of normal WBC immature cell
(b) Nucleus of malignant WBC blast.

4.1 Dataset

Our Data consists of microscopic image slides prepared from the bone marrow
aspirate of normal and ALL subjects. These images are stained with Jenner-
Giemsa stain. A trained oncologist hand-labeled the normal and malignant WBC
immature cells. All the images were normalized using [9] for stain variation. The
nuclei of the labeled cells were then segmented. In total, our dataset consists of
8938 cell nuclei, 4469 nuclei of each class. We used random rotations through 180
degrees and vertical flipping in each epoch as two data augmentation strategies
during the training phase. To account for the varying sizes of the segmented
nuclei, we embed the nuclei in a 400× 400 black colored patch. Re-sizing of
cell images provide poor results since texture is an important feature that gets
altered with re-sizing. Example images from our dataset are shown in Fig. 3.
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4.2 Experiment 1: AlexNet vs T-CNN with and Without
SD-Layer

To establish a baseline performance, we evaluate performance of two models:
AlexNet [7] and Texture-CNN [1] on our dataset. All models were trained using
stochastic gradient descent (SGD) for 400 epochs. The initial learning rate for
AlexNet was set to 0.01 and for AlexNet with SDLayer to 0.001. For T-CNN,
with and without SD-Layer, the initial learning rate was set to 0.01, which was
reduced by a factor of 10 on epochs 300 and 350. The momentum and decay
were set to 0.9 and 10−6 for all models. The 5-fold cross validation accuracy and
f-score are shown in the first two rows of Table 1. Since texture is an important
discriminative feature that AlexNet is unable to tap despite its larger model
capacity, we note that T-CNN outperforms Alexnet by a large margin.

Next, we prefix SD-Layer at the front end of both models. Two settings
are considered for the SD-Layer: (1) frozen - convolution filters are not allowed
to train post initialization and (2) trainable - filters are allowed to train to
the best possible representation. In the first case, CNN performs poorly as is
evident from Fig. 4a. This is because the stain vector initialized using SVD on
the full slide reference image cannot fully overcome cell-level stain variations.
On the other hand, significantly higher test accuracy is obtained on the second

Table 1. 5-fold cross-validation accuracy of Alexnet and T-CNN, with and without
SD-Layer

Model architecture Accuracy (in %) F-Score (in %)

AlexNet 87.9 88.12

T-CNN 92.48 92.7

AlexNet+SD-Layer 88.5 88.32

T-CNN+SD-Layer 93.2 93.08

(a) With and without SD-Layer (b) Different Initialization

Fig. 4. Plots of test accuracy v/s epochs for T-CNN model without and with SD-Layer,
evaluated on a single fold.
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setting of ‘trainable’, wherein filters are allowed to fine tune to cell level stain
normalization. We report 5-fold cross validation results for AlexNet and TCNN
prefixed with the trainable SD-Layer in the bottom two rows of Table 1. We
note a significant jump in accuracy, from 87.9% to 88.5% for AlexNet and from
92.48% to 93.2% for T-CNN, with the proposed SD-Layer.

4.3 Experiment 2: Results with Different Initializations
of SD-Layer

As stated earlier, the initialization of filters in the SD-Layer plays a significant
role. In this sub-section, we evaluate the performance of T-CNN with SD-Layer
initialized using three different strategies: (1) Identity matrix, (2) uniform ran-
dom distribution from [−0.05, 0.05], and (3) with the columns of S−1 determined
using SVD on the reference image. Table 2 summarizes maximum test accuracy
achieved using each initialization on a single fold. The corresponding, test accu-
racy v/s epochs plots are shown in Fig. 4b. From this table and figure, we note
that the randomly initialized model fails to train. This is expected since, in this
case, the input to the CNN is a random image. For the identity initialization
though, the model trains towards some intermediate representation starting from
the original RGB image. However this representation neither improves accuracy,
nor allows us to draw some understandable interpretation. The best test accu-
racy is achieved through SVD based initialization.

Table 2. Classification accuracy of T-CNN+SD-Layer with different S initialization
with single fold.

Model architecture Accuracy (in %) F-Score (in %)

T-CNN+SD-Layer (identity initialization) 87.5 85.8

T-CNN+SD-Layer (SVD initialization) 95.5 95.4

5 Discussion

We claim that SD-Layer trains the stain colour matrix to a representation better
suited to classification. This can be verified by generating RGB images using (3),
by preserving only a single column of S at a time and setting the other two to
zeroes. This scheme, is equivalent to generating images containing only a single
stain. This visualization, for the case of S obtained through (1) SVD and (2)
after training SD-Layer using T-CNN, are shown in Fig. 5. It is observed that
initial images of (b)-(d) of malignant blast are modified to (e)-(g), wherein (e)
seems to capture shape, (f) seems to capture texture, while (g) is having no
information. Similar observation is observed for the normal cell shown in the
bottom row of Fig. 5.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 5. Top row is an example image of a lymphoblast nucleus (malignant). (a) Original
image, (b)-(d) Stain deconvolved images using stain vectors obtained via SVD, (e)-(g)
Stain deconvolved images using stain vectors learned via T-CNN+SD-Layer over 400
epochs. Bottom row shows corresponding images for the normal WBC nucleus.

6 Conclusion

In this paper, we have proposed a biomedical microscopic imaging relevant deep
CNN network architecture where the staining of tissues/cells are involved. We
have proposed stain deconvolution layer (SD-Layer) that operates in the Optical
Density space and offers a more fundamental view of the tissue and stain inter-
actions to the following CNN architecture. The concept of initializing and tuning
the stain matrix has been incorporated into the SD-Layer that will deal with
stain variations present at the cell level. With only an 9 additional learnable
parameters, we are able to achieve significant gain in the classification accu-
racy on two standard models AlexNet and T-CNN fitted with SD-Layer. This
suggests that SD-Layer leads to a better representation of the input image.
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