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Abstract. This paper presents an automated method for jointly local-
izing prostate cancer (PCa) in multi-parametric MRI (mp-MRI) images
and assessing the aggressiveness of detected lesions. Our method employs
multimodal multi-label convolutional neural networks (CNNs), which are
trained in a weakly-supervised manner by providing a set of prostate
images with image-level labels without priors of lesions’ locations. By
distinguishing images with different labels, discriminative visual patterns
related to indolent PCa and clinically significant (CS) PCa are automat-
ically learned from clutters of prostate tissues. Cancer response maps
(CRMs) with each pixel indicating the likelihood of being part of indo-
lent/CS are explicitly generated at the last convolutional layer. We define
new back-propagate error of CNN to enforce both optimized classifica-
tion results and consistent CRMs for different modalities. Our method
enables the feature learning processes of different modalities to mutu-
ally influence each other and, in turn yield more representative features.
Comprehensive evaluation based on 402 lesions demonstrates superior
performance of our method to the state-of-the-art method [13].

Keywords: Prostate cancer detection and diagnosis · Convolutional
neural network · Multimodal fusion

1 Introduction

Early detection, diagnosis and treatment of prostate cancer (PCa) are criti-
cal for increasing the survival rate of patients. The mp-MRI has been recently
demonstrated to be effective for PCa detection and risk assessment [2,7]. How-
ever, interpreting mp-MRI sequences manually requires substantial expertise
and labor from radiologists, and usually results in low sensitivity and specificity.
Therefore, automated PCa detection and diagnosis from mp-MRI would be of
high value.
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Fig. 1. Architecture of our multimodal CNNs for joint PCa detection and diagnosis.

Several studies [1–4,10,11] have been made in the past decade. In general,
existing methods for PCa detection and diagnosis rely on set of separate steps
which typically include voxel-level classification to generate candidate lesions
from entire image sequences followed by region-level classification for verifica-
tion and Gleason score (GS) grading. Existing methods differ with each other in
terms of features used for representing voxels and candidate regions, MRI modal-
ities, and methods used for classification. For instance, for feature representation
Litjens et al. [4] represented each voxel using intensities and blobness of appar-
ent diffusion coefficients (ADC), homogeneity, texture strength, etc. In [7], Peng
et al. represented manually selected candidate regions using the 10th percentile
and average ADC values, intensity histogram skewness of T2 weighting imaging
data (T2w), etc. In [2], Fehr et al. represented regions using the first- and second-
order texture features computed from the T2w and ADC images. For classifica-
tion, the authors in [1] proposed cost-sensitive SVMs integrated with conditional
random fields for voxel classification. In [5], Niaf et al. introduced a probabilistic
SVM to address the problem in region classification when the target data include
some uncertainty information. For multimodal fusion, Tiwari et al. [10] designed
a semi-supervised multi-kernel graph embedding method for fusing structural
and metabolic imaging data from mp-MRI. However, the reliance on separate,
and sequentially executed, classification steps of these existing methods could
lead to an unsatisfactory sensitivity as mis-detection of cancerous tissues in early
steps can be hardly recovered in later steps. In addition, features used in each
classification step are empirically designed, and hence their performance for a
large-scale application with high data variation remains unclear. Moreover, exist-
ing methods either directly concatenate handcrafted features extracted from dif-
ferent modalities or combined multimodal results using weighted summation [12],
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the relevance among multimodal features and the methods for effectively fusing
multimodal information from mp-MRI have not been investigated.

This paper presents an automated method which can jointly localize PCa
in mp-MRI images and assess the aggressiveness of detected lesions based on a
single-stage multi-label classifier. Specifically, we train multimodal CNNs from
a set of 2D prostate slices including only image-level labels indicating whether
a slice containing indolent PCa, CS PCa or no PCa. The architecture of our
CNNs (as shown in Fig. 1) is based on GoogLeNet [9] with three important
modifications: (1) We replace fully connected layers (FC) layers of GoogLeNet
with a convolutional (Conv) layer which enables us to explicitly generate two
cancer response maps (CRMs) for indolent and CS cancers respectively for each
modality. Each pixel on a CRM indicates the likelihood of this location be part of
indolent/CS; (2) We apply the global average pooling (GAP) operation to CRMs
to explicitly search for locations with large responses which indicate representa-
tive PCa patterns contribute largely for classifying the image as indolent and/or
CS; (3) We design back-propagate error of CNN which not only can model mul-
tiple classes (i.e. indolent and CS) present in an image, but also can better fuse
multimodal information of an mp-MRI sequence by enforcing consistent CRMs
from both modalities, i.e. ADC and T2w. Such enforcement enables the feature
learning process of both modalities mutually affected by each other for produc-
ing consistent maps, yielding consistent and discriminant visual features relevant
to indolent and CS PCa. Extensive experiments on 402 pathologically-validated
lesions demonstrate that our method achieves detection rate and precision of
80.0% and 83.7% for indolent PCa, and 84.4% and 90.5% for CS lesions, which
is superior to the state-of-the-art method [13].

2 Our Method

We utilized two commonly used modalities of mp-MRI, i.e. T2w and ADC since
they can provide complementary information and their fusion can effectively
improve accuracy of PCa detection and diagnosis. Before inputting the images
to the CNN, we register the T2w and ADC sequences using non-rigid registration
based on mutual information and normalize the intensity of each T2w slice and
ADC slice to 0–255 to reduce intensity variations among patients. We input each
registered and normalized ADC-T2w pair into our multimodal CNNs and obtain
the PCa locations and the aggressiveness of each lesion. We follow a typical
clinical practice to grade the PCa aggressiveness into three classes: noncancerous,
indolent PCa (GS ≤ 6), and CS PCa (GS ≥ 7). In the following, we present
details of our multimodal CNNs.

2.1 Weakly-Supervised Multimodal CNNs

We first describe how to localize PCa and assess aggressiveness of each lesion
for a single modality followed by multimodal fusion and details of training.

PCa Localization and Diagnosis based on Single MRI Modality. Our
CNN architecture is modified from GoogLeNet [9] by first replacing the FC
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layers of GoogLeNet with a Conv layer. Specifically, at newly added Conv layer
(denoted by green arrows in Fig. 1), all feature maps are convolved with two
convolutional kernels of (1024×1×1), yielding two feature maps of (1×14×14),
i.e. CRMi and CRMcs, for a single modality. We apply the GAP operation
to each feature map to convert it into a single image-level GAP score. It is
desirable that the output of CNN produces three image-level scores pN , pi and
pcs representing the probability of this slice not containing PCa, containing
indolent PCa and CS PCa, respectively. As a slice could contain multiple lesions
including both indolent and CS lesions, the task of identifying the presence of
indolent and/or CS PCa is a multi-label classification problem, which can be
implemented using separate binary classifier. Accordingly, we define the multi-
label classification loss lmulti by summing up the two binary logistic regression
losses,

lmulti = log(1 + e−yifi) + log(1 + e−ycsfcs) (1)

where fi and fcs are GAP scores for indolent and CS respectively and yi and
ycs ∈ {−1, 1} are image-level labels indicating the absence/presence of indolent
and CS lesions in a slice. We further project fi and fcs to a value between 0 and
1 by the sigmoid function so as to generate the probability pi and pcs. Since a
slice could either contain PCa or not contain PCa, classification of noncancerous
vs. cancerous can be treated as a logistic regression problem. The classification
loss function lcancer is therefore a cross entropy error function,

lcancer = − [p log(y) + (1 − p) log(1 − y)] (2)

where y ∈ {0, 1} is the image-level label indicating the absence/presence of PCa
in a slice, and p is the probability of this slice to be classified as cancerous which
is calculated by first applying the max pooling operation to fi and fcs and then
project the max {fi, fcs} to [0, 1] by the sigmoid function. Accordingly, pN is
equal to (1 − p).

Since the prediction pi is obtained by directly averaging all entries of CRMi,
when conducting the back propagation (BP) algorithm, CNN weights will be
updated to suppress units in CRMi for normal slices and slices containing only
CS lesions and meanwhile activate units in CRMi whose receptive fields are
discriminative visual patterns for slices containing indolent PCa. Similar expla-
nation is also applicable to CRMcs, in which regions containing CS PCa relevant
patterns will be emphasized during the BP procedure.
Multimodal Fusion. As lesions should appear at the same locations in both
T2w and spatially aligned ADC slices, the CRMs of an ADC slice should be
consistent with those of a T2w slice. However, training two CNN models inde-
pendently for ADC and T2w images (i.e. CNNADC and CNNT2w) cannot guar-
antee consistency between the two modalities. As shown in Figs. 2(c) and (d),
the CRMcs obtained based on CNNT2w is inconsistent with that of ADC. Addi-
tionally, pixels related to CS PCa are not correctly highlighted on neither T2w
nor ADC slices. We believe the inconsistency and the false responses are due
to weakly-supervised learning, which guides CNN to ‘see’ not only PCa-relevant
patterns but also irrelevant visual patterns. To address this problem, we enforce
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Fig. 2. (a) and (b) Registered ADC and T2w images from the original data, the red
circles indicate two CS lesions. (c) and (d) are CRMs based on CNNADC and CNNT2w.
(e) and (f) are CRMs for ADC and T2w based on our multimodal CNNs.

the CNN models of ADC and T2w to generate consistent CRMs by defining a
normalized inconsistency loss function,

l(CRMADC , CRMT2w) = 1
2N (‖σ(CRMi ADC) − σ(CRMi T2w)‖2

+ ‖σ(CRMcs ADC) − σ(CRMcs T2w)‖2) (3)

where σ(·) is the sigmoid function and ‖σ(CRM· ADC) − σ(CRM· T2w)‖ calcu-
lates the differences between the maps for indolent/CS PCa of ADC and those
of T2w, N is total number of pixels. The value of l(CRMADC , CRMT2w) is a
value between 0 and 1. Given the five loss functions, the back-propagated error
E is defined as the weighted sum of the losses:

E = w1(lmulti ADC + lmulti T2w)+ w2(lcancer ADC + lcancer T2w)
+ w3(l(CRMADC , CRMT2w)) (4)

where w1, w2 and w3 are weights for adjusting the contributions of the five items
to E for an optimized CNN model. In our experiments we set w1 = w2 = 1, w3 =
0.2. Figures 2(e) and (f) show that the CRMs obtained based on our fusion model
are much more consistent. In addition, the true responses at CS lesion regions
are better highlighted and false responses due to irrelevant visual patterns are
suppressed.

Training. We utilized a pre-trained CNN model from [13]. We fine-tuned the
Conv layers of GoogLeNet, and trained the newly added Conv layer from scratch
using 10,791 pairs of registered ADC-T2w images. Specifically, among all the
training images, 1,379, 499, 474 and 17 image pairs are from the original mp-
MRI data of patients without prostate cancers, with indolent lesions only, with
CS lesions only and with both types of lesions, respectively. We augmented orig-
inal data based on non-rigid image deformation as suggested by [8] to simulate
another 8,422 samples, increasing both the data amount and data variety for
CNN training.

2.2 Post-processing

Based on statistical analysis, we observed that CRMADC consistently provides
better localization accuracy than CRMT2w for both indolent and CS lesions,
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thus we use CRMADC for localization. Specifically, we first adopt ‘shift&stitch’
to upscale the CRMADC to the size of 224 × 224 to minimize information loss.
Second, we perform non-maximum suppression on CRMADC to detect local
maximum points as the candidates followed by adaptive thresholding based on
Otsu [6] to excluded false positives.

3 Experiment Results

3.1 Experimental Setup

Patient Characteristics: The study was approved by the local institutional
review board. We collected mp-MRI data from 364 patients pathologically-
validated by a 12-core systematic TRUS-guided plus targeted prostate biopsy.
Among all validated lesions, there are 264 indolent lesions and 138 CS lesions.
We sampled images including normal/benign tissues from 88 were BPH patients.

Reference Standard: For each patient who was diagnosed as PCa based on
TRUS-guided prostate biopsy, two experts manually outlined the corresponding
regions of interest (ROIs) on T2w slices based on the biopsy-proven locations.
The reference standard of lesion regions was intersections of the two manual
delineations of the two experts.

Evaluation Metrics: We evaluate the performance of image-level classification
using four metrics, namely, area under curve (AUC), sensitivity (Sensi), speci-
ficity (Speci) and accuracy (Accur). We evaluate the performance of indolent/CS
PCa localization in lesion-contained images using recall, precision, F1-score and
accuracy. Specifically, we count the numbers of successfully localized indolent
lesion (LLi) and CS lesions (LLcs), the number of localized CS lesions while
incorrectly classified as indolent (FLi) and the number of localized indolent
lesions while incorrectly classified as CS (FLcs). Accordingly, the localization
accuracy of indolent and CS PCa is respectively calculated as LLi/(Ni + FLcs)
and LLcs/(Ncs + FLi), where Ni and Ncs are the total number of indolent PCa
lesion and CS PCa lesion respectively.

3.2 Results

Image-level Classification. We first evaluate the performance of our method
for distinguishing: (i) slices containing PCa from those not containing PCa (Can-
cer vs. Noncancer), (ii) slices containing only indolent PCa from those containing
no indolent PCa (Indolent vs. Nonindolent), and (iii) slices containing only CS
PCa from those containing no CS (CS vs. NonCS ). We compare our method with
two single-modality versions of our method based on ADC only (CNNADC) and
T2w only (CNNT2w), respectively. In addition, we also compare our method with
a state-of-the-art CNN network [13] for class-specific object localization based
on image-level training. Note that the network in [13] was originally trained to
classify 1000 classes. For a fair comparison, we replaced their 1000-node last layer
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with the last two classification layers of our network, fine-tuned their networks
using the same set of ADC and T2w training images, and then combined ADC
and T2w by concatenating features from each network of a single modality. The
modified version of [13] is denoted as CNNconcat. Table 1 shows comparison of
results among four methods. Two conclusions can be drawn from the results:
(1) combining information of both modalities could improve the overall perfor-
mance (i.e. AUC and accuracy) for all three tasks, (2) our fusion method achieves
superior performances to the method directly concatenating features.

Indolent/CS PCa localization in Images Containing Lesions. We evalu-
ate the performance of indolent/CS PCa localization in lesion-contained images
based on CRMi and CRMcs respectively. We also compare our method with
CNNADC , CNNT2w and CNNconcat. Table 2 shows that the overall localization
performance of our method, indicated by F1-score and accuracy, is significantly
better than the single-modality CNN models and CNNconcat. For some cases
better precision values are achieved by CNNconcat than ours while its the recall
is extremely poor, which results in an unsatisfactory overall performance. Com-
paring the sensitivity values in Table 1 with the corresponding recall values in
Table 2, we observe that the other three methods may mis-detect many true
indolent and CS lesions even though they can correctly identify the presence
of indolent/CS PCa. We believe the reason for these results is because with-
out proper mutual guidance from both modalities in the CNN feature learning
process, CNNADC , CNNT2w and CNNconcat ‘see’ many PCa-irrelevant visual
patterns and incorrectly rely on those patterns for image-level classification.
In contrast, our well-designed loss functions help CNNs overcome the problem
mentioned above and achieve consistent performance for both classification and
localization.

Table 1. Performance of image-level classification

Cancer vs. Noncancer Indolent vs. Nonindolent CS vs. NonCS

AUC Accur Sensi Speci AUC Accur Sensi Speci AUC Accur Sensi Speci

CNNADC 0.995 0.970 0.960 0.982 0.957 0.888 0.866 0.900 0.978 0.933 0.888 0.958

CNNT2w 0.982 0.940 0.920 0.966 0.905 0.837 0.844 0.833 0.972 0.918 0.800 0.977

CNNconcat 0.911 0.970 0.986 0.950 0.946 0.881 0.911 0.866 0.968 0.925 0.933 0.922

Ours 0.998 0.985 0.986 0.983 0.957 0.896 0.844 0.922 0.978 0.933 0.956 0.922

Table 2. Performance of Indolent/CS PCa localization in lesion-contained images

Indolent PCa CS PCa

Recall Precision F1-score Accuracy Recall Precision F1-score Accuracy

CNNADC 0.644 0.903 0.75 0.569 0.711 0.842 0.75 0.667

CNNT2w 0.467 0.840 0.60 0.438 0.644 0.906 0.75 0.592

CNNconcat 0.489 0.957 0.65 0.455 0.689 0.968 0.81 0.681

Ours 0.800 0.837 0.82 0.729 0.844 0.905 0.87 0.720



Joint Detection and Diagnosis of Prostate Cancer 433

4 Conclusion

This paper presents an automated method for jointly localizing PCa in mp-MRI
images and assessing the aggressiveness of the detected lesions. Our method
employs multi-label CNNs to automatically learn representative features relevant
to indolent/CS PCa. To further enhance the performance of our CNNs, informa-
tion of ADC and T2w are combined by enforcing consistent cancer response maps
from different modalities in the CNN feature learning process, which can help
to generate more consistent and discriminative PCa features. Extensive exper-
iments on a large dataset demonstrate superior performance of our method to
the state-of-the-art method [13].
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