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Abstract. Clinically normal aging and pathological processes cause
structural changes in the brain. These changes likely occur in overlap-
ping regions that accommodate neural systems with high susceptibility
to deleterious factors. Due to the overlap, the separation between aging
and pathological processes is challenging when analyzing brain structures
independently. We propose to identify multivariate latent processes that
govern cross-sectional and longitudinal neuroanatomical changes across
the brain in aging and dementia. A discriminative representation of neu-
roanatomy is obtained from spectral shape descriptors in the BrainPrint.
We identify latent factors by maximizing the covariance between mor-
phological change and response variables of age and a proxy for dementia.
Our results reveal cross-sectional and longitudinal patterns of change in
neuroanatomy that distinguishes aging processes from disease processes.
Finally, latent processes do not only yield a parsimonious model but also
a significantly improved prediction accuracy.

1 Introduction

We view aging as the passage of time that is characterized by a multifaceted set of
neurobiological cascades that occur at different rates in different people, together
with complex and often interdependent effects on cognitive decline [1]. The dis-
tinction between disease-related processes and “normal” aging is important for
etiology and diagnostics, however, the boundaries of aging and neurodegenera-
tive diseases remain difficult to separate [7]. Some of the aging-related neurobi-
ological changes may be the result of developing pathology, such as preclinical
Alzheimer’s disease (AD) or incipient cerebrovascular disease. Other changes
may have similarities to certain diseases, while arising from a different etiol-
ogy than the pathological pathway linked to disease, such as dopamine loss in
Parkinson’s disease. In this article, we investigate if it is possible to use magnetic
resonance imaging to differentiate disease-related changes in brain morphology
from those associated with normal aging in the same set of individuals.

Important for the distinction between what is normal and what may be an
indicator of disease is to consider that brain structural changes are not uniform
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across the brain. Regions that accommodate neural systems with high suscepti-
bility to deleterious factors are likely affected by disease as well as aging-related
changes. At the same time, there are other structures, which are known to show
effects of aging but are relatively spared in a neurodegenerative disease, e.g., the
striatum in Alzheimer’s disease [7]. Capitalizing on the regional heterogeneity
in aging and disease-related effects, joint modeling of changes across multiple
structures rather than focusing on single structures in isolation is a promising
avenue to identifying general patterns that are best at distinguishing aging from
disease. We assume that there are a number of underlying processes that cause
these changes, which we model as latent factors. It is further known that aging
and disease can cause different changes in subregions of anatomical structures.
For instance, recent analysis on high-field MRI suggests that hippocampal sub-
fields subiculum and CA1 are associated with AD and CA3/DG with aging [7].
While volume measurements of the entire hippocampus do not permit to dis-
tinguish between such variations in subregions, they cause shape changes in the
structure that can potentially be identified by shape descriptors.

To obtain a discriminative characterization of neuroanatomy, we work with
BrainPrint [11]; a composition of spectral shape descriptors from the Laplace-
Beltrami operator. The change in shape is studied in cross-sectional and longi-
tudinal designs. We hypothesize that observed, high-dimensional shape changes
are governed by a few underlying, latent processes. We identify neuroanatomical
processes that are best associated to aging and disease by maximizing the covari-
ance between morphology and response variables, yielding the projection of the
data to latent structures. An alternative to the latent factor model would be to
directly estimate changes in aging from clinically normal subjects, however, it
is presumed that preclinical forms of disease are likely to be present in normals
so that a pure aging process cannot be measured [7]. In this work, we focus on
Alzheimer’s disease but the developed technology is of general nature.

Related Work: A model for healthy aging based on image voxels and rele-
vance vector regression was used for the prediction of Alzheimer’s disease in [6].
The longitudinal progression of AD-like patterns in brain atrophy in normal
aging subjects and, furthermore, an accelerated AD-like atrophy in subjects
with mild cognitive impairment (MCI) was reported in [2]. A framework for the
spatiotemporal statistical analysis of longitudinal shape data based on diffeo-
morphic deformation fields was presented in [4].

2 Method

We are given structural magnetic resonance (MR) images from N subjects,
I1, . . . , IN , with corresponding response variables, R1, . . . , RN , including age and
scores from neuropsychological tests. MR scans for each subject n are available
for m time points, I1n, . . . , Im

n . Our objective is to find patterns of neuroanatom-
ical change associated to aging and dementia.
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2.1 Longitudinal Change in Brain Morphology

We use BrainPrint [11] as representation of brain morphology based on the
automated segmentation of anatomical brain structures with FreeSurfer [5].
BrainPrint uses the spectral shape descriptor shapeDNA [10] to capture shape
information from cortical and subcortical structures. ShapeDNA is computed
from the intrinsic geometry of an object by calculating the Laplace-Beltrami
spectrum

Δf = −λf. (1)

The solution consists of eigenvalue λi ∈ R and eigenfunction fi pairs, sorted
by eigenvalues, 0 ≤ λ1 ≤ λ2 ≤ . . . The first l non-zero eigenvalues, computed
with the finite element method, form the ShapeDNA: λ = (λ1, . . . , λl). We nor-
malize the eigenvalues to make the representation independent of the objects’
scale and therefore focus on the shape information, λ′ = vol

2
d λ, where vol is

the Riemannian volume of the d-dimensional manifold (i.e., the area for 2D sur-
faces) [10]. We further linearly re-weight the eigenvalues, λ̂i = λ′

i/i, to balance
the impact of higher eigenvalues that show higher variance [11]. The morphol-
ogy of each scan I is described by the concatenation of the spectra of η brain
structures Λ = (λ1, . . . ,λη), yielding a D = l · η dimensional representation.

In addition to the cross-sectional BrainPrint Λn for subject n, we also com-
pute the longitudinal change in morphology. Given the BrainPrints Λ1

n, . . . , Λm
n

for m time points, we use linear least squares fitting to estimate the slope sn. The
slope has the same dimensionality D as the original shape characterization and
captures longitudinal morphological change within a subject. We process follow-
up scans with the longitudinal processing stream in FreeSurfer [9], which avoids
processing bias in the surface reconstruction and segmentation by an unbiased,
robust, within-subject template creation.

2.2 Latent Factor Model

We consider observed neuroanatomical changes as the result of a combination of
a few underlying processes related to aging and disease that are shared across
the population. The response variables are chronological age and performance
of the mini-mental state examination (MMSE), a clinical screening instrument
for loss of memory and intellectual abilities (from hereon simply referred to as
age and dementia, respectively). Our objective is to extract latent factors that
account for much of the manifest factor variation. Latent variable models such as
factor analysis, principal component analysis (PCA), or independent component
analysis are a natural choice for this task. However, these models only focus on
describing the data matrix and do not take the response variables into account.
The extracted components may therefore well explain the variation in the data
but may not be associated to specific variations in aging or dementia. To address
this issue, we use projections to latent structures (PLS) [12], also known as
partial least squares, which combines information about the variation of both
the predictors and the responses, and the correlations among them.
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The rows of the data matrix X ∈ R
N×D are the baseline BrainPrint Λn

or the slopes sn, depending on a cross-sectional or longitudinal analysis. The
matrix Y ∈ R

N×M gathers associated responses, with M the dimensionality
of the responses. PLS regression searches for a set of components or latent
vectors that performs a simultaneous decomposition of the data matrix X and
the response matrix Y with the constraint that these components explain as
much as possible of the covariance between X and Y . The underlying assump-
tion of PLS is that the observed data is generated by a system or process, which
is driven by a small number of latent variables. For K latent factors and mean
centered matrices X and Y , the PLS equation model is

xn =
K∑

k=1

tn,kpk + en X = TP� + E (2)

yn =
K∑

k=1

un,kqk + fn Y = UQ� + F, (3)

where we show next to the matrix notation also the vector notation to highlight
the notion of neuroanatomy xn being explained by a linear combination of a
few processes pk. The loadings matrix P ∈ R

D×K contains all the K processes.
The scores matrix T ∈ R

N×K presents a lower, K-dimensional embedding of a
subject. The matrices U ∈ R

N×K and Q ∈ R
M×K contain scores and loadings

with respect to the response variable. E and F are matrices of residuals. The
relation between the scores T and the original variables X is expressed as T =
XW with the weight matrix W . The weights provide an interpretation of the
scores and are essential for understanding which of the original variables are
important.

The PLS method is an iterative procedure that finds, in a first step, the latent
score vectors t1 and u1 by maximizing the sample covariance among predictors
and responses

[r̂, ŝ] = arg max
‖r‖=‖s‖=1

[cov(Xr, Y s)]2 = arg max
‖r‖=‖s‖=1

[r�X�Y s/N ]2, (4)

where t1 = X r̂ and u1 = Y ŝ. From Eq. (4), we see that r̂ and ŝ correspond to
the first pair of left and right singular vectors, which permits an efficient compu-
tation. After the first score vectors were obtained, the matrices are deflated by
subtracting their rank-one approximations based on t1 and u1. Several algo-
rithms exist that vary in the details on the iterative scheme, where we use
SIMPLS [3], which directly deflates the cross-product X�Y and therefore makes
the factors easier to interpret as linear combinations of the original variables.

PLS is related to PCA, which maximizes, max‖r‖=1 var(Xr). PCA finds prin-
cipal components that explain the data well, but does not account for correspond-
ing response variables, which makes the association of components to specific
processes difficult and limits the predictive power. Canonical correlation analysis
(CCA) takes the response variable into account and maximizes the correlation,
max‖r‖=‖s‖=1 cor(Xr, Y s)2. The maximization of the covariance in PLS and the
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correlation in CCA are similar, cov(Xr, Y s)2 = var(Xr)cor(Xr, Y s)2var(Y s),
where PLS also requires to explain the variances.

3 Results

We perform experiments on data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [8]. We select all subjects from the ADNI1 dataset with base-
line scans and follow-up scans after 6, 12, and 24 months, resulting in N = 393
subjects and 1,572 MRI scans. The average age is 75.4 years (SD = 6.31),
with 221 male and 172 female subjects, and diagnosis HC = 133, MCI = 175,
AD = 85. We use meshes from η = 23 brain structures in the multivariate analy-
sis. Per mesh, we compute l = 5 eigenvalues. To a priori give equal importance
to all variables in X, we center them and scale them to unit variance. We jointly
model age and MMSE as response variables in Y . We set the number of PLS
components K = 4 according to results from explained variance in X and Y ,
together with an evaluation of the model complexity by computing the mean
squared error with 5-fold cross-validation and 20 Monte-Carlo repetitions.

To understand the identified components, we investigate the scores in
matrix T , which form a four-dimensional embedding of each subject. Table 1
reports the correlation of the low-dimensional embedding with respect to age and
MMSE. The first cross-sectional process is significantly associated to MMSE and
age. The correlations vary in the sign, which is explained by the general decrease
in cognitive ability with increasing age. The second and fourth cross-sectional
processes only show significant correlations with MMSE, while the third one
shows a significant correlation with age. For the longitudinal processes, each one
only shows significant correlations with one of the response variables, yielding
two dementia (first and third) and two aging (second and fourth) processes.
Overall, the correlation for MMSE is higher than for age.

We will focus on the longitudinal progression in the following analysis because
it more accurately reflects true aging-related brain changes, while cross-sectional
estimates can be subject to selective drop out and biased sampling. To gain
insights about the neuroanatomical change evoked by the latent factors, we study
the weight matrix W , where numerically large weights indicate the importance
of X variables [12]. Figures 1 and 2 illustrate a lateral and medial view of the four
processes by coloring the brain structures according to their weights, summed up

Table 1. Pearson’s correlation of the four cross-sectional and longitudinal processes
with MMSE and age. Significant correlations (p < 0.01) are in bold face.

Cross-sectional Longitudinal

1 2 3 4 1 2 3 4

MMSE −0.46 −0.37 0.06 −0.20 −0.41 −0.16 0.29 −0.03

Age 0.36 −0.10 0.36 0.11 −0.17 0.30 0.04 0.20
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Fig. 1. Lateral view on longitudinal processes on the left hemisphere. Colors are
summed up weights across eigenvalues and signify importance.

across eigenvalues. The first and third processes relate to progression of demen-
tia (Table 1). The first process describes opposing effects on hippocampus and
amygdala on the one hand, and the lateral and third ventricle on the other hand.
This pattern likely reflects the typical brain changes associated with dementia:
shrinkage of the hippocampus and amygdala together with an expansion of the
ventricular spaces. When comparing the first and third process, we have to con-
sider that one is positively and one is negatively correlated with MMSE, i.e.,
the colors are inverted. This suggests the existence of two separable dementia-
related processes with inverse effects on the amygdala and accumbens. For the
aging processes (second and fourth), the weights of the hippocampus and amyg-
dala are notably lower in comparison to the dementia processes. Aging processes
mainly evoke shape changes in the ventricular system, where process two exhibits
higher weights for lateral ventricles and process four for the third ventricle.

Finally, we evaluate the predictive performance of the latent factor model
with cross-validation and compare it to traditional multiple linear regression
(MLR) on BrainPrint. We further compare to the prediction with volume mea-
surements instead of shape in the PLS model. Figure 3 shows the mean absolute
prediction error for age and MMSE on cross-sectional data. The prediction with
PLS BrainPrint yields significant improvements over PLS volume and MLR
BrainPrint, highlighting the advantages of neuroanatomical shape characteri-
zation and the latent factor model.
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Fig. 2. Medial view on longitudinal processes on the left hemisphere. Colors are
summed up weights across eigenvalues and signify importance.

Fig. 3. Prediction results from cross-validation for MMSE (left) and age (right). Bars
show mean absolute error and lines show standard error. * and *** indicate significance
levels at 0.05 and 0.001.

4 Conclusion

We presented a method for identifying latent processes that cause structural
changes associated with aging and dementia in cross-sectional and longitudi-
nal designs. Neuroanatomical changes were computed with the BrainPrint, and
subsequently projected to latent structures by accounting for the response vari-
ables. Taken together, the results reveal the existence of four latent processes
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that separate the progression of dementia from normal aging and that can be
clearly distinguished neuroanatomically. The large majority of previous work has
used univariate analyses to relate morphology of individual structures or voxels
to aging and dementia. Our work demonstrates the importance of multivariate
analysis of multiple brain structures to accurately capture related, but spatially
distributed, morphological changes of brain shapes. Finally, the latent factor
model with BrainPrint yieldied significantly better prediction results. Future
work may now investigate possible neuropathological correlates of the morpho-
logical processes identified in this paper (i.e., tau pathology versus accumulation
of amyloid).
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