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Abstract. In medical imaging, landmarks have significant clinical and scientific
importance. Clinical measurements, derived from the landmarks, are used for
diagnosis, therapy planning and interventional guidance in many cases. Auto‐
matic algorithms have been studied to reduce the need for manual placement of
landmarks. Traditional machine learning techniques provide reasonable results;
however, they have limitation of either robustness or precision given complexities
and variabilities of the medical images. Recently, deep learning technologies have
been emerging to tackle the problems. Among them, a deep reinforcement
learning approach (DRL) has shown to successfully detect landmark locations by
implicitly learning the optimized path from a starting location; however, its
learning process can only include subsets of the almost infinite paths across the
image context, and may lead to major failures if not trained with adequate dataset
variations. Here, we propose a new landmark detection approach inspired from
DRL. Instead of learning limited action paths in an image in a greedy manner, we
construct a global action map across the whole image, which divides the image
into four action regions (left, right, up and bottom) depending on the relative
location towards the target landmark. The action map guides how to move to reach
the target landmark from any location of the input image. This effectively trans‐
lates the landmark detection problem into an image partition problem which
enables us to leverage a deep image-to-image network to train a supervised action
classifier for detection of the landmarks. We discuss the experiment results of two
ultrasound datasets (cardiac and obstetric) by applying the proposed algorithm.
It shows consistent improvement over traditional machine learning based and
deep learning based methods.
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1 Introduction

Landmarks are commonly used to represent anatomical features in medical imaging.
Clinicians use landmarks to derive measurements (e.g., width, length, size, etc.) of
organs for diagnosis, while radiologists and scientists register two images using corre‐
sponding sets of landmarks for further analyses. Ultrasound imaging is a widely used
clinical procedure because it is safe, cost-effective, and non-invasive, where landmarks
in a certain plane are used to provide diagnostic references. In cardiac ultrasound scans,
landmarks are typically defined to measure the width at the intersections between heart
chambers, for example, the annulus points of mitral valves; in obstetric ultrasound scans,
landmarks at the anterior and posterior end of the fetal head are considered important.
Manual localization of the landmark points, however, is tedious and time consuming.
In an ultrasound machine, user needs to use the track ball to adjust the caliper to the
desirable location, which makes the work even more complex. Furthermore, the relia‐
bility of the measurements can be suffered from the subjective disagreement across
users. Automating the landmark detection can substantially reduce the manual efforts,
and make the clinical procedure more efficient; however, this is a very challenging task
given the (1) noisy signal, (2) low contrast, and (3) variations in shapes, orientations,
and respiration phases throughout ultrasound images (Fig. 1).

Fig. 1. Examples of cardiac and obstetric ultrasound scans. The magenta and yellow dots indicate
the 1st and 2nd landmark, respectively.

The landmark detection problem has been studied using machine learning algorithms
with reasonable outcomes. A bootstrapped binary classifier, e.g., probabilistic boosting-
tree (PBT [1]), can be trained to distinguish landmark and non-landmark locations [2];
this approach can be biased due to the highly unbalanced positive and negative samples.
Alternatively, landmark locations can be learned in a regression manner through aggre‐
gating pixel-wise relative distances to the landmark [3]; it provides more robustness,
but less precision than the classification-based approach due to the complexity and
variation of the image context. Recently, deep learning technologies have been adapted
to medical imaging problems, and demonstrated promising performances by leveraging
features trained from convolutional neural networks as opposed to hand-crafted features
used in traditional machine learning approaches [4, 5]. For landmark detection, a deep
reinforcement learning (DRL) approach has been shown successful to detect annulus
points in cardiac ultrasound images [6]. The DRL algorithm designs an artificial agent
to search and learn the optimized path from any location towards target by maximizing
an action-value function. Its greedy searching strategy allows the agent to walk through
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only a subset of the almost infinite paths across the image instead of scanning exhaus‐
tively; however, this may lead to major failures if not trained with adequate dataset
variations.

Here, we propose a new landmark detection approach inspired from DRL with the
motivation of covering the entire searching space. We find that the optimal path can be
broken down into optimal action steps at every pixel, while the pixel-wise optimal action
steps can be derived given the landmark location based on Euclidian distances to
generate an action map. Therefore, we can train a supervised action classifier (SAC) by
explicitly learning the action steps across image instead of learning the actions implicitly
along the searching path in DRL. The generation of action map effectively translates
landmark detection into an image partitioning problem, where the highly unbalanced
positive/negative sampling in PBT can be prevented. This also enables us to leverage a
fully convolutional image-to-image neural network to train the SAC for estimating the
action map. Furthermore, we design a robust aggregative approach to derive the land‐
mark location from the estimated action map (Fig. 2), where our action-based aggrega‐
tion is more precise than distance-based aggregation. To the best of our knowledge, we
are the first to address landmark detection in the way of image partitioning. In this paper,
we apply the proposed approach to a cardiac and an obstetric ultrasound dataset for
landmark detection and compare the results with other learning-based methods.

Fig. 2. Workflow of the proposed SAC approach. The action maps are generated based on the
given landmark locations, then considered as the ground truths during the process of training a
DI2IN. During testing, the trained DI2IN is applied to an unseen image to estimate an action map,
based on which the predicted landmark location is aggregated.
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2 Theory

2.1 Landmark Representation Based on Action Map

For the purpose of landmark detection, a landmark can be represented by an action map
in terms of the pixel-wise optimal action step toward the landmark. Consider an optimal
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By replacing d(a)
x

 and d(a)
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 with their actual values, the selection of â falls into four
regions (one for each action type), where the regions are partitioned by two lines with
slopes of ±1 crossing the landmark (see the top panel in Fig. 2), i.e., y = x +

(
yt − xt

)

and y = −x +
(
xt + yt

)
. This generates an action map representing the pixel-wise optimal

action step moving toward the target landmark location. For example, suppose one starts
searching the landmark at a random location, say in the red region as show in Fig. 2, the
optimal actions will keep moving up until hitting the line and then following the line to
reach the target landmark. Using this action map representation, the landmark detection
is essentially converted into an image partitioning problem.

2.2 Deep Image-to-Image Network Learning for Action Map Estimation

To estimate the action map for a given image, we employ a fully convolutional neural
network given its efficient sampling scheme and large receptive field for comprehensive
feature learning. Since both input (raw image) and output (action map) are images with
the same size, we also call it a deep image-to-image network (DI2IN). Specifically, we
follow the symmetric network architecture of SegNet [7]. The network is constructed
with an encoder using the same structure as the fully convolutional part of VGG-16
network [4], and a decoder that replaces the pooling layers with upsampling layers and
then essentially reverses the encoder structure. Batch normalization is used for each
convolutional layer, and the max-pooling indices are kept during pooling and restored
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during upsampling. A softmax layer is used to provide categorical outputs, while cross-
entropy loss is calculated and weighted by pre-computed class frequencies.

2.3 Action Map Aggregation for Landmark Detection

The landmark location needs to be derived from the estimated action map. However,
the action map estimated by DI2IN may not always be in perfect shape as how it is
constructed. There can be uncertainties around the partition lines between action types.
It is also possible that there are islands of different action types, which are false predic‐
tions, inside a particular action partition. This undermines the robustness of lots of
possible approaches for landmark derivation. For example, starting from a random point
and moving along with the estimated action steps like DRL may not guarantee the
convergence at the target landmark. Similarly, linear regression of the two partition lines
may be disrupted even though the slopes are known, while dynamic programming based
on the action flows can encounter dead locks. Here we propose an aggregative approach.
With the output action map A from DI2IN, the estimated landmark location coordinates
(x′, y′) are determined by maximizing an objective function C(⋅) summed up with that
of each action type Ca(⋅).

x′, y′ = argmaxx,y C(x, y) = argmaxx,y

∑
a
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where the action-wise objective function at pixel (x, y) is aggregated by the pixels with
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Note that the objective function increments with pixels pointing towards (x, y), while
decrements with pixels pointing away from (x, y) (Fig. 3). Such aggregation enables
robust location coordinate derivation even with suboptimal action map from the DI2IN
output.

Fig. 3. Illustration of action map aggregation on a single pixel. White arrow indicates value
increase of the objective function, while black arrow indicates value decrease.
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3 Methods and Results

3.1 Data

Two ultrasound datasets are used in this study including a cardiac and an obstetric dataset
with 1353 and 1642 patients, respectively. Both datasets are collected and anonymized
in the process of clinical routine. Landmarks of interest are annotated by clinical experts
on each scan. We collect 8892 frames in the cardiac dataset in total across the entire
heart cycles rather than collect the images just around end-systole and end-diastole as
in [6]. Therefore, the cardiac dataset in our experiment presents larger contextual varia‐
tions and greater challenges for landmark detection. On a cardiac scan, landmarks are
defined as the two annulus points, which are the roots of mitral valve in apical 2 chamber
(A2C) view and apical 4 chamber (A4C) view. In the obstetric dataset, each patient has
only one scanned image. On an obstetric scan, the first landmark is annotated at the
anterior end of the fetal head, while the second is at the posterior end. Note that the
orientations of fetal head can essentially cover 360° across the ultrasound scans. There‐
fore, detecting these two landmarks on an obstetric scan is not an easy task even for
humans. Careful identification of the internal brain structure is necessary for consistent
manual annotation. For each dataset, 80% patients are randomly selected as training set,
and the remaining 20% are used for testing. All images are normalized into 480 × 480
before further processing.

3.2 Experimental Setup

We apply the proposed approach to the cardiac and the obstetric ultrasound datasets
individually. For each landmark, we train a DI2IN to learn its associated action map.
The DI2IN are trained using the Caffe framework on a Linux workstation equipped with
an Intel 3.50 GHz CPU and a 12GB NVidia Titan X GPU. The encoder part of DI2IN
of is initialized with the weights of VGG-16 trained from ImageNet. During training,
the mini batch size is set to 2, standard stochastic gradient descent is used for updates
with learning rate as 1e–3 and momentum as 0.9 through 80,000 iterations. We compare
the proposed SAC with other learning-based approaches on the same dataset including
PBT, DRL, and a state-of-the-art regression-based approach using DI2IN [8] (we refer
to it as I2I). Note that I2I and SAC uses similar network structure, while representing
the landmark differently. For each method, we try our best to tune the configuration to
provide reasonably good results. Distance error of landmark position in pixels is used
for comparison since all images are in normalized space.

3.3 Qualitative and Quantitative Results

The action maps estimated from SAC (Fig. 4) are clean (very few islands of false
predictions) and smooth (sharp separations between regions of different action types).
It turns out to be beneficial to keep the pooling indices in DI2IN, which enforcing the
smoothness of the estimated action map. Overall, the action maps look very reasonable
even though they are not exactly the same as the ground truth (the partitioning lines are
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not straight). The derived landmark locations from the estimated action maps are also
close to those of the manual annotations.

Fig. 4. Example landmark detection results. The first two rows present the action maps estimated
from DI2IN for the first and second landmark, respectively. The last row demonstrates the two
predicted landmark locations (magenta and yellow dots) along with the manual annotation (white
dot, smaller than the magenta and yellow dots) by zooming in the local patches in the first two
rows, where the left patch corresponds to the first row, and the right patch corresponds to the
second row.

For cardiac scans, it is not too hard to identify a rough location of the target landmarks
in the middle of left ventricle and left atrium; however, it is challenging to have precise
localization given that we include cardiac phases throughout heart cycles, where the
relative locations vary a lot between the annulus points of mitral valves and the
surrounding structures. Overall, compared to PBT and DRL, our proposed method
provides consistently better accuracy and robustness (Table 1). Compared to I2I, SAC
presents slightly better overall performances.

Table 1. Distance errors of landmark detection in pixels.

PBT DRL I2I SAC
lmk1 lmk2 lmk1 lmk2 lmk1 lmk2 lmk1 lmk2

CA Mean 10.45 13.85 7.69 10.02 6.73 9.02 6.31 8.01
50% 5.74 8.11 5.43 7.63 5.00 6.40 4.35 5.88
80% 11.11 16.18 9.33 13.73 8.54 11.40 7.54 10.83

OB Mean 59.23 130.66 29.99 32.45 30.07 21.97 14.94 16.76
50% 35.31 139.49 11.69 13.17 5.39 6.08 4.85 5.91
80% 109.84 193.64 43.98 45.76 13.34 15.54 11.76 13.67

Note that the best performance for each landmark is highlighted in bold. CA indicates cardiac scans, while OB indicates
obstetric scans. 50% and 80 % indicate median and 80 percentile, respectively. Across all tests, our method presents significant
improvements over other methods statistically (p < 0.05, t-test).
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For the obstetric scans, it is very hard to identify the landmark location correctly
without capturing the context in a large receptive field given lots of ambiguities around
the almost radially symmetric structure. It is very likely to make major failures, espe‐
cially if only local context are used for feature modeling (PBT and DRL), while confu‐
sion of head orientation can be substantially prevented using DI2IN (I2I and SAC). SAC
demonstrates the best performance among all tested methods.

4 Discussion

In this paper, we introduce a new perspective to address landmark detection; we propose
a novel approach inspired from DRL by converting the landmark detection problem into
a supervised image partition task in the form of action maps. This landmark-to-image
conversion enables the classifier to not only sample data in a more balanced manner
(compared to PBT), but also capture more comprehensive image context across the
entire image for the guidance of landmark detection (compared to DRL). Based on this
conversion, we formulate a complete workflow by leveraging a deep DI2IN for action
map estimation, and designing an action map aggregation for landmark estimation.
Using this workflow, we present competitive performances against other state-of-the-
art approaches on cardiac and obstetric ultrasound datasets. Further investigation on its
clinical value will be performed as our next step, where more training data will be used
for better performance, more engineering efforts will be spent for faster and smoother
detection across frames, and more evaluations will be focused on the measurements
derived from landmarks against human errors.

Our SAC approach is generic, and it has great synergy with DI2IN as observed in
our experiments on ultrasound datasets. We observe big opportunities to improve the
performances by integrating new technologies of training DI2IN, e.g., deep supervision
[9] and skip connection [10]. Meanwhile, given the promising results in 2-D ultrasound
for single landmark detection, it is worthwhile to explore the extension of SAC in (1)
3-D, (2) other image modalities, and (3) multi-landmark detection, where the action map
generation and aggregation need to be adapted.
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