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Abstract. We propose a convolution neural network based algorithm
for simultaneously diagnosing diabetic retinopathy and highlighting sus-
picious regions. Our contributions are two folds: (1) a network termed
Zoom-in-Net which mimics the zoom-in process of a clinician to examine
the retinal images. Trained with only image-level supervisions, Zoom-
in-Net can generate attention maps which highlight suspicious regions,
and predicts the disease level accurately based on both the whole image
and its high resolution suspicious patches. (2) Only four bounding boxes
generated from the automatically learned attention maps are enough
to cover 80% of the lesions labeled by an experienced ophthalmologist,
which shows good localization ability of the attention maps. By clus-
tering features at high response locations on the attention maps, we
discover meaningful clusters which contain potential lesions in diabetic
retinopathy. Experiments show that our algorithm outperform the state-
of-the-art methods on two datasets, EyePACS and Messidor.

1 Introduction

Identifying suspicious region for medical images is of significant importance since
it provides intuitive illustrations for physicians and patients of how the diagno-
sis is made. However, most previous works rely on strong supervisions which
require lesion location information. This largely limits the size of the dataset
as the annotations in medical imaging are expensive to acquire. Therefore, it is
necessary to develop algorithms which can make use of large datasets with weak
supervisions for simultaneous classification and localization.

In this work, we propose a general weakly supervised learning framework,
Zoom-in-Net, based on convolution neural networks (CNN). The proposed method
is accurate in classification and meanwhile, it can also automatically discover the
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lesions in the images at a high recall with only several bounding boxes. This frame-
work can be easily extended to various classification problems and provides con-
venient visual inspections for the doctors.

To verify the effectiveness of our method, we aim to solve the problem of
Diabetic retinopathy (DR) detection as it is an important problem and a large
scale dataset [1] with image-level labels are publicly available online. DR is an
eye disease caused by diabetes. Today, it is the leading cause of blindness in
the working-age population of the developed world. Treatments can be applied
to slow down or stop further vision loss once this disease is diagnosed. How-
ever, DR has no early warning sign and the diagnosis is a time-consuming and
manual process that requires an experienced clinician to examine the retinal
image. It is often too late to provide effective treatments because of the delay. In
order to alleviate the workload of human interpretation, various image analysis
algorithms have been proposed over the last few decades.

Early approaches [2,6] use hand-crafted features to represent the images, of
which the main bottlenecks are the limited expressive power of the features.
Recently, CNN based methods [3,4,9] have dramatically improved the perfor-
mance of DR detection. Most of them treat CNN as a black box, which lacks
intuitive explanation. Few previous works localize the lesions with image-level
supervisions, such as visualizing the evidence hotspots of the spinal MRIs classi-
fication [10]. But they did not use the hotspots to further improve performance.

The proposed Zoom-in-Net has the attention mechanism, which generates
attention maps using only image-level supervisions. The attention map is a
heatmap that indicates which pixels play more important roles in making the
image-level decision. In addition, our Zoom-in-Net mimics the clinicians’ behav-
ior which skim the DR images to identify suspicious regions and then zoom-in to
verify. Zoom-in-Net is validated on EyePACS and Messidor datasets. It out-
performs state-of-the-art methods as well as general physicians. Moreover, we
also validated the attention localization accuracy on around 200 images labeled
by an experienced ophthalmologist. Our attention localization reaches a recall of
0.82 which proves to be useful for doctors. The clustered regions at high response
locations of the attention maps shows meaningful lesions in diabetic retinopathy.

2 Architecture of Zoom-in-Net

The proposed Zoom-in-Net learns from image-level supervisions of DR detection,
however equipped with the function to both classify images and localize the
suspicious regions. It mimics the zoom-in process of a clinician examining an
image by selecting highly suspicious regions on a high resolution image and
makes a decision according to both the global image and local patches.

Our Zoom-in-Net consists of three parts as shown in Fig. 1: a main net-
work (M-Net) for DR classification, a sub-network, Attention Network (A-Net),
to generate attention maps, and another sub-network, Crop-Network (C-Net),
which takes high resolution patches of highest attention values as input and cor-
rect predictions from M-Net. Our illustration is based on the 5-level DR detection
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Fig. 1. An overview of Zoom-in-Net. It consists of three sub-networks. M-Net and C-
Net classify the image and high resolution suspicious patches, respectively, while A-Net
generates the gated attention maps for localizing suspicious regions and mining lesions.

task, i.e., 0 - No DR; 1 - Mild; 2 - Moderate; 3 - Severe and 4 - Proliferative DR.
It can be easily adapted to different classification tasks.

Main Network (M-Net). The M-Net is a CNN which takes an image as
input and processes it by stacks of linear operations including convolutions,
batch normalization, non-linear operations like Pooling and Rectified Linear
Units. We adopt the Inception-Resnet [15] as the architecture of M-Net. The
intermediate feature maps produced by the layer inception resnet c 5 elt, i.e.
M ∈ R1024×14×14, separate the M-Net into two parts as shown in Fig. 1. It
is followed by a fully connected layer and mapped into a probability vector
yM ∈ R5, which indicates the probability of the image belonging to each disease
level. M is further used as input to the Attention Network.

As the Kaggle’s challenge provides both left and right eyes of a patient, we
also utilize the correlation between two eyes. Statistics show that more than 95%
of the eye pairs have the scores differ by at most 1. Therefore, we concatenate
the features of both eyes from M-Net together and train the network to take
advantage of it in an end-to-end manner.

Attention Network (A-Net). The A-Net takes the feature maps M as input.
It consists of two branches. The first branch, A-Net part I, is a convolution layer
with 1×1 kernels. It can be regarded as a linear classifier applied to each pixel and
produces score maps S ∈ R5×14×14 for the 5 disease levels. The second branch,
A-Net part II, generates attention gate maps with three convolution layers as
shown in Fig. 2. In particular, it produces separate attention gate map for each
disease level. Each attention map is obtained by a spatial softmax operator.
Intuitively, the spatial softmax forces the attention values to compete each other
and concentrate only on the most informative regions. Therefore, by regarding
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Fig. 2. Structure of A-Net part II. It takes in the feature maps M from M-Net and
generates a attention map A. The kernel size and the number of channels are marked
at the bottom of the convolution layers.

the attention map A ∈ R5×14×14 as a gate, the output for the A-Net is calculated
as

Gl = Sl ⊗ Al (1)

where Gl, Sl and Al are gated feature for A-Net, score map and attention map at
l-th class, respectively, and ⊗ denotes element-wise multiplication. Then we can
calculate the final score vector yA by sum pooling G globally, i.e., ylA =

∑
i,j G

l
i,j .

Crop Network (C-Net). We further improve the accuracy by zooming-in
the suspicious attention regions. Specifically, given the gated attention maps
G ∈ R5×14×14, we first resize it to the same size as the input image. Then we
use a greedy algorithm to sample the regions. At each iteration, we record the
location of the top response on G, and then mask out the s× s region around it
to avoid this region being selected again. We repeat this process until a total of
N coordinates are recorded or the maximum attention response is reached. An
example is shown in Fig. 3.

With the recorded locations, we crop the corresponding patches on a higher
resolution image for C-Net. The C-Net has a structure similar to [16]. However, it
differs from [16] as it combines features d̂C of all patches at layer “global pool”.
Since some patches contain no abnormalities, we apply element-wise max on
the feature d̂C to extract the most informative feature. This feature is then
concatenated to the feature dM from M-Net and classified by C-Net.

3 Attention Localization Evaluation and Understanding

Attention Localization Evaluation. To verify whether the high response
regions contain clues indicating the disease level of the images, we asked an
experienced ophthalmologist to label the lesions of 182 retinal images from Eye-
PACS. The ophthalmologist is asked to draw bounding boxes to tightly cover
the lesions related to diabetic retinopathy. A total of 306 lesions are labeled at
last.

We calculate the intersection over Minimum (IoM) between a ground truth
box and a sampled box. The sampled boxes are the exactly same 4 boxes used in
C-Net. If IoM is above a threshold, then we consider the sampled box is correct.
In this way, we plot two curves of the recall for person and for box V.S. the
threshold, respectively, in Table 1. The recall for person means that as long as
one ground truth box of a person is retrieved by the sampled boxes, we treat
this person to be correct. Therefore, it is higher than the recall for box. Note
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Fig. 3. From left to right: image, gated attention maps of level 1–4 and the selected
regions of the image. The level 0 gated attention map has no information and is ignored.

that we achieve a recall of 0.76 and 0.83 at IoM threshold equal to 0.3 for box
and person, respectively. This indicates our A-Net can localize the lesions accu-
rately given only image-level supervisions, and partly explains why the C-Net
can help improve the predictions made by M-Net. This is remarkable given that
our network is not trained on a single annotated box. We believe increasing the
resolution of attention maps (14×14) could further boosts localization precision.

Attention Visual Understanding. Furthermore, to better understand the
net, we propose a clustering based method to visualize the top responses loca-
tions on the gated attention maps. We partition the features at the same loca-
tions on the feature maps M into clusters by the AP clustering algorithm [8],
which is free of a pre-defined cluster number. We can retrieve their corresponding
image regions as C-Net input and visualize some of them in Fig. 4. Several clus-
ters are discovered with meaningful lesions such as Microaneurysms, blot/frame
haemorrhages and hard/soft exudates. This may be very appealing as doctors
may find new lesions by examining the clustering results by our method.

4 Quantitative Evaluation

Datasets and Evaluation Protocols. We have evaluated the effectiveness
of our Zoom-in-Net on two datasets, the EyePACS and Messidor datasets. The
Kaggle’s Diabetic Retinopathy Detection Challenge (EyePACS) is sponsored
by the California Healthcare Foundation. It provides 35 k/11 k/43 k images for
train/val/test set respectively, captured under various conditions and various
devices. A left and right field is provided for every subject, and a clinician rated
the presence of diabetic retinopathy in each image on a scale of 0 to 4. For
comparison, we adopt the same official protocol called quadratic weighted kappa
score for evaluation. The Messidor dataset is a public dataset provided by the
Messidor program partners [7]. It consists of 1200 retinal images and for each
image, two grades, retinopathy grade, and risk of macular edema, are provided.
Only retinopathy grades are used in the present work.

Implemenation Details. The preprocessing includes cropping the images to
remove the black borders which contain no information. Data augmentation is
done on the training set of EyePACS by random rotations (0◦/90◦/180◦/270◦)
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Fig. 4. Examples of automatically discovered suspicious regions by clustering features
at high respones locations. Some clusters are very meaningful such as microaneurysms,
blot haemorrhages, flame haemorrhages, soft exudates and hard exudates.

Table 1. AUC for normal/abnormal Table 2. Comparison to top-3 entries on
Kaggle’ challenge.

Algorithms Val set Test set

Min-pooling [1] 0.86 0.849

o O 0.854 0.844

Reformed Gamblers 0.851 0.839

M-Net 0.832 0.825

M-Net+A-Net 0.837 0.832

Zoom-in-Net 0.857 0.849

Ensembles 0.865 0.854

and random flips. The training of the proposed Zoom-in-Net includes three
phases. We first train M-Net, which is pretrained on ImageNet [13], and then
train A-Net while fixing the parameters of M-Net. The C-Net is trained at last
together with the other two to obtain the final Zoom-in-Net. During training,
we adopt the mini-batch stochastic gradient descent for optimization. We use a
gradually decreasing learning rate starting from 10−5 with a stepsize of 20 k and
momentum of 0.9. The whole framework is trained with the Caffe library [11].

Experiment Results on the EyePACS Dataset. We thoroughly evaluate
each component of Zoom-in-Net on the EyePACS dataset. As can be seen in
Table 2, the M-Net alone achieves 0.832/0.825 on the val/test set, respectively.
Adding the branch of A-Net only improves the score by 0.5% on both sets. This
is not surprising as no additional information is added in the A-Net.

Moreover, we use the gated attention maps generated by A-Net to extract
suspicious regions and train C-Net. We observed that on an image resized to
492 × 492, the area of pathological regions is usually smaller than 200 × 200.
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Table 3. AUC for referable/nonreferable

Method AUC Acc

Lesion-based [12] 0.760 -

Fisher Vector [12] 0.863 -

VNXK/LGI [18] 0.887 0.893

CKML Net/LGI [18] 0.891 0.897

Comprehensive CAD [14] 0.91 -

Expert A [14] 0.94 -

Expert B [14] 0.92 -

Zoom-in-Net 0.957 0.911

Table 4. AUC for normal/abnormal

Method AUC Acc

Splat feature/kNN [17] 0.870 -

VNXK/LGI [18] 0.870 0.871

CKML Net/LGI [18] 0.862 0.858

Comprehensive CAD [14] 0.876 -

Expert A [14] 0.922 -

Expert B [14] 0.865 -

Zoom-in-Net 0.921 0.905

Therefore, we set the region size s to be 200 and the number of cropped regions
N to be 4 throughout the experiments. We cropped 384×384 patches from high
resolution images of size 1230×1230 as input of C-Net. During the training of the
complete Zoom-in-Net, one mini-batch contains a pair of whole images and 4 high
resolution patches for each image, respectively. It almost reaches the up limit for
a Tesla K40 GPU card, so we let the network update its parameters after every
12 mini-batches to match the training of M-Net. Finally the proposed Zoom-
in-Net achieves the kappa score of 0.857 and 0.849 on the two sets, comparable
to the first rank entry Min-pooling (0.86/0.849) [1]. With an ensemble of three
models, our final results ended up at 0.865/0.854.

Experiment Results on the Messidor Dataset. To further evaluate the
performance, the proposed Zoom-in-Net is applied to the independent dataset
Messidor for DR screening. As Messidor has only 1200 images, the size of which
is small to train CNNs, Holly et al. [18] suggested extracting features from the
proposed net trained on other dataset like EyePACS to develop classifiers later.
Since Messidor and EyePACS employ different annotation scales (Messidor: 0
to 3, EyePACS: 0 to 4), we follow a protocol similar to [18] and conduct two
binary classification tasks (referable V.S. non-referable, normal V.S. abnormal)
to realize the evaluation cross dataset and prior studies.

We extract five dimensional probability feature vectors from the last layer of
Zoom-in-Net, and use Support Vector Machines (SVM) with rbf kernal, imple-
mented by the LibSVM library on MATLAB [5], for binary classification. For
referable/nonreferable, Messidor Grade 0 and 1 is considered as nonreferable,
while Grade 2 and 3 is defined to be referable to specialists. 10-fold cross-
validation on entire Messidor is introduced to be compatible with [12,18]. For
normal/abnormal classification, the SVM is trained using extracted features from
the training set of EyePACS and tested on entire Messidor. Only images graded
0 on EyePACS/Messidor are assigned as normal, otherwise as abnormal.

The area under the receiver operating curve (AUC) is used to quantify the
performance. Tables 3 and 4 show results of our methods compared with previous
studies. To the best of our knowledge, we achieve the highest AUC for both



274 Z. Wang et al.

normal and referral classification on Messidor dataset. Zoom-in-Net performs
comparably to two experts reported in [14]. At a specificity of 0.5, the sensitivity
of Zoom-in-Net is 0.978 and 0.960, respectively for the normal and referral task.

5 Conclusions

In this work, we proposed a novel framework Zoom-in-Net which achieves state-
of-the-art performance on two datasets. Trained with only image-level supervi-
sions, Zoom-in-Net can generate attention maps which highlight the suspicious
regions. The localization ability of the gated attention maps is validated and
found to be promising. Further experiments show the high response regions on
gated attentions correspond to potential lesions in DR, and thus can be used to
further boost of performance for classification.
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