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Abstract. Exploiting the wealth of imaging and non-imaging informa-
tion for disease prediction tasks requires models capable of represent-
ing, at the same time, individual features as well as data associations
between subjects from potentially large populations. Graphs provide a
natural framework for such tasks, yet previous graph-based approaches
focus on pairwise similarities without modelling the subjects’ individual
characteristics and features. On the other hand, relying solely on subject-
specific imaging feature vectors fails to model the interaction and similar-
ity between subjects, which can reduce performance. In this paper, we
introduce the novel concept of Graph Convolutional Networks (GCN)
for brain analysis in populations, combining imaging and non-imaging
data. We represent populations as a sparse graph where its vertices are
associated with image-based feature vectors and the edges encode phe-
notypic information. This structure was used to train a GCN model on
partially labelled graphs, aiming to infer the classes of unlabelled nodes
from the node features and pairwise associations between subjects. We
demonstrate the potential of the method on the challenging ADNI and
ABIDE databases, as a proof of concept of the benefit from integrating
contextual information in classification tasks. This has a clear impact
on the quality of the predictions, leading to 69.5% accuracy for ABIDE
(outperforming the current state of the art of 66.8%) and 77% for ADNI
for prediction of MCI conversion, significantly outperforming standard
linear classifiers where only individual features are considered.

1 Introduction

Recent years have seen an increasing volume of medical image data being col-
lected and stored. Large scale collaborative initiatives are acquiring and sharing
hundreds of terabytes of imaging, genetic and behavioural data. With this novel
wealth of imaging and non-imaging data, there is a need for models capable
of representing potentially large populations and exploiting all types of infor-
mation. Graphs provide a natural way of representing populations and their
similarities. In such setting, each subject acquisition is represented by a node
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and pairwise similarities are modelled via weighted edges connecting the nodes.
Such models provide powerful tools for population analysis and integration of
non-imaging data such as manifold learning [2,15] or clustering algorithms [11].
Nonetheless, all the available information is encoded via pairwise similarities,
without modelling the subjects’ individual characteristics and features. On the
other hand, relying solely on imaging feature vectors, e.g. to train linear clas-
sifiers as in [1], fails to model the interaction and similarity between subjects.
This can make generalisation more difficult and reduce performance, in par-
ticular when the data is acquired using different imaging protocols. Convolu-
tional Neural Networks (CNNs) have found numerous applications on 2D and
3D images, as powerful models that exploit features (e.g. image intensities) and
neighbourhood information (e.g. the regular pixel grid) to yield hierarchies of
features and solve problems like image segmentation [7] and classification. The
task of subject classification in populations (e.g. for diagnosis) can be compared
to image segmentation where each pixel is to be classified. In this context, an
analogy can be made between an image pixel and its intensity, and a subject and
its corresponding feature vectors, while the pairwise population graph equates
to the pixel grid, describing the neighbourhood structure for convolutions. How-
ever, the application of CNNs on irregular graphs is not straightforward. This
requires the definition of local neighbourhood structures and node orderings for
convolution and pooling operations [10], which can be challenging for irregular
graph structures.Recently, graph CNNs were introduced [4], exploiting the novel
concept of signal processing on graphs [13], which uses computational harmonic
analysis to analyse signals defined on irregular graph structures. These proper-
ties allow convolutions in the graph spatial domain to be dealt as multiplications
in the graph spectral domain, extending CNNs to irregular graphs in a princi-
pled way. Such graph CNN formulation was successfully used in [8] to perform
classification of large citation datasets.

Contributions. In this paper, we introduce the novel concept of Graph Convo-
lutional Networks (GCN) for brain analysis in populations, combining imaging
and non-imaging data. Our goal is to leverage the auxiliary information avail-
able with the imaging data to integrate similarities between subjects within a
graph structure. We represent the population as a graph where each subject
is associated with an imaging feature vector and corresponds to a graph ver-
tex. The graph edge weights are derived from phenotypic data, and encode the
pairwise similarity between subjects and the local neighbourhood system. This
structure is used to train a GCN model on partially labelled graphs, aiming to
infer the classes of unlabelled nodes from the node features and pairwise asso-
ciations between subjects. We demonstrate the potential of the method on two
databases, as a proof of concept of the advantages of integrating contextual infor-
mation in classification tasks. First, we classify subjects from the Autism Brain
Imaging Data Exchange (ABIDE) database as healthy or suffering from Autism
Spectrum Disorders (ASD). The ABIDE dataset comprises highly heterogeneous
functional MRI data acquired at multiple sites. We show how integrating acqui-
sition information allows to outperform the current state of the art on the whole
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dataset [1] with a global accuracy of 69.5%. Second, using the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database, we show how our model allows
to seamlessly integrate longitudinal data and provides a significant increase in
performance to 77% accuracy for the challenging task of predicting the conver-
sion from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD). The
code is publicly available at https://github.com/parisots/population-gcn.

2 Methods

We consider a database of N acquisitions comprising imaging (e.g. resting-state
fMRI or structural MRI) and non-imaging phenotypic data (e.g. age, gender,
acquisition site, etc.). Our objective is to assign to each acquisition, correspond-
ing to a subject and time point, a label l ∈ L describing the corresponding
subject’s disease state (e.g. control or diseased). To this end, we represent the
population as a sparse graph G = {V, E ,W} where W is the adjacency matrix
describing the graph’s connectivity. Each acquisition Sv is represented by a ver-
tex v ∈ V and is associated with a C-dimensional feature vector x(v) extracted
from the imaging data. The edges E of the graph represent the similarity between
the subjects and incorporate the phenotypic information.The graph labelling is
done in a semi-supervised fashion, through the use of a GCN trained on a subset
of labelled graph vertices. Intuitively, label information will be propagated over
the graph under the assumption that nodes connected with high edge weights
are more comparable. An overview of the method is available in Fig. 1.

Fig. 1. Overview of the pipeline used for classification of population graphs using
Graph Convolutional Networks.

2.1 Databases and Preprocessing

We apply our model on two large and challenging databases for binary classi-
fication tasks. With the ABIDE database, we aim to separate healthy controls
from ASD patients and exploit the acquisition information which can strongly
affect the comparability of subjects. Our goal on the ADNI database is to predict
whether an MCI patient will convert to AD. Our objective is to demonstrate the

https://github.com/parisots/population-gcn
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importance of exploiting longitudinal information, which can be easily integrated
into our graph structure, to increase performance.

The ABIDE database [6] aggregates data from different acquisition sites
and openly shares functional MRI and phenotypic data of 1112 subjects1. We
select the same set of 871 subjects used in [1], comprising 403 individuals with
ASD and 468 healthy controls acquired at 20 different sites. To ensure a fair
comparison with the state of the art [1], we use the same preprocessing pipeline
[3], which involves skull striping, slice timing correction, motion correction,
global mean intensity normalisation, nuisance signal regression, band-pass fil-
tering (0.01–0.1 Hz) and registration of the functional MRI images to MNI152
standard anatomical space. The mean time series for a set of regions extracted
from the Harvard Oxford (HO) atlas [5] were computed and normalised to zero
mean and unit variance. The individual connectivity matrices S1, ..., SN are esti-
mated by computing the Fisher transformed Pearson’s correlation coefficient
between the representative rs-fMRI timeseries of each ROI in the HO atlas.

The ADNI database is the result of efforts from several academic and pri-
vate co-investigators 2. To date, ADNI in its three studies (ADNI-1, -GO and -2)
has recruited over 1700 adults, aged between 55 and 90 years, from over 50 sites
from the U.S. and Canada. In this work, a subset of 540 early/late MCI subjects
that contained longitudinal T1 MR images and their respective anatomical seg-
mentations was used. In total, 1675 samples were available, with 289 subjects
(843 samples) diagnosed as AD at any time during follow-up and labelled as
converters. Longitudinal information ranged from 6 to 96 months, depending on
each subject. Acquisitions after conversion to AD were not included. As of 1st of
July 2016 the ADNI repository contained 7128 longitudinal T1 MR images from
1723 subjects. ADNI-2 is an ongoing study and therefore data is still growing.
Therefore, at the time of a large scale segmentation analysis (into 138 anatomi-
cal structures using MALP-EM [9]) only a subset of 1674 subjects (5074 images)
was processed, from which the subset used here was selected.

2.2 Population Graph Construction

The proposed model requires two critical design choices: (1) the definition of the
feature vector x(v) describing each sample, and (2) modelling the interactions
between samples via the definition of the graph edges E . We keep the feature
vectors simple so as to focus on evaluating the impact of integrating contextual
information in the classification performance. For the ABIDE data-set, we follow
the method adopted by [1] and define a subject’s feature vector as its vectorised
functional connectivity matrix. Due to the high dimensionality of the connectiv-
ity matrix, a ridge classifier is employed to select the most discriminative features
from the training set. For the ADNI dataset, we simply use the volumes of all
138 segmented brain structures.

1 http://preprocessed-connectomes-project.org/abide/.
2 http://adni.loni.usc.edu.

http://preprocessed-connectomes-project.org/abide/
http://adni.loni.usc.edu
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The definition of the graph’s edges is critical in order to capture the underly-
ing structure of the data and explain the similarities between the feature vectors.
We construct our sparse graph aiming to incorporate phenotypic information in
our model, providing additional information on how similar two samples’ fea-
ture vectors and labels are expected to be. Considering a set of H non-imaging
measures M = {Mh} (e.g. subject’s gender and age), the population graph’s
adjacency matrix W is defined as follows:

W (v, w) = Sim(Sv, Sw)
H∑

h=1

ρ(Mh(v),Mh(w)), (1)

where, Sim(Sv, Sw) is a measure of similarity between subjects, increasing the
weights between the most similar graph nodes; ρ is a measure of distance between
phenotypic measures. Considering categorical data such as gender or acquisition
site, we define ρ as the Kronecker delta function δ. For quantitative measures
such as the subject’s age, we define ρ as a unit-step function with respect to a

threshold θ: ρ(Mh(v),Mh(w)) =

{
1 if |Mh(v) − Mh(w)| < θ

0 otherwise
The underlying idea behind this formulation is that non-imaging complemen-

tary data can provide key information explaining correlations between subjects’
feature vectors. The objective is to leverage this information, so as to define
an accurate neighbourhood system that optimises the performance of the sub-
sequent graph convolutions. For the ABIDE population graph, we use H = 2
non-imaging measures, namely subject’s gender and acquisition site. We define
Sim(Sv, Sw) as the correlation distance between the subjects’ rs-fMRI connec-
tivity networks after feature selection, as a separation between ASD and controls
can be observed within certain sites. The main idea behind this graph structure
is to leverage the site information, as we expect subjects to be more compara-
ble within the same site due to the different acquisition protocols. The ADNI
graph is built using the subject’s gender and age information. These values are
chosen because our feature vector comprises brain volumes, which can strongly
be affected by age and gender. The most important aspect of this graph is the
Sim(Sv, Sw) function, designed to leverage the fact that longitudinal acquisi-
tions from the same subject are present in the database. While linear classifiers
treat each entry independently, here we define Sim(Sv, Sw) = λ with λ > 1 if
two samples correspond to the same subject, and Sim(Sv, Sw) = 1 otherwise,
indicating the strong similarity between acquisitions of the same subject.

2.3 Graph Labelling Using Graph Convolutional Neural Networks

Discretised convolutions, those commonly used in computer vision, cannot be
easily generalised to the graph setting, since these operators are only defined for
regular grids, e.g. 2D or 3D images. Therefore, the definition of localised graph
filters is critical for the generalisation of CNNs to irregular graphs. This can be
achieved by formulating CNNs in terms of spectral graph theory, building on
tools provided by graph signal processing (GSP) [13].
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The concept of spectral graph convolutions exploits the fact that convolutions
are multiplications in the Fourier domain. The graph Fourier transform is defined
by analogy to the Euclidean domain from the eigenfunctions of the Laplace
operator. The normalised graph Laplacian of a weighted graph G = {V, E ,W} is
defined as L = IN −D−1/2WD−1/2 where IN and D are respectively the identity
and diagonal degree matrices. Its eigendecomposition, L = UΛUT , gives a set of
orthonormal eigenvectors U ∈ R

N×N with associated real, non-negative eigen-
values Λ ∈ R

N×N . The eigenvectors associated with low frequencies/eigenvalues
vary slowly across the graph, meaning that vertices connected by an edge of large
weight have similar values in the corresponding locations of these eigenvectors.

The graph Fourier Transform (GFT) of a spatial signal x is defined on the
graph G as x̂ .= UTx ∈ R

N , while the inverse transform is given by x .= U x̂.
Using the above formulations, spectral convolutions of the signal x with a filter
gθ = diag(θ) are defined as gθ ∗ x = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx,
where θ ∈ R

N is a vector of Fourier coefficients. Following the work of Defferrard
et al. [4], we restrict the class of considered filters to polynomial filters gθ(Λ) =∑K

k=0 θkΛk. This approach has two main advantages: 1) it yields filters that are
strictly localised in space (a K-order polynomial filter is strictly K-localised)
and 2) it significantly reduces the computational complexity of the convolution
operator. Indeed, such filters can be well approximated by a truncated expansion
in terms of Chebyshev polynomials which can be computed recursively. Similarly
to what is proposed in [8], we keep the structure of our GCN relatively simple. It
consists of a series of convolutional layers, each followed by Rectified Linear Unit
(ReLU) activation functions to increase non-linearity, and a convolutional output
layer. The output layer is followed by a softmax activation function [8], while
cross-entropy is used to calculate the training loss over all labelled examples.
Unlabelled nodes are then assigned the labels maximising the softmax output.

3 Results

We evaluate our method on both the ADNI and ABIDE databases using a 10-fold
stratified cross validation strategy. The use of 10-folds facilitates the comparison
with the ABIDE state of the art [1] where a similar strategy is adopted. To
provide a fair evaluation for ADNI, we ensure that the longitudinal acquisitions
of the same subject are in the same fold (i.e. either the testing or training fold).
We train a fully convolutional GCN with L hidden layers approximating the
convolutions with K = 3 order Chebyshev polynomials. GCN parameters were
optimised for each database with a grid search on the full database. For ABIDE,
we use: L = 1, dropout rate: 0.3, l2 regularisation: 5.10−4, learning rate: 0.005,
number of features C = 2000. The parameters for ADNI are: L = 5, dropout rate:
0.02, l2 regularisation: 1.10−5, learning rate: 0.01, graph construction variables
λ = 10 and θ = 2. The ABIDE network is trained for 150 epochs. Due to the
larger network size, we train the ADNI network longer, for 200 epochs.

We compare our results to linear classification using a ridge classifier (using
the scikit-learn library implementation [12]) which showed the best performance
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(a) ABIDE accuracy (b) ABIDE AUC (c) ADNI accuracy (d) ADNI AUC

Fig. 2. Comparative boxplots of the classification accuracy and area under curve
(AUC) over all cross validation folds for the (a, b) ABIDE and (c, d) ADNI data-
bases (MCI conversion task). The red dots correspond to the mean value.

amongst linear classifiers. We investigate the importance of the population graph
structure by using the same GCN framework with a random graph support of
same density. Comparative boxplots across all folds between the three approaches
are shown in Fig. 2 for both databases. GCN results (both with population and
random graphs) are computed for ten different initialisation seeds and averaged.
For both databases, we observe a significant (p < 0.05) increase both in terms
of accuracy and area under curve using our proposed method, with respect to
the competing methods. The random support yields equivalent or worse results
to the linear classifier. For ABIDE, we obtain an average accuracy of 69.5%,
outperforming the recent state of the art (66.8%) [1]. Results obtained for the
ADNI database show a large increase in performance with respect to the com-
peting methods, with an average accuracy of 77% on par with state of the art
results [14], corresponding to a 10% increase over a standard linear classifier.

4 Discussion

In this paper, we introduced the novel concept of graph convolutions for
population-based brain analysis. We proposed a strategy to construct a popula-
tion graph combining image based patient-specific information with non-imaging
based pairwise interactions, and use this structure to train a GCN for semi-
supervised classification of populations. As a proof of concept, the method was
tested on the challenging ABIDE and ADNI databases, respectively for ASD
classification from a heterogeneous database and predicting MCI conversion
from longitudinal information. Our experiments confirmed our initial hypoth-
esis about the importance of contextual pairwise information for the classifi-
cation process. In the proposed semi-supervised learning setting, conditioning
the GCN on the adjacency matrix allows to learn representations even for the
unlabelled nodes, thanks to the supervised loss gradient information that is
distributed across the network. This has a clear impact on the quality of the
predictions, leading to about 4.1% improvement for ABIDE and 10% for ADNI
when comparing to a standard linear classifier (where only individual features
are considered).
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Several extensions could be considered for this work. Devising an effective
strategy to construct the population graph is essential and far from obvious. Our
graph encompasses several types of information in the same edge. An interesting
extension would be to use attributed graphs, where the edge between two nodes
corresponds to a vector rather than a scalar. This would allow to exploit com-
plementary information and weight the influence of some measures differently.
Integrating time information with respect to the longitudinal data could also be
considered. Our feature vectors are currently quite simple, as our main objective
was to show the influence of the contextual information in the graph. We plan
to evaluate our method using richer feature vectors, potentially via the use of
autoencoders from MRI images and rs-fMRI connectivity networks.

References

1. Abraham,A.,Milham,M.,DiMartino,A.,Craddock,R.C., Samaras,D.,Thirion,B.,
Varoquaux, G.: Deriving reproducible biomarkers from multi-site resting-state data:
an autism-based example. NeuroImage 147, 736–745 (2016)

2. Brosch, T., Tam, R.: Manifold learning of brain MRIs by deep learning. In: Mori,
K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol.
8150, pp. 633–640. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5 78

3. Craddock, C., Sikka, S., Cheung, B., Khanuja, R., Ghosh, S., et al.: Towards auto-
mated analysis of connectomes: The configurable pipeline for the analysis of con-
nectomes (C-PAC). Front Neuroinform. 42 (2013)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NIPS, pp. 3837–3845 (2016)

5. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., et al.: An
automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

6. Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., et al.: The autism
brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain
architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

7. Havaei, M., Davy, A., et al.: Brain tumor segmentation with deep neural networks.
Med. Image Anal. 35, 18–31 (2017)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

9. Ledig, C., Heckemann, R.A., Hammers, A., et al.: Robust whole-brain segmenta-
tion: application to traumatic brain injury. Med. Image Anal. 21(1), 40–58 (2015)

10. Niepert, M., Ahmed, M., Kutzkov, K.: Learning Convolutional Neural Networks
for Graphs. arXiv preprint arXiv:1605.05273 (2016)

11. Parisot, S., Darlix, A., Baumann, C., Zouaoui, S., et al.: A probabilistic atlas of
diffuse WHO Grade II Glioma locations in the brain. PLOS ONE 11(1), e0144200
(2016)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., et al.: Scikit-
learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

http://dx.doi.org/10.1007/978-3-642-40763-5_78
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1605.05273


Spectral Graph Convolutions for Population-Based Disease Prediction 185

13. Shuman, D.I., Narang, S.K., et al.: The emerging field of signal processing on
graphs: extending high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

14. Tong, T., Gao, Q., Guerrero, R., Ledig, C., Chen, L., Rueckert, D.: A Novel grad-
ing biomarker for the prediction of conversion from mild cognitive impairment to
Alzheimer’s Disease. IEEE Trans. Biomed. Eng. 64(1), 155–165 (2017)

15. Wolz, R., Aljabar, P., Hajnal, J.V., Lötjönen, J., Rueckert, D.: Nonlinear dimen-
sionality reduction combining MR imaging with non-imaging information. Med.
Image Anal. 16(4), 819–830 (2012)


	Spectral Graph Convolutions for Population-Based Disease Prediction
	1 Introduction
	2 Methods
	2.1 Databases and Preprocessing
	2.2 Population Graph Construction
	2.3 Graph Labelling Using Graph Convolutional Neural Networks

	3 Results
	4 Discussion
	References




