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Abstract. Accurate identification of patients with Mild Cognitive
Impairment (MCI) at high risk for conversion to Alzheimer’s Disease
(AD) offers an opportunity to target the disease process early. In this
paper, we present a novel nonlinear feature transformation scheme to
improve the prediction of MCI-AD conversion through semi-supervised
learning. Utilizing Laplacian SVM (LapSVM) as a host classifier, the
proposed method learns a smooth spatially varying transformation that
makes the input data more linearly separable. Our approach has a
broad applicability to boost the classification performance of many other
semi-supervised learning solutions. Using baseline MR images from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, we eval-
uate the effectiveness of the proposed semi-supervised framework and
demonstrate the improvements over the state-of-the-art solutions within
the same category.

1 Introduction

Alzheimer’s Disease (AD), the most common form of dementia, affects more than
34 million people in 2016. Amnestic mild cognitive impairment (MCI) is often
regarded as a prodromal stage of AD, where some patients convert to AD over
time, and the others remain stable for many years. Identifying the differences
between “converters” and “stable” groups of subjects can offer an opportunity
to target the disease early.

A number of solutions have been proposed in recent years to tackle AD/MCI
early diagnosis problem. Common practices include the utilization of multi-
modality [1,8,15] and longitudinal [7,21] data to exploit complementary infor-
mation, dimension reduction to diminish data redundancy and feature selection
to extract the most discriminative feature set. Ensembles of classifiers from mul-
tiple domains or/and levels have also been employed to improve the overall
classification performance [4,7,8,21].

As accurate diagnosis of MCI-AD conversion is often not available until
a later time, semi-supervised learning (SSL), utilizing unlabeled data in con-
junction with labeled samples (the valuable gold standard confirmed cases) to
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improve classification performance, is uniquely suitable to predict patients’ clin-
ical trajectories. In [19], MCI subjects were used as unlabeled data to boost
the classification accuracy in discriminating AD vs. normal control (NC) sub-
jects. Compared with using AD/NC subjects only, a significant improvement was
achieved. Similar approaches were proposed in [5,17] to predict disease labels
for MCI subjects. Moradi et al. [9] developed a semi-supervised classifier for AD
conversion prediction in MCI patients based on low-density separation (LDS).
All these studies demonstrate that label augmentation through unlabeled data
samples equips SSL with better predictive power over supervised learning.

Despite all the strides made in recent years, insufficient attention has been
given to rationally selecting appropriate metrics from the training data that
could maximize the power of various SSL solutions. Learning a metric from
the training input is equivalent to learning a feature transformation [11,13,16],
and such transformations can often significantly boost the performance of many
metric-based algorithms, such as kNN, k-means, and even SVMs in various tasks
[3,12,20].

In this paper, we propose to enhance the prediction of MCI-AD conversion
via a novel nonlinear feature transformation scheme. We take Laplacian SVM
(LapSVM), a classic graph-based SSL model, as the host classifier, and general-
ize it through the application of deformable geometric models to transform the
feature space. The Coherent Point Drifting (CPD) method from [10] is chosen as
the geometric model in this study, due to its remarkable versatility and represen-
tation power in accounting for high-order deformations. In this work, we focus
on the classification of progressive MCI (pMCI) vs. stable MCI (sMCI) subjects.
The connection to MCI-AD conversion is that: if our solution can differentiate
pMCI/sMCI subjects at their baseline time, very accurately and robustly, it
should be able to make reliable MCI-to-AD predictions for unseen subjects. The
data we used are baseline MR images, obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.usc.edu/ADNI).

2 Method

Formulated under the standard support vector machine (SVM) framework,
LapSVM solves the classification problem by employing two regularization terms:
one for SVM maximal margin classification, and the other for label smoothness
across the data graph – neighboring nodes should have identical or similar labels.

Let X = {xi| xi ∈ R
d, i = 1, · · · , l + u} be the training set, where {xi, yi}l

i=1

are labeled samples with labels yi ∈ {−1,+1}, and the remaining {xi}l+u
i=l+1 have

no labels. A graph needs to be established to specify the adjacency relationships
among samples, and then LapSVM estimates a membership function f(x) on
the graph, by solving the following optimization problem:

min
f∈HK

J =
1
l

l∑

i=1

ξi + C1‖f‖2K + C2

l+u∑

i,j=1

Wij(f(xi) − f(xj))2

s.t. yif(xi) ≥ 1 − ξi, ξi ≥ 0, ∀i = 1 . . . l;

(1)

www.loni.usc.edu/ADNI
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where Wij is the weight of the edge that connects xi and xj in the data adjacency
graph. ξi are slack variables to penalize misclassifications. ‖f‖2K is the squared
norm of f in the Reproducing Kernel Hilbert Space (RKHS). C1 and C2 are
hyperparameters controlling the contributions of the two regularization terms.

2.1 Feature Transformation Through Coherent Point Drifting
(CPD)

For distance or dissimilarity based classification algorithms, the application of
a smooth nonlinear transformation across the space is equivalent to assigning
spatially varying metrics at different locations. Our goal is to learn such a trans-
formation so that the displaced samples would better conform to the data dis-
tribution assumed by the ensuing classifier, LapSVM.

In this work, the CPD model is chosen as the geometric model to drive the
deformations. CPD was originally designed for landmark matching. For two sets
X and U , each with n points of dimension d, CPD seeks a continuous velocity
function v(x) : Rd → R

d that moves the source dataset X towards the target
U . Estimation of an optimal v(·) is formulated under Tikhonov regularization
framework: R[v] = 1

2

∑n
i=1[ui − (xi + v(xi))]2 + 1

2λ||Dv||2, where D is a linear
differentiation operator, || · || is the norm operation, and λ controls the strength
of the regularization term. CPD chooses a particular regularization term whose
kernel function is a Gaussian low-pass filter. According to [10], the optimal solu-
tion v(x) in CPD can be written in the matrix format as:

v(xi) = Ψ

⎛

⎝
G(xi,x1)

· · ·
G(xi,xn)

⎞

⎠ = ΨG(xi,X ), (2)

where Ψ (size d × n) is the weight matrix for the Gaussian kernel functions.

G(xi,xj) = e− (xi−xj)2

2σ2 , where σ is the width of the Gaussian filter.

2.2 CPD Based LapSVM (CPD-LapSVM)

Allowing samples to be moved, our proposed CPD-LapSVM is designed to learn
a spatial transformation and a classifier at the same time. Let x0

i be the original
position of a sample xi. Through the motion regulated by CPD, xi will be moved
to a new location x1

i :

x1
i = x0

i + v(x0
i ) = x0

i + ΨG(x0
i ,X 0) (3)

The CPD transformation can be applied in both the original input space and
the feature space after kernelization. The classifier to be learned is a LapSVM
defined on the CPD-transformed samples: f(xi) = wT x1

i + b.
Under the input space, our linear version CPD-LapSVM (note: “linear” refer

to decision boundary; the transformation is nonlinear) is built on the LapSVM
objective function in Eq. (1). Two modifications are made. First, quadratically
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smoothed hinge loss functions, ξi = max[0, 1 − yif(x1
i )]

2, are included as slack
variables to convert the constrained optimization in Eq. (1) to an unconstrained
optimization problem. The choice of quadratic form is to make the computation
of derivatives more convenient. Second, to reduce the chance of overfitting, we
add the squared Frobenius norm ‖Ψ‖2F , to penalize non-smoothness in the esti-
mated transformations. With these two added terms, our linear CPD-LapSVM
minimizes the following updated objective function to find the optimal transfor-
mation and classifier, specified by Ψ and {w, b}, respectively:

min
Ψ,w,b

J =
1
l

l∑

i=1

max[0, 1 − yi(wT x1
i + b)]2 + C1‖w‖2K + C2‖Ψ‖2F

+ C3

l+u∑

j,k=1

Wjk(wT x1
j − wT x1

k)2
(4)

where C1, C2 and C3 are trade-off hyperparameters. In this paper, we choose
full graphs as the neighborhood adjacency graphs, where every sample pair is
assumed to be connected. The edge weight of each connection is calculated as
Wjk = exp(− 1

2α2 (‖x1
j − x1

k‖2)), where α is the width of heat kernel function.
To solve Eq. (4), an EM-like iterative strategy is applied to update Ψ and

{w, b} alternatingly. First, when Ψ is fixed, Eq. (4) is reduced to the original
LapSVM, performing on deformed training samples X 1. A standard LapSVM
solver, as in [2], can be used to search for the optimal classifier. Second, with
{w, b} fixed, the classification decision boundary becomes explicit. The updated
objective function now only depends on parameter Ψ (note: x1

i is also parame-
terized with Ψ):

min
Ψ

J =
1
l

l∑

i=1

max[0, 1 − yi(wT x1
i + b)]2

+ C2‖Ψ‖2F + C3

l+u∑

j,k=1

Wjk(wT x1
j − wT x1

k)2
(5)

The objective Eq. (5) is differentiable w.r.t. Ψ. In this work, we used the
“fmincon” function in Matlab, a gradient-based nonlinear programming solver,
to search for the optimal Ψ.

Our SSL framework is a general paradigm. While the above derivations are
based on a particular classifier, LapSVM, integrating CPD with many other SSL
solutions is often straightforward. We can commonly use CPD to parameterize
data samples at new locations, and apply the same two-stage EM procedure to
estimate an optimal pair of transformation and classifier jointly. For example,
CPD can be integrated with another SSL solution, Transductive SVM (CPD-
TSVM), in a similar fashion as CPD-LapSVM. In addition, it should be noted
that our model is different from kernel learning methods, where the kernel bases
need to be pre-defined and only their weights are learned from the training
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samples. Our CPD model realizes a fully deformable nonlinear feature transfor-
mation, and it is directly estimated from the training samples.

Kernelization of CPD-LapSVM. The proposed CPD-LapSVM we intro-
duced so far is developed and therefore applicable under the input space. It
can be further kernelized to deal with more complicated data. In this paper, we
adopt a kernel principal component analysis (KPCA) based framework in [18].
By first projecting the entire input samples into a kernel feature space intro-
duced by KPCA, we can train CPD-LapSVM under the kernel space to learn
both Ψ and {w, b}, in the same way as it is carried out under the original input
space. No derivation of any new mathematical formula is needed. The detailed
procedures can be found in [18].

3 Experimental Results

In this section, we evaluate the proposed CPD-LapSVM through two binary
classification problems: AD vs. NC with MCI subjects as unlabeled samples, and
progressive MCI (pMCI) vs. stable MCI (sMCI) with unknown MCI (uMCI) as
unlabeled samples (the definition of “unknown MCI” will be given later). The
data used in the experiment were obtained from ADNI. We focus on the features
extracted from baseline T1 weighted MRIs. Overall, 185 patients with AD, 242
with MCI and 227 with NC (654 subjects in total) were used in our experiments.

The features utilized in this study are 113 cortical and sub-cortical regional
volumes under “Cross-Sectional Processing aseg” files, available under ADNI.
The anatomical structures include left/right Hippocampi, left/right Caudates,
etc. The whole list of the structure names can be found in one of our previous
studies [12]. All features have been normalized by the corresponding whole brain
volumes obtained from “Intracranial Volume Brain Mask” files.

The performance of various classification solutions is compared based on
four measures: classification accuracy (ACC), sensitivity (SEN), specificity
(SPE), and area under the receiver operating characteristic curve (AUC). Three
semi-supervised methods: Laplacian regularized least squares (LapRLS), Lapla-
cian SVM (LapSVM) and Optimized LapSVM (OLapSVM) [6] are utilized
in all experiments as the competing solutions. For each solution, both lin-
ear and RBF Gaussian kernel versions are evaluated. In the end, we also
compare our method with five state-of-the-art pMCI/sMCI classification solu-
tions [4,5,9,14,17], which also used baseline T1-weighted MRIs from the ADNI
database.

3.1 AD vs. NC with MCI as Unknown

The first set of experiments classify AD and NC subjects, with MCI subjects as
unlabeled samples. The AD and NC groups, which are used as labeled subjects,
were randomly divided into four folds for cross validation (2 for training, 1 for
validation and 1 for testing). All MCI subjects were shared as unlabeled data
across folds.
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Table 1. Performance comparison of CPD-LapSVM with other methods for AD vs.
NC classifications. Boldface denotes the best ACC & AUC performance.

AD vs. NC

Methods Linear kernel RBF kernel

ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)

LapRLSC 83.65 83.11 84.02 89.56 84.91 79.05 89.72 90.34

LapSVM 84.11 83.21 84.78 89.98 84.77 79.80 88.76 90.40

OLapSVM 85.36 84.26 86.38 90.89 86.38 81.75 90.03 91.69

CPD-LapSVM 86.33 85.77 86.82 91.44 87.47 81.73 91.97 92.89

The involved hyper-parameters C1, C2 and C3 are all chosen from {2−5 ∼
210} over the cross validations. C1 and C2 are the slackness tradeoff and graph
regularization parameters used in all models. C3 is the regularization parameter,
only used in our model. All the RBF kernel versions of the methods have an
additional parameter to tune: the RBF Gaussian kernel width σ, which is also
chosen from {2−5 ∼ 210} in our experiments.

Table 1 summarizes the AD vs. NC classification results for all methods,
averaged from 50 random repeats. It is evident that our CPD-LapSVM achieves
the highest ACC and AUC scores among the competing methods, for both the
linear and kernel versions. It is also noteworthy that the linear version CPD-
LapSVM obtains comparable results with the kernel versions of other competing
methods. The standard deviations of the measures were also computed; however,
they are not included in the table mainly due the page limit.

3.2 PMCI vs. sMCI with uMCI as Unknown

The second set of experiments are designed to predict AD conversion from MCI
patients through classification of pMCI vs sMCI, with uMCI as unlabeled sam-
ples. If the initial diagnosis was MCI at baseline, but the follow-up diagnosis are
missing or not stable, the patient is categorized as “unknown MCI”. Overall,
110 patients with pMCI, 38 with sMCI and 227 with uMCI (242 MCI subjects
in total) were used in our experiments.

The same experimental setting and hyperparameter selection approach as
in the previous AD/NC classifications are adopted here. uMCI subjects were
shared as unlabeled data during 4-fold cross validation. The results are reported
in Table 2. Similar results as that in AD vs. NC classification can be observed.
The ACC score of our linear-version CPD-LapSVM is significantly higher than
all other methods. Comparing with LapSVM, which is the host solution of CPD-
LapSVM, the ACC improvement on LapSVM is from 67.09% to 69.12%. For RBF
Gaussian kernel versions, the highest ACC and AUC scores were both achieved
by our model.

In order to investigate the effect of the number of labeled data on our method,
a test was performed by decreasing the number of revealed labels. The ratio of
revealed labels are decreased as: {100%, 80%, 60%, 40% and 20%}. The ACC
scores with different labeled sample ratios are shown in Fig. 1. The Solid lines
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Table 2. Performance comparison of CPD-LapSVM with other methods for pMCI vs.
sMCI classifications. Boldface denotes the best ACC & AUC performance.

pMCI vs. sMCI

Methods Linear kernel RBF kernel

ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)

LapRLSC 67.09 62.66 80.42 79.11 76.09 92.82 29.61 76.49

LapSVM 66.37 61.86 79.61 79.03 76.14 88.70 40.17 76.46

OLapSVM 67.40 63.69 78.26 79.60 76.54 83.28 55.34 76.79

CPD-LapSVM 69.12 67.92 72.03 78.07 78.27 86.38 52.32 78.58

Fig. 1. ACC score w.r.t different ratio of revealed labels in pMCI vs. sMCI
classifications

and prefix “r” denote the results from kernelized classifiers, while dashed lines
and “l” are for linear classifiers. It is clear that the ACC values of our CPD-
LapSVM with both linear and RBF Gaussian kernel are always performing the
best.

Finally, we summarize several recent works in pMCI vs. sMCI classifica-
tion as a comparison in Table 3. To best of our knowledge, the best result so
far was achieved by [14]. Among the methods using baseline MRIs only, our
work achieved the best performance in ACC score. However, it should be noted
that direct comparisons of the published neuroimaging algorithms are often not
feasible. When different datasets and experimental setups are utilized, higher
accuracy or better results over a competing solution ought to be interpreted as
more of a side evidence of the model efficacy, rather than the proof of superiority
for head-to-head competitions.

As for the experiment and data setup, there could be different approaches to
include the unlabeled samples. For example, MCI can be used as unknown for
AD/NC [5,19], AD/NC as unknown for pMCI/sMCI [17], and uMCI as unknown
for pMCI/sMCI [5,9]. We chose the last scheme, but other different settings can
be certainly carried out and tested.
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Table 3. Comparisons of pMCI vs. sMCI classification solutions using ADNI database.
Boldface denotes the best performance for the measure of ACC & AUC.

pMCI vs. sMCI

Methods ACC (%) SEN (%) SPE (%) AUC (%)

Ye et al. [17] 56.10 94.10 40.80 73.00

Filipovych et al. [5] – 79.40 51.7 69.00

Moradi et al. [9] 74.74 88.85 51.46 76.61

Cheng et al. [4] 73.80 69.00 77.40 79.60

Suk et al. [14] 74.82 70.93 78.82 75.89

CPD-LapSVM 78.27 86.38 52.32 78.58

4 Conclusions

In this paper, we have proposed a nonlinear feature transformation based semi-
supervised learning strategy to enhance the prediction of MCI-AD conversion
through MR images. The proposed CPD-LapSVM model takes advantage of the
space deformations regulated by CPD to push the data samples towards better
linear separability, which leads to improved LapSVM classification performance.
Exploring more transformation models is the directions of our future efforts.
We are also interested in applying the proposed strategy to other neuroimage
analysis problems.
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