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sebastian.winklhofer@usz.ch

4 Computational Pathology, Memorial Sloan Kettering Cancer Center,
New York, USA

schueffp@mskcc.org
5 Horten Centre for Patient Oriented Research and Knowledge Transfer,
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Abstract. The most common reason for spinal surgery in elderly
patients is lumbar spinal stenosis (LSS). For LSS, treatment decisions
based on clinical and radiological information as well as personal expe-
rience of the surgeon show large variance. Thus a standardized support
system is of high value for a more objective and reproducible decision.
In this work, we develop an automated algorithm to localize the steno-
sis causing the symptoms of the patient in magnetic resonance imaging
(MRI). With 22 MRI features of each of five spinal levels of 321 patients,
we show it is possible to predict the location of lesion triggering the
symptoms. To support this hypothesis, we conduct an automated analy-
sis of labeled and unlabeled MRI scans extracted from 788 patients. We
confirm quantitatively the importance of radiological information and
provide an algorithmic pipeline for working with raw MRI scans. Both
code and data are provided for further research at www.spinalstenosis.
ethz.ch.

Keywords: Machine learning · Deep learning · Lumbar spinal stenosis

1 Introduction

The lumbar spine consists of the five vertebrae (levels or segments) L1–L5. The
vertebral discs connect adjacent levels and are denoted as L1/L2, L2/L3, L3/L4,
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Fig. 1. Examples of T2-weighted MRI. (a) The five segments are highlighted yellow in
a sagittal scan. (b) Axial scan of a patient without symptoms and without narrowing
of the spinal channel (white spot in the center). (c) Example with extreme narrowing.

L4/L5, L5/S1, where S1 is the first vertebra of the underlying sacral region (see
Fig. 1). Lumbar Spinal Stenosis (LSS) is the most common indicator for spine
surgery in patients older than 65 years [1]. The North American Spine Society
defines LSS as “[...] diminished space available for the neural and vascular ele-
ments in the lumbar spine secondary to degenerative changes in the spinal canal
[...]” [2]. Symptoms such as gluteal and/or lower extremity pain and/or fatigue
might occur, possibly associated with back pain. Magnetic resonance imaging
(MRI, illustrated in Figs. 1(b) and (c)) and the patient’s clinical course con-
tribute to diagnosis and treatment formulation. When conservative treatments
such as physiotherapy or steroid injections fail, decompression surgery is fre-
quently indicated [1]. Depending on the clinical presentation of the patient and
corresponding imaging findings, surgeons decide which segments to operate.

This decision process exhibits wide variability [3,4], while associations
between imaging and symptoms are still not entirely clear [5]. These issues
motivate the search for objective methods to help in surgery planning. Since
the definition of LSS implies anatomic abnormalities, MRI plays a fundamental
role in diagnosis [6]. Andreisek et al. [7] identified 27 radiological criteria and
parameters for LSS. However, correlations between imaging procedures, clinical
findings and symptoms is still unclear, and research efforts show contradictory
results [8,9].

This paper comprehensively determines the important role of radiological
parameters in LSS surgery planning, in particular by modeling surgical decision-
making: to the best of our knowledge, no machine learning approach has been
applied in this direction before. In Sect. 2, we automatically predict surgery loca-
tions with 22 manual radiological features comparing five different classifiers. We
obtain accuracies of 85.4% using random forests and show features associated
with stenosis are commonly chosen by all classifiers. In Sect. 3, the highly het-
erogeneous MRI dataset is preprocessed and a convolutional neural network and
convolutional autoencoder are trained to accomplish the same task as before,
without any knowledge of the underlying structure of LSS. The automatic pre-
processing of raw MRI scans is a key contribution of this work and code with
examples will be released in the final version. Both algorithms achieve accuracies
of 69.8% and 70.6%, respectively, in mimicking surgeons’ decisions, showing the
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high relevance of radiological features in LSS treatment. Finally, we conclude
with a discussion in Sect. 4.

2 Surgical Prediction from Numerical Dataset

The Numerical Dataset. Radiological T1-weighted and T2-weighted scans
from 788 LSS patients have been collected in a multi-center study by Horten
Zentrum (Zürich, CH). For every segment and patient, radiologists manually
scored 6 quantitative features (e.g. area of spinal canal in mm2) and 16 qual-
itative features (e.g. severity grade of compromise of a given vertebral region)
known to be most relevant for assessing stenosis (a subset of the ones identified
in [7]), forming the “numerical” dataset. Notice only one reading per image is
available. A description of the features can be found in the Supplement (A.1).
431 of 788 patients underwent surgery. The Numeric Rating Scale (NRS) [10] for
pain assessment was employed to understand whether the intervention improved
a certain patient’s condition or not. NRS differences larger than 2 points before
and six months after surgery were considered as improvement, as failure other-
wise. In total, 321 of 431 patients exhibited improvement of NRS after surgery.
As there is no information gain from unsuccessful operations, the following analy-
sis addresses the subset of the 321 improved patients, yielding a total of 1385
segments as data points.

Methods. We consider every segment independently as a data vector x consist-
ing of its 22 feature values. The target is represented by a binary variable y (to
operate/not to operate). This binary classification framework is tackled with the
following algorithms: K-nearest neighbors (KNN), linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), support vector machine (SVM),
and random forest (RF). Implementations from the scikit-learn [11] library are
employed. The area under the receiver operating characteristic (ROC) curve is a
natural choice for evaluating binary classifiers’ performances, and it is combined
with 20-fold cross validation.
To evaluate the influence of individual features, forward selection and backward
selection are employed to choose the best 3, 5, 8, 10, 12, 15 and 18 features: with
5 different classifiers, a single feature can be chosen for a total of 70 times (7
sets × 5 classifiers × 2 algorithms). Thus we can evaluate how often a feature
is considered to be among the most relevant ones for surgery prediction. This
procedure is again validated through 20-fold cross validation.

Results. For parameter-optimized binary classifiers, box plots describing the
area under the ROC curve (AUC) obtained with 20-fold cross validation are
shown in Fig. 2(a). The best results are achieved with an optimized random for-
est classifier: the mean over the AUC returned by the cross validation is 85.4%,
with a standard deviation of 3.26%. The precision obtained here is particu-
larly significant if we consider the relatively low agreement rates between doc-
tors in determining treatments for LSS [12,13]. Feature selection indicates that



MRI-Based Surgical Planning for Lumbar Spinal Stenosis 119

SegCentralZone (assesses the compromise of the central zone of the vertebra),
SegCSarea (area of the section of the spinal cord in mm2) and SegFluidSign
(relation from fluid to cauda equina) as the most important features for assess-
ing stenosis: these are chosen in 88.57%, 87.14% and 70.00%, respectively, of
the total trials with feature selection algorithms (total ranking in Fig. 2(b)). All
three features are known to be strongly related to spinal stenosis [7]. The results
show that radiological data actually helps in assessing LSS and planning surgical
treatments.
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Fig. 2. Summary of the classifiers for segmental surgery prediction. (a) The box plots
of the 20-fold cross validation. All classifiers show a strong signal between radiological
data and surgical treatments. (b) Feature ranking as described in the text. The three
most important features are SegCentralZone, SegCSarea and SegFluidSign.

3 Surgical Prediction from Radiological Images

Fully automated MRI-based surgery planning would be a helpful tool, as it can
substantially speed up the process by skipping manual scoring while reducing
the variability of human assessment. Therefore, we aim to directly learn features
from raw MRI scans.

The Image Dataset. The above described dataset of 788 LSS patients contains
a great variety of T1-weighted and T2-weighted sagittal, coronal and axial series
scans (see Fig. 3 for four typical examples). Since the images come from seven
different institutions, the dataset is heterogeneous: not all types of MRI scans
listed above are always available, and often only a small subset of the segments
is accessible. Further, different machines vary in resolution (from 320× 320 to
1024× 1024 pixels) and scanning frequency (0.2 to 1 scan/mm).

To keep the same segment-wise approach as before, we decide to employ only
the T2-weighted axial scans (e.g. Fig. 3(c)), as they picture the whole lumbar
spine and can be easily chopped into single segment sub-series. T2-weighted
imaging pictures the spinal canal white in contrast to T1-weighted images, in
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(a) (b) (c) (d)

Fig. 3. Typical examples of the different MRI scans: (a)–(c) T2-weighted (a, sagittal;
b, coronal; c, axial), (d) T1-weighted axial.

which the canal is dark and hardly visible (Fig. 3(d)). Further, T2-weighted axial
scans are the most common series in the dataset. The image dataset includes
the same 321 operated patients with improved NRS.

Image Preprocessing & Data Augmentation. All images are cropped and
resized to 128 × 128 pixels, in order to keep the central section. Because of the
various scanning frequencies, we then linearly interpolate to a desired number
of equally spaced slices: to sufficiently describe the vertebral disc, yet keep the
data structure simple, we use four subimages for each segment. We employed
following data augmentation: rotation by a random angle α ∈ [−10◦; 10◦];
sagittal mirroring; inversion of the order of the slides (since the MRI machine can
scan upwards or downwards); application of random Gaussian noise (zero-mean
and 5% standard deviation); random brightness alteration (maximum alteration
at 5%). Each image is augmented 20 times by this pipeline, each time every
augmentation technique is randomly applied or not applied.

Methods. Deep learning algorithms have already shown great success in a
variety of image recognition problems. Convolutional Neural Networks (CNN,
implementation details can be found in [14]) are image processing algorithms
that are able to extract image features regardless of their position, which is
especially useful in our case since scans are not always optimally centered on the
spine. Due to the small sample size, a simple architecture is needed to prevent
overfitting. Our CNN has the following structure: first convolutional layer
(filters size 5× 5, 128 masks), followed by a max-pooling layer; second convo-
lutional layer (filters size 5× 5, 64 masks), followed by a max-pooling layer; a
fully connected layer, 2048 nodes; a further fully connected layer, 1024 nodes.
Rectifier Linear Units (ReLU) are a common choice for this kind of network. The
network structure is illustrated in Fig. 4, step 3. The cost function minimized
during training is the mean of the softmax cross-entropy function between the
output x and the actual label vector z, L = −z log σ(x) − (1 − z) log [1 − σ(x)],
where σ(x) is the softmax function. The optimizer used for the minimization is
AdaGrad [15]. Implementation is done in Python using TensorFlow [16].

The major inherent vice in this approach is the need of labeled examples.
We learn from 1576 labeled scanned segments from 321 successfully operated
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patients. On the other hand, if we were able to include unlabeled segments in
the analysis, we could take advantage of all 4031 segments from the 788 patients.
Unsupervised learning methods do not need labeled examples. The autoencoder
algorithm [18] is used to reduce the dimensionality of the problem: it consists
of an encoder function h = f(x) and a decoder function r = g(h). The autoen-
coder is trained to copy the input to the output, but it is not given the resources
to do so exactly (undercompleteness property). In this way an approximation
of the input is returned and the model is forced to prioritize the most relevant
aspects of the input. As the autoencoder does not need labels for the surgery, all
4031 segments can be used. An autoencoder sufficient for our needs can be
built by mirroring the CNN and learning how to “invert” the convolutional and
the max pooling layers [17] into deconvolutional layers: first convolutional layer
(filters size 5× 5, 128 masks), followed by a max-pooling layer; second convolu-
tional layer (filters size 5× 5, 64 masks), followed by a max-pooling layer; a fully
connected layer, 1024 nodes; a fully connected layer, 128 nodes (bottleneck); a
fully connected layer, 1024 nodes; first unpooling and deconvolutional layer (fil-
ters size 5 × 5, 64 masks); second deconvolutional layer (filters size 5 × 5, 128
masks). This autoencoder reconstructs the original 3D image, and in the middle
layer (the bottleneck), we find a 128-number code that identifies each image suf-
ficiently for its reconstruction. We train the autoencoder on all unlabeled images
to minimize the difference tensor J = (Xorig −Xreconstr)2, where Xorig is the orig-
inal image and Xreconstr is its reconstruction. After training, the autoencoder
is used to encode all labeled images and their 128-number codes are used as
features in the same classification experiments as in Sect. 2.

Fig. 4. Proposed computing pipeline from preprocessing of raw MRI pictures to
learning of surgical planning

Results. The complete pipeline from the MRI preprocessing to the surgery
classification is depicted in Fig. 4. For both CNN and autoencoder, the available
image datasets are split into training and test set with a 80/20 ratio. The training
sets are augmented as previously described and the networks are trained for 100
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(a) (b) (c) (d)

Fig. 5. Image reconstruction examples by the autoencoder. (a), (c): 2 out of 4 slices of
the original 3D image. (b), (d): Reconstructed image slices.

epochs. Learning curves are available in the Supplement (A.2). On the test set,
the CNN reaches an AUC of 69.8%. This is significantly lower than the AUC
obtained with the numerical dataset, but it is still confirming the existence of
a signal in the MRI images, and enforces the idea that radiological data are
linked to stenosis diagnosis and treatment. Considering the small size of the
training data, we are confident that higher precisions can be obtained if the
present dataset is improved and expanded. The autoencoder learns successfully
to reconstruct the images (Fig. 5). While some details are missed, it is noticeable
that the dimension of a picture is now extremely reduced from 128 × 128 × 4 =
65536 numbers to 128. When training and testing the binary classifiers from
Sect. 3 with the codes from the labeled segments, the highest mean AUC for a
20-fold cross validation test is given by a optimized LDA classifier, at 70.6%,
with a corresponding standard deviation of 6.69%. The mild improvement can
be explained by the extension of the dataset to the non-labeled segments.

4 Discussion

While the influence of MRI scans on surgical decisions for LSS was previously
unclear, our results quantitatively confirm the importance of medical imaging in
LSS diagnosis and treatment planning. We started by effectively modeling sur-
gical decision-making for lumbar spine stenosis through binary classifiers, on the
sole basis of manually-assessed radiological features. To reduce human bias and
errors in the selection and calculation of features, we developed an automatic
pipeline (Fig. 4) to work on raw MRI scans. To the best of our knowledge these
are the first and initial steps towards benchmarking LSS. Supervised (CNN)
and semi-supervised (convolutional autoencoders) deep learning algorithms were
trained on the transformed images and accuracies around 70% on surgical plan-
ning were achieved. Compared to the results with the numerical dataset, the
differences in accuracy (of about 15%) can be justified by the modest number of
MRI scans. We are confident that further systematic efforts aimed at enlarging
the image catalog could significantly improve the classification results and thus
patient outcome.
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