
GSplit LBI: Taming the Procedural Bias
in Neuroimaging for Disease Prediction

Xinwei Sun1, Lingjing Hu2(B), Yuan Yao3,4(B), and Yizhou Wang5

1 School of Mathematical Science, Peking University, Beijing 100871, China
2 Yanjing Medical College, Capital Medical University, Beijing 101300, China

hulj@ccmu.edu.cn
3 Hong Kong University of Science and Technology, Hong Kong, Hong Kong

4 Peking University, Beijing, China
yuany@ust.hk

5 National Engineering Laboratory for Video Technology,

Key Laboratory of Machine Perception, School of EECS,

Peking University, Beijing 100871, China

Abstract. In voxel-based neuroimage analysis, lesion features have been
the main focus in disease prediction due to their interpretability with
respect to the related diseases. However, we observe that there exist
another type of features introduced during the preprocessing steps and
we call them “Procedural Bias”. Besides, such bias can be leveraged
to improve classification accuracy. Nevertheless, most existing models
suffer from either under-fit without considering procedural bias or poor
interpretability without differentiating such bias from lesion ones. In this
paper, a novel dual-task algorithm namely GSplit LBI is proposed to
resolve this problem. By introducing an augmented variable enforced
to be structural sparsity with a variable splitting term, the estimators
for prediction and selecting lesion features can be optimized separately
and mutually monitored by each other following an iterative scheme.
Empirical experiments have been evaluated on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The advantage of proposed
model is verified by improved stability of selected lesion features and
better classification results.

Keywords: Voxel-based structural magnetic resonance imaging ·
Procedural bias · Split Linearized Bregman Iteration · Feature selection

1 Introduction

Usually, the first step of voxel-based neuroimage analysis requires preprocess-
ing the T1-weighted image, such as segmentation and registration of grey mat-
ter (GM), white matter (WM) and cerebral spinal fluid (CSF). However, some
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systematic biases due to scanner difference and different population etc., can be
introduced in this pipeline [2]. Part of them can be helpful to the discrimination
of subjects from normal controls (NC), but may not be directly related to the
disease. For example in structural Magnetic Resonance Imaging (sMRI) images
of subjects with Alzheimer’s Disease (AD), after spatial normalization during
simultaneous registration of GM, WM and CSF, the GM voxels surrounding
lateral ventricle and subarachnoid space etc. may be mistakenly enlarged caused
by the enlargement of CSF space in those locations [2] compared to normal tem-
plate, as shown in Fig. 1. Although these voxels/features are highly correlated
with disease, they can’t be regarded as lesion features in an interpretable model.
In this paper we refer to them as “Procedural Bias”, which should be iden-
tified but is neglected in the literature. We observe that it can be harnessed in
our voxel-based image analysis to improve the prediction of disease.

Fig. 1. The overlapped voxels among top 150 negative value voxels in each fold of βpre

at the time corresponding to the best average prediction result in the path of GSplit
LBI using 10-fold cross-validation. For subjects with AD, they represent enlarged GM
voxels surrounding lateral ventricle, subarachnoid space, edge of gyrus, etc.

Together with procedural bias, the lesion features are vital for prediction
and lesion regions analysis tasks, which are commonly solved by two types of
regularization models. Specifically, one kind of models such as general losses with
l2 penalty, elastic net [13] and graphnet [5] select strongly correlated features to
minimize classification error. However, such models don’t differentiate features
either introduced by disease or procedural bias and may also introduce redundant
features. Hence, the interpretability of such models are poor and the models are
prone to over-fit. The other kind of models with sparsity enforcement such as
TV-L1 (Combination of Total Variation [9] and L1) and particularly n2 GFL [12]
enforce strong prior of disease on the parameters of the models introduced in
order to capture the lesion features. Although such features are disease-relevant
and the selection is stable, the models ignore the inevitable procedural bias,
hence, they are losing some prediction power.

To incorporate both tasks of prediction and selection of lesion features, we
propose an iterative dual-task algorithm namely Generalized Split LBI (GSplit
LBI) which can have better model selection consistency than generalized lasso
[11]. Specifically, by the introduction of variable splitting term inspired by Split
LBI [6], two estimators are introduced and split apart. One estimator is for
prediction and the other is for selecting lesion features, both of which can be
pursued separately with a gap control. Following an iterative scheme, they will
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be mutually monitored by each other: the estimator for selecting lesion features
is gradually monitored to pursue stable lesion features; on the other hand, the
estimator for prediction is also monitored to exploit both the procedural bias
and lesion features to improve prediction. To show the validity of the proposed
method, we successfully apply our model to voxel-based sMRI analysis for AD,
which is challenging and attracts increasing attention.

2 Method

2.1 GSplit LBI Algorithm

Our dataset consists of N samples {xi, yi}N
1 where xi ∈ R

p collects the ith

neuroimaging data with p voxels and yi = {±1} indicates the disease status (−1
for Alzheimer’s disease in this paper). X ∈ R

N×p and y ∈ R
p are concatenations

of {xi}i and {yi}i. Consider a general linear model to predict the disease status
(with the intercept parameter β0 ∈ R),

log P (yi = 1|xi) − log P (yi = −1|xi) = xT
i βpre + β0. (2.1)

A desired estimator βpre ∈ R
p should not only fit the data by maximizing the log-

likelihood in logistic regression, but also satisfy the following types of structural
sparsity: (1) the number of voxels involved in the disease prediction is small, so
βpre is sparse; (2) the voxel activities should be geometrically clustered or 3D-
smooth, suggesting a TV-type sparsity on DGβpre where DG is a graph difference
operator1; (3) the degenerate GM voxels in AD are captured by nonnegative
component in βpre. However, the existing procedural bias may violate these a
priori sparsity properties, esp. the third one, yet increase the prediction power.

To overcome this issue, we adopt a variable splitting idea in [6] by intro-
ducing an auxiliary variable γ ∈ R

|V |+|E| to achieve these sparsity requirements
separately, while controlling the gap from Dβpre with penalty Sρ(βpre, γ) :=
‖Dβpre − γ‖22 := ‖βpre − γV ‖22 + ‖ρDGβpre − γG‖22 with γ =

[
γT

V γT
G

]T and

D =
[
I ρDT

G

]T . Here ρ controls the trade-off between different types of spar-
sity. Our purpose is thus of two-folds: (1) use βpre for prediction; (2) enforce
sparsity on γ. Such a dual-task scheme can be illustrated by Fig. 2.

To implement it, we generalize the Split Linearized Bregman Iteration (Split
LBI) algorithm in [6] to our setting with generalized linear models (GLM) and
the three types of structural sparsity above, hence called Generalized Split LBI
(or GSplit LBI). Algorithm 1 describes the procedure with a new loss:

�(β0, βpre, γ; {xi, yi}N
1 , ν) := �(β0, βpre; {xi, yi}N

1 ) +
1
2ν

Sρ(βpre, γ), (2.2)

where �(βpre; {xi, yi}N
1 ) is the negative log-likelihood function for GLM and ν >

0 tunes the strength of gap control. The algorithm returns a sequence of estimates
1 Here DG : R

V → R
E denotes a graph difference operator on G = (V, E), where V is

the node set of voxels, E is the edge set of voxel pairs in neighbour (e.g. 3-by-3-by-3),
such that DG(β)(i, j) := β(i) − β(j).
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Fig. 2. Illustration of GSplit LBI. The gap between βpre for fitting data and γ for
sparsity is controlled by Sρ(βpre, γ). The estimate βles, as a projection of βpre on
support set of γ, can be used for stable lesion features analysis when ν → 0 (Sect. 3.2).
When ν � 0 (Sect. 3.1) with appropriately large value, βpre can be used for prediction
by capturing both lesion features and procedural bias.

Algorithm 1. GSplit LBI
1: Input: Loss function �(β0, βpre, γ; {xi, yi}N

i=1, ν), parameters ν, ρ, κ, α > 0.
2: Initialize: k = 0, tk = 0, βk

0 = 0, βk
les = 0, βk

pre = 0, γk
V = 0p, γk

G = 0m, zk
V = 0p,

zk
G = 0m and Sk := supp(γk) = ∅.

3: Iteration
4: βk+1

0 = βk
0 − κα�β0 �(βk

0 , βk
pre, γ

k; {xi, yi}N
1 , ν)

5: βk+1
pre = βk

pre − κα�βpre �(βk
0 , βk

pre, γ
k; {xi, yi}N

1 , ν)

6: zk+1 = zk − α�γ �(βk
0 , βk

pre, γ
k; {xi, yi}N

1 , ν)
7: γk+1

V = κ · S+(zk+1
V , 1), where S+(x, 1) = max(x − 1, 0)

8: γk+1
G = κ · S(zk+1

G , 1), where S(x, 1) = sign(x) · max(|x| − 1, 0)
9: βk+1

les = PSk+1βk+1
pre , where PS = Pker(DSc ) = I − D†

ScDSc

10: tk+1 = (k + 1)α

11: Output: {βk
0 , βk

pre, β
k
les, γ

k}, where γk+1 =

[
γk+1

V

γk+1
G

]
and zk+1 =

[
zk+1

V

zk+1
G

]
.

as a regularization path, {βk
0 , βk

pre, γ
k, βk

les}k≥0. In particular, γk shows a variety
of sparsity levels and βk

pre is generically dense with different prediction powers.
The projection of βk

pre onto the subspace with the same support of γk gives
estimate βk

les, satisfying those a priori sparsity properties (sparse, 3D-smooth,
nonnegative) and hence being regarded as the interpretable lesion features for
AD. The remainder of this projection is heavily influenced by procedural bias; in
this paper the non-zero elements in βk

pre which are negative (−1 denotes disease
label) with comparably large magnitude are identified as procedural bias, while
others with tiny values can be treated as nuisance or weak features. In summary,
βles only selects lesion features; while βpre also captures additional procedural
bias. Hence, such two kinds of features can be differentiated, as illustrated in
Fig. 2.



GSplit LBI: Taming the Procedural Bias in Neuroimaging 111

2.2 Setting the Parameters

A stopping time at tk (line 10) is the regularization parameter, which can be
determined via cross-validation to minimize the prediction error [7]. Parameter
ρ is a tradeoff between geometric clustering and voxel sparsity. Parameter κ, α
is damping factor and step size, which should satisfy κα ≤ ν/κ(1 + νΛH + Λ2

D)
to ensure the stability of iterations. Here Λ(·) denotes the largest singular value
of a matrix and H denotes the Hessian matrix of �(β0, βpre; {xi, yi}N

1 ).
Parameter ν balances the prediction task and sparsity enforcement in feature

selection. In this paper, it is task-dependent, as shown in Fig. 2. For prediction
of disease, βpre with appropriately larger value of ν may increase the prediction
power by harnessing both lesion features and procedural bias. For lesion features
analysis, βles with a small value of ν is helpful to enhance stability of feature
selection. For details please refer to supplementary information.

3 Experimental Results

We apply our model to AD/NC classification (namely ADNC) and MCI (Mild
Cognitive Impairment)/NC (namely MCINC) classification, which are two fun-
damental challenges in diagnosis of AD. The data are obtained from ADNI2

database, which is split into 1.5 T and 3.0T (namely 15 and 30) MRI scan mag-
netic field strength datasets. The 15 dataset contains 64 AD, 208 MCI and 90
NC; while the 30 dataset contains 66 AD and 110 NC. DARTEL VBM pipeline
[1] is then implemented to preprocess the data. Finally, the input features con-
sist of 2,527 8 × 8 × 8 mm3 size voxels with average values in GM population
template greater than 0.1. Experiments are designed on 15ADNC, 30ADNC and
15MCINC tasks.

3.1 Prediction and Path Analysis

10-fold cross-validation is adopted for classification evaluation. Under exactly
the same experimental setup, comparison is made between GSplit LBI and other
classifiers: SVM, MLDA (univariate model via t-test + LDA) [3], Graphnet [5],
Lasso [10], Elastic Net, TV+L1 and n2GFL. For each model, optimal parameters
are determined by grid-search. For GSplit LBI, ρ is chosen from {1, 2, ..., 10},
κ is set to 10; α = ν/κ(1 + νΛ2

X + Λ2
D)3; specifically, ν is set to 0.2 (corre-

sponding to ν � 0 in Fig. 2)4. The regularization coefficient λ is ranged in
{0, 0.05, 0.1, ..., 0.95, 1, 10, 102} for lasso5 and 2{−20,−19,...,0,...,20} for SVM. For
other models, parameters are optimized from λ : {0.05, 0.1, ..., 0.95, 1, 10, 102}
and ρ : {0.5, 1, .., 10} (in addition, the mixture parameter α: {0, 0.05, ..., 0.95}
for Elastic Net).

2 http://adni.loni.ucla.edu.
3 For logit model, α < ν/κ(1 + νΛ2

H + νΛ2
X) since ΛX > ΛH .

4 In this experiment, comparable prediction result will be given for ν ∈ (0.1, 10).
5 0 corresponds to logistic regression model.

http://adni.loni.ucla.edu
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Table 1. Comparison of GSplit LBI with other models

MLDA SVM Lasso Graphnet Elastic net TV + l1 n2GFL GSplit LBI (βpre)

15ADNC 85.06% 83.12% 87.01% 86.36% 88.31% 83.77% 86.36% 88.96%

30ADNC 86.93% 87.50% 87.50% 88.64% 89.20% 87.50% 87.50% 90.91%

15MCINC 61.41% 70.13% 69.80% 72.15% 70.13% 73.83% 69.80% 75.17%

The best accuracy in the path of GSplit LBI and counterpart are reported.
Table 1 shows that βpre of our model outperforms that of others in all cases. Note
that although our accuracies may not be superior to models with multi-modality
data [8], they are the state-of-the-art results for only sMRI modality.

Fig. 3. Left image: Accuracy of (βpre, βles) vs log t (t: regularization parameter). Right
image: Six 2-d brain slice images of selected degenerative voxels of βles and βpre are
sorted orderly at {t1, ...t6}. As t grows, βpre and βles identify similar lesion features.

The process of feature selection combined with prediction accuracy can be
analyzed together along the path. The result of 30ADNC is used as an illustra-
tion in Fig. 3. We can see that βpre (blue curve) outperforms βles (red curve)
in the whole path for additional procedural bias captured by βpre. Specifically,
at βpre’s highest accuracy (t5), there is a more than 8% increase in prediction
accuracy by βpre. Early stopping regularization at t5 is desired, as βpre converges
to βles in prediction accuracy with overfitting when t grows. Recall that posi-
tive (negative) features represent degenerate (enlarged) voxels. In each fold of
βpre at t5, the commonly selected voxels among top 150 negative (enlargement)
voxels are identified as procedural bias shown in Fig. 1, where most of these GM
voxels are enlarged and located near lateral ventricle or subarachnoid space etc.,
possibly due to enlargement of CSF space in those locations that are different
from the lesion features.
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3.2 Lesion Features Analysis

To quantitatively evaluate the stability of selected lesion features, multi-set Dice
Coefficient (mDC)6 [4,12] is applied as a measurement. The 30ADNC task is
again applied as an example, the mDC is computed for βles which achieves
highest accuracy by 10-fold cross-validation. As shown from Table 2, when ν =
0.0002 (corresponding to ν → 0 in Fig. 2), the βles of our model can obtain
more stable lesion feature selection results than other models with comparable
prediction power. Besides, the average number of selected features (line 3 in
Table 2) are also recorded. Note that although elastic net is of slightly higher
accuracy than βles, it selects much more features than necessary.

Table 2. mDC comparison between GSplit LBI and other models

Lasso Elastic Net Graphnet TV + l1 n2 GFL GSplit LBI (βles)

Accuracy 87.50% 89.20% 88.64% 87.50% 87.50% 88.64%

mDC 0.1992 0.5631 0.6005 0.5824 0.5362 0.7805
∑10

k=1 |S(k)|/10 50.2 777.8 832.6 712.6 443.9 129.4

For the meaningfulness of selected lesion features, they are shown in Fig. 4(a)–
(c), located in hippocampus, parahippocampal gyrus and medial temporal lobe
etc., which are believed to be early damaged regions for AD patients.

(a) fold 2 (b) fold 10 (c) overlap (d) coarse-to-fine

Fig. 4. (a)–(c): Stability of selected lesion features of βles shown in 2-d 110 slice brain
images when ν = 0.0002. (a)–(b): Results of fold 2 and fold 10. (c): The overlapped
features in 10 folds. (d): The 2-d slice brain image of selected voxels with 2×2×2 mm3

using coarse-to-fine approach.

To further investigate the locus of lesion features, we conduct a coarse-
to-fine experiment. Specifically, we project the selected overlapped voxels of
8 × 8 × 8 mm3 size (shown in Fig. 4(c)) onto MRI image with more finer scale
voxels, i.e. in size of 2 × 2 × 2 mm3. Totally 4,895 voxels are served as input

6 In [12], mDC :=
10|∩10

k=1S(k)|
∑10

k=1 |S(k)| where S(k) denotes the support set of βles in k-th fold.
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features after projection. Again, the GSplit LBI is implemented using 10-fold
cross-validation. The prediction accuracy of βpre is 90.34% and on average 446.6
voxels are selected by βles. As desired, these voxels belong to parts of lesion
regions, such as those located in hippocampal tail, as shown in Fig. 4(d).

4 Conclusions

In this paper, a novel iterative dual task algorithm is proposed to incorporate
both disease prediction and lesion feature selection in neuroimage analysis. With
variable splitting term, the estimators for prediction and selecting lesion features
can be separately pursued and mutually monitored under a gap control. The gap
here is dominated by procedural bias, some specific features crucial for prediction
yet ignored in a priori disease knowledge. With experimental studies conducted
on 15ADNC, 30ADNC and 15MCINC tasks, we have shown that the leverage
of procedural bias can lead to significant improvements in both prediction and
model interpretability. In future works, we shall extend our model to other neu-
roimaging applications including multi-modality data.
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