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Abstract. Cross-modal image synthesis is a topical problem in medical
image computing. Existing methods for image synthesis are either tai-
lored to a specific application, require large scale training sets, or are
based on partitioning images into overlapping patches. In this paper, we
propose a novel Dual cOnvolutional filTer 1Earning (DOTE) approach
to overcome the drawbacks of these approaches. We construct a closed
loop joint filter learning strategy that generates informative feedback for
model self-optimization. Our method can leverage data more efficiently
thus reducing the size of the required training set. We extensively eval-
uate DOTE in two challenging tasks: image super-resolution and cross-
modality synthesis. The experimental results demonstrate superior per-
formance of our method over other state-of-the-art methods.

Keywords: Dual learning - Convolutional sparse coding *+ 3D - Multi-
modal - Image synthesis - MRI

1 Introduction

In medical image analysis, it is sometimes convenient or necessary to infer an
image from one modality or resolution from another image modality or resolution
for better disease visualization, prediction and detection purposes. A major chal-
lenge of cross-modality image segmentation or registration comes from the differ-
ences in tissue appearance or spatial resolution in images arising from different
physical acquisition principles or parameters, which translates into the difficulty
to represent and relate these images. Some existing methods tackle this problem
by learning from a large amount of registered images and constraining pairwise
solutions in a common space. In general, one would desire to have high-resolution
(HR) three-dimensional Magnetic Resonance Imaging (MRI) with near isotropic
voxel resolution as opposed to the more common image stacks of multiple 2D
slices for accurate quantitative image analysis and diagnosis. Multi-modality
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imaging can generate tissue contrast arising from various anatomical or func-
tional features that present complementary information about the underlying
organ. Acquiring low-resolution (LR) single-modality images, however, is not
uncommon.

To solve the above problems, super-resolution (SR) [1,2] reconstruction is
carried out for recovering an HR image from its LR counterpart, and cross-
modality synthesis (CMS) [3] is proposed for synthesizing target modality data
from available source modality images. Generally, these methods have explored
image priors from either internal similarities of image itself [4] or external data
support [5], to construct the relationship between two modalities. Although these
methods achieve remarkable results, most of them suffer from the fundamental
limitations associated with large scale pairwise training sets or patch-based over-
lapping mechanism. Specifically, a large amount of multi-modal images is often
required to learn a sufficiently expressive dictionaries/networks. However, this is
impractical since collecting medical images is very costly and limited by many
factors. On the other side, patch-based methods are subjected to inconsistencies
introduced during the fusion process that takes place in areas where patches
overlap.

To deal with the bottlenecks of training data and patch-based implementa-
tion, we develop a dual convolutional filter learning (DOTE) method with an
application to neuroimaging that investigates data (in both source and target
modalities from the same set of subjects) in a more effective way, and solves
image SR and CMS problems respectively. The contributions of this work are
mainly in four aspects: (1) We present a unified model (DOTE) for any cross-
modality image synthesis problem; (2) The proposed method can efficiently
reduce the amount of training data needed from the model, by generating abun-
dant feedbacks from dual mapping functions during the training process; (3) Our
method integrates feature learning and mapping relation in a closed loop for self-
optimization. Local neighbors are preserved intrinsically by directly working on
the whole images; (4) We evaluate DOTE on two datasets in comparison with
stat-of-the-art methods. Experimental results demonstrate superior performance
of DOTE over these approaches.
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Fig. 1. Flowchart of the proposed method for MRI cross-modality synthesis.
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2 Method

2.1 Background

Convolutional Sparse Coding (CSC) remedies a fundamental drawback
of conventional patch-based sparse representation methods by modeling shift
invariance for consistent approximation of local neighbors on whole images.
Instead of decomposing the vector as the multiplication of dictionary atoms and
the coded coefficients, CSC provides a more elegant way to model local inter-
actions. That is, by representing an image as the summation of convolutions of
the sparsely distributed feature maps and the corresponding filters. Concretely,
given an m X n image X in vector form, the problem of learning a set of vector-
ized filters for sparse feature maps is solved by minimizing the objective function
that combines the convolutional least-squares term and the /1-norm penalty on
the representations:
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where fj, € f = [f{, ..., f£] Tis the k-th dx d filter, * denotes the 2D convolution

T .
operator, zy € z = [le, o zﬂ} refers to the sparse feature map corresponding

to f, with size (m+d—1) x (n+d—1) to approximate x, and A is a regu-
larization parameter. The problem in Eq. (1) can be efficiently and explicitly
solved in the Fourier domain, derived within an Alternating Direction Method
of Multipliers (ADMM) framework [6].

Dual Learning (DL) [7] is a new learning paradigm that translates the input
model by forming a closed loop between source and target domains to generate
informative feedbacks. Specifically, for any dual tasks (e.g., A < B) DL strategy
appoints A — B as the primary task and the other A «— B as the dual task,
and forces them learning from each other to produce the pseudo-input A’. It
can achieve the comparable performance through iteratively updating and min-
imizing the reconstruction error A — A’ that helps maximize the use of data.
Therefore, making the learning-based methods have less dependent on the large
number of training data.

Problem Formulation: The cross-modality image synthesis problem can be
formulated as: given an 3D image X of modality M7, the task is to infer from
X a target 3D image Y that approximates to the ground truth of modality M.
Let X = [Xy,...,X¢] € RM*X"nX2XC he a set of images of modality M in the
source domain, and Y = [Ya, ..., Y] € R™*"%2XC he a set of images of modality
My in the target domain. m, n are the dimensions of axial view of the image,
and z denotes the size of image along the z-axis, while C' is the numbers of
elements in the training sets. Each pair of {X;,Y;} Vi = {1, ..., C} are registered.
To bridge image appearances across different modalities while preserving the
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intrinsic local interactions (i.e., intra-domain consistency), we propose a method
based on CSC to jointly learn a pair of filters F* and FY. Moreover, inspired
by the DL strategy, we form a closed loop between both domains and assume
that there exists a primal mapping function F (:) from X to ) for relating
and predicting from one another. We also assume there exists a dual mapping
function G (-) from Y to X to generate feedbacks for model self-optimization.
Experimentally, we investigate human brain MRI and apply our method to two
cross-modality synthesis tasks, i.e., image SR and CMS. An overview of our
method is depicted in Fig.1l. Notation: Matrices and 3D images are written
in bold uppercase (e.g., image X), vectors and vectorized 2D images in bold
lowercase (e.g., filter f) and scalars in lowercase (e.g., element k).

2.2 Dual Convolutional Filter Learning

Inspired by CSC (cf. Sect. 2.1) and the benefits of conventional coupled sparsity,
we propose a dual convolutional filter learning (DOTE) model, which extends
the original CSC formulation into a DL strategy and joint representation into a
unified framework. More specifically, given X together with the corresponding
Y for training, in order to facilitate a joint mapping, we associate the sparse
feature maps of each registered data pair {X;, Yi}iC:1 by constructing a forward
mapping function F : X — Y with Y = F(X). Since such cross-modality
synthesis problem satisfies a dual-learning mechanism, we further leverage the
duality of the bidirectional transformation between the two domains. That is, by
establishing a dual mapping function G : Y +— X with Y = G (X). Incorporating
feature maps representing and the above closed-loop mapping functions, we can
thus derive the following objective function:
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(2)

where S§ and S} take the role of the k-th sparse feature maps that approxi-
mate data X and Y when convolved with the k-th filters F§ and F} of a fixed
spatial support, k = 1,..., K. ||| is a Frobenius norm chosen to induce the
convolutional least squares approximation, and * is represented as a 3D convo-
lution operator, while A, 3, v are the regularization parameters. Particularly,
dual mapping functions F (S, W) = W;S? and G (S7, W, ') = W, 'S} are
used to relate the sparse feature maps of X and Y over F* and FY. They are
done by solving two sets of least squares terms (i.e., Zle(HSZ - WkSﬂ? +

ZkK:l HS% — W;lsgni) with respect to the linear projections.
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2.3 Optimization

Similar to classical dictionary learning methods, the objective function in Eq. (2)
is not simultaneously convex with respect to the learned filter pairs, the sparse
feature maps and the mapping. Instead, we divide the proposed method into
three sub-problems: learning S*, SY, training F*, FY, and updating W.

Computing sparse feature maps: We first initialize the filters F*, F¥ as two
random matrices and the mapping W as an identity matrix, then fix them for
calculating the solutions of sparse feature maps S*, S¥. As a result, the problem
of Eq. (2) can be converted into two optimization sub-problems. Unfortunately,
this cannot be solved under [; penalty without breaking rotation invariance. The
resulting alternating algorithms [6] by introducing two auxiliary variables U and
V enforce the constraint inherent in the splitting. In this paper, we follow [6]
and solve the convolution subproblems in the Fourier domain within an ADMM
optimization strategy:
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where applied to any symbol denotes the frequency representations (i.e., Discrete
Fourier Transform (DFT)). For instance, X « f(X) where f(-) is the Fourier
transform operator. ® represents the component-wise product. ®7 is the inverse
DFT matrix, and V projects a filter onto the small spatial support. The auxil-
iary variables U7, UY, V§ and V] relax each of the CSC problems under dual
mapping constraint by leading to several subproblem decompositions.

Learning convolutional filters: Like when solving for sparse feature maps,
filter pairs can be learned similarly by setting S*, SY and W fixed, and then
learning F* and F¥Y by minimizing
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Equation (4) can be solved by a one-by-one update strategy through an aug-
mented Lagrangian method [6].
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Updating mapping: With fixed F*  FY S* and SY, we solve the following
ridge regression problem for updating mapping W:

K K
min > (18] — WSt + [[st - Wi sy + (g) SIWE. )
k=1 k=1

Particularly, the primal mapping function ||SZ—W;€S£||? constructs
an intrinsic mapping while the corresponding dual mapping function

HSE —W;ls%Hi is utilized to give feedbacks and further optimize the rela-
tionship between S§ and S}. Ideally (as the final solution), S} = W,S%,

such that the problem in Eq. (5) is reduced to minwy, Zf:l 1Sy — WkSﬂﬁ, +
(%) Zszl W[5 with the solution W = S¥S#7 (S8 1 %I)_l7 where T is
an identity matrix. We summarize the proposed DOTE method in the following
Algorithm 1.

Algorithm 1. DOTE algorithm
Input: Training data X and Y, parameters A, v, o.
1 Initialize F§, FY, S5, Sy, Wy, Ug, U}, V§, V§.
Perform FFT S§ — S¢, SY — SY, F§ — F§, FY — FY, U — UE, UY — UY,
Vi — Vi, Vi — Vi
Let S§ — WS§.
while not converged do
Solve for Siﬂ, Szﬂ, ﬂiH and ﬂgH using (3) with fixed filters and Wi,
Train F{, ,, F%H, Vi, and VZH by (4) with fixed feature maps and Wiy
Update W41 by (5).
Inverse FFT F§,, — Fi,,, Y, — FY, .

N

© 00 N o s W

end
Output: F*, FY, W.

2.4 Synthesis

Once the optimization is completed, we can obtain the learned filters F*, F¥ and
the mapping W. We then apply the proposed model to synthesize images across
different modalities (i.e., LR — HR and M; — My, respectively). Given a test
image X!, we compute the sparse feature maps S!® related to F% by solving a

2
single CSC problem like Eq. (1): S = arg ming:« % ‘Xt - Zszl Fy * St* , +

)\Zle S}||,. After that, we can synthesize the target modality image of X*

by the sum of K target feature maps S;’ = WS* convolved with FY, i..,
K t

Y' = Ek:l FZS;J’
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3 Experimental Results

Experimental Setup: The proposed DOTE is validated on two datasets: IXI*
(including 578 256 x 256 x p MR healthy subjects) and NAMIC? (involving 20
128 x 128 x ¢ subjects). In our experiments, we perform 4-fold cross-validation
for testing. That is, selecting 144 subjects from IXI and 5 subjects from NAMIC,
respectively, as our test data. Following [1], the regularization parameters o, A,
0B, and ~ are empirically set to be 1, 0.05, 0.10, 0.15, respectively. The number
of filters is set as 800 according to [8]. Convergence towards primal feasible
solution is proved in [6] by first converting Eq. (2) into two optimization sub-
problems that involve two proxies U, V and then solving them alternatively.
DOTE converges after ca. 10 iterations. For the evaluation criteria, we adopt
PSNR and SSIM indices to objectively assess the quality of our results.

MRI Super-Resolution. As we introduced in Sect. 1, we first address image
SR as one of cross-modality image synthesis. In this scenario, we investigate the
T2-w images of the IXI dataset for evaluating and comparing DOTE with ScSR
[1], A+ [2], NLSR [4], Zeyde [5], ANR [9], and CSC-SR [8]. Generally, LR images
are generated by down-sampling HR ground-truth images using bicubic interpo-
lation. We perform image SR with scaling factor 2, and show visual results in
Fig. 2. The quantitative results are reported in Fig. 3, while the average PSNRs
and SSIMs for all 144 test subjects are shown in Table 1. The proposed model
achieves the best PSNRs and SSIMs. Moreover, to validate our argument that
DL-based self-optimization strategy is beneficial and requires less training data,
we compare DOTE,oqual (removing dual mapping term) and DOTE under differ-
ent training data size (i.e., %, %, % of the original dataset). The results are listed
in Table 2. From Table 2, we see that DOTE is always better than DOTE,qual
especially with few training samples.

ok

Ground Truth ScSR eyde NLSR ANR A CSC-SR DOTE-1/4 DOTE-1/2 DOTE
(PSNR, SSIM)  (30.71,0.9266) (32 52 0.9445) (32.54,0.9452) (32.68,0.9431) (32.70,0.9460) (32.76,0.9467) (32.92,0.9503) (33.66,0.9524) (33.94,09578)

Fig. 2. Example SR results and the corresponding PSNRs and SSIMs.

Cross-Modality Synthesis. For the problem of CMS, we evaluate DOTE and
the relevant algorithms on both datasets involving six groups of experiments:
(1) synthesizing T2-w image from PD-w acquisition and (2) vice versa; (3) gen-
erating T1-w image from T2-w input, and (4) vice versa. We conduct (1-2)
experiments on the IXI dataset, while (3—4) are explored on the NAMIC dataset.
The representative and state-of-the-art CMS methods, including Vemulapalli’s

! http://brain-development.org/ixi-dataset/.
2 http://hdlLhandle.net /1926 /1687.
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Fig. 3. Error measures of SR results on the IXI dataset.

Input PD-w MRI T2-w Ground Truth MIMECS T2-w DOTE T2-w

Fig. 4. Visual comparison of synthesized results using MIMECS and DOTE.

Table 1. Quantitative evaluation: DOTE vs. other SR methods.

Avg. |ScSR |Zeyde |NLSR |ANR |A+ CSC-SR | DOTE
PSNR 29.98 |33.10 3397 3523 3572 3618 | 37.07
SSIM | 0.9265| 0.9502| 0.9548 | 0.9568| 0.9600| 0.9651 | 0.9701

Table 2. Quantitative evaluation: DOTE vs. DOTEodual-

Avg. | DOTEuoduai} | DOTEnoduay | DOTEgedqua® | DOTE :  DOTE 1 | DOTE 2
PSNR | 31.23 33.17 36.09 36.56 | 36.68 | 37.07
SSIM | 0.9354 0.9523 0.9581 0.9687 | 0.9690 | 0.9701

36
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Fig. 5. CMS results: DOTE vs. MIMECS on the IXI dataset.

method [3] and MIMECS [10] are employed to compare with our DOTE app-
roach. We demonstrate visual and quantitative results in Figs. 4, 5 and Table 3,
respectively. Our algorithm yields the best results against MIMECS and Vem-
ulapalli for two datasets validating our claim of being able to synthesize better
results through the expanded dual optimization.
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Table 3. CMS results: DOTE vs. other synthesis methods on the NAMIC dataset.

Metric(avg.) | NAMIC

T1 — > T2 T2 —>T1

MIMECS | Vemulapalli | DOTE | MIMECS | Vemulapalli | DOTE
PSNR 24.98 27.22 29.83 |27.13 28.95 32.03
SSIM 0.8821 0.8981 0.9013 | 0.9198 0.9273 0.9301

4 Conclusion

We presented a dual convolutional filter learning (DOTE) method which directly
decomposes the whole image based on CSC, such that local neighbors are pre-
served consistently. The proposed dual mapping functions integrated with joint
learning model form a closed loop that leverages the training data more effi-
ciently and keeps a very stable mapping between image modalities. We applied
DOTE to both image SR and CMS problems. Extensive results showed that our
method outperforms other state-of-the-art approaches. Future work could con-
centrate on extending DOTE to higher-order imaging modalities like diffusion
tensor MRI and to other modalities beyond MRI.
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