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Abstract

Peptide and protein aberrant lipidation patterns are often involved in many 
diseases including cancer and neurological disorders. Peptide lipidation is 
also a promising strategy to improve pharmacokinetic and pharmacody-
namic profiles of peptide-based drugs. Self-adjuvanting peptide-based 
vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to 
stimulate adjuvant activity. The chemical synthesis of lipidated peptides 
can be challenging hence efficient, flexible and straightforward synthetic 
routes to access homogeneous lipid-tagged peptides are in high demand. A 
new technique coined Cysteine Lipidation on a Peptide or Amino acid 
(CLipPA) uses a ‘thiol-ene’ reaction between a cysteine and a vinyl ester 
and offers great promise due to its simplicity, functional group compatibility 
and selectivity. Herein a brief review of various synthetic strategies to 
access lipidated peptides, focusing on synthetic methods to incorporate a 
PamnCys motif into peptides, is provided.
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9.1	 �Introduction

The market for peptide based therapeutics has 
been constantly growing since the late 1990s 
with 140 peptide drugs currently estimated to be 
undergoing clinical trials and 500 therapeutic 
peptides in pre-clinical development (Fosgerau 
and Hoffmann 2015; Kaspar and Reichert 2013; 
Otvos and Wade 2014). Biologically active pep-
tides are excellent drug candidates due to high 
receptor selectivity, binding affinity, potency and 
relatively low toxicity (Fosgerau and Hoffmann 
2015; Trabocchi and Guarna 2014). However, the 
therapeutic potential of peptides can be limited 
due to their poor chemical and physical stability, 
short plasma half-life, and low oral bioavailabil-
ity (Fosgerau and Hoffmann 2015; Trabocchi and 
Guarna 2014). Peptide drug delivery to the site of 
action is often challenging and improved tech-
nologies to overcome this obstacle are highly 
desirable (Lewis and Richard 2015). Structural 
and functional modifications of native peptides 
using chemical techniques have been used to 
generate compounds with higher affinity, 
improved enzymatic stability and/or efficacy 
compared to the parent peptide (Trabocchi and 
Guarna 2014). Peptide backbone modifications, 
cyclization, unnatural amino acid insertion, 
PEGylation, glycosylation, phosphorylation and 
lipidation are common techniques to improve the 
physicochemical and pharmacological profiles of 
bioactive peptides. (Zhang and Bulaj 2012)

Peptide lipidation is an effective strategy to 
modify the pharmacokinetic and pharmacody-
namic properties of lead peptide therapeutics and 
has proven to be successful with several mar-
keted peptides including liraglutide (Victoza®) 
(Jackson et  al. 2010; Knudsen et  al. 2000) and 
insulin detemir (Levemir®) (Zhang and Bulaj 
2012; Home and Kurtzhals 2006; Le Floch 2010). 
Incorporation of lipid units onto a peptide back-
bone can dramatically increase enzymatic stabil-
ity (Simerska et  al. 2011), receptor selectivity 
and potency (Ward et  al. 2013), bioavailability 
(Hamman et al. 2005; Park et al. 2011; Renukuntla 
et al. 2013; Karsdal et al. 2015) and drug delivery 
potential (membrane permeability) (Zhang and 
Bulaj 2012; Simerska et al. 2011).

This review describes the impact of lipidation 
on peptide-based drug development and sum-
marises the most recent strategies to incorporate 
a lipid moiety onto a peptide using chemical 
techniques. A brief discussion on naturally occur-
ing lipidated proteins and peptides and the poten-
tial for lipidation to create bioactive therapeutics 
is covered. The highlight of this perspective 
relates to synthetic approaches to incorporate 
PamnCys-based Toll-like receptor 2 (TLR2) lipi-
dated ligands into peptides with the potential to 
generate self-adjuvanting vaccine constructs.

9.1.1	 �Protein Lipidation in Nature

Protein lipidation is one of the most important 
post- and co-translational modifications control-
ling protein affinity to cellular membranes and 
influencing protein regulatory and signalling 
functions (Mejuch and Waldmann 2016; Resh 
2013). Altered lipidation patterns are associated 
with various diseases including cancer, neuro-
logical diseases, diabetes, infections (bacterial, 
fungal and viral) (Resh 2012).

Protein acylation phenomena encompasses a 
broad range of saturated and unsaturated fatty 
acids of different length creating proteins with a 
unique set of functions. Protein-bound lipid types 
and lipid-protein linkages vary in nature. 
Covalent attachment of unique fatty acid chains 
is controlled by the action of specific transferases 
affording a broad range of lipidated proteins 
including N-myristoylated, S- or N-palmitoylated, 
and cholesterol- and isoprenol-enriched moieties 
(Fig.  9.1). Glycosylphosphatidylinositol (GPI), 
and phosphatidylethanolamine (PE) conjugation 
to proteins has also been described (Resh 2013).

Lipid addition occurs at N- and C- terminal 
sites of proteins or within the protein sequence 
directed by specific amino acids such as cysteine, 
serine, threonine, and lysine (Hannoush 2015). 
Lipidation can be irreversible when formed via 
an amide bond using an N-terminal glycine or 
cysteine moiety (N-myristoylation and 
N-palmitoylation, respectively) or reversible 
when a thioester bond is formed between the 
fatty acid the thiol of the cysteine residue 
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(S-palmitoylation), Fig.  9.1 (Resh 2013; 
Chamberlain and Shipston 2015).

Proteins can exist in a mono-lipidated state or 
with multiple-lipid group addition. Membrane 
proteins such as MARCKS, GPCRs, and 
K-Ras4B are monolipidated proteins enriched 
with myristoyl, palmitoyl and farnesyl motifs, 
respectively. The Hedgehog (Hh) family of pro-
teins which are associated with developmental 
processes (Lee et al. 2016) are modified with pal-
mitate and cholesterol; similarly, the Src family 
kinases are myristoylated and palmitoylated and 
plasma membrane H-Ras and N-Ras proteins are 
farnesylated and palmitoylated (Resh 2013).

Irreversible protein modification with myristic 
acid, a 14-carbon fatty acid, is the most prevalent 
in nature and accounts for 0.5–0.8% of all lipi-
dated eukaryotic proteins. It can occur both co- 
and post-translationally at the N-terminal glycine 
and is catalysed by N-myristoyltransferase 
(NMT), Fig. 9.1a (Resh 2013; Wright et al. 2010; 
Resh 2016). N-Myristoylation at the Nε of lysine 
was also observed for interleukin 1α (Stevenson 
et  al. 1993) and tumour necrosis factor alpha 
(TNF) (Stevenson et al. 1992); However, enzymes 
involved in these acylation processes are yet to be 

identified (Resh 2016). N-Myristoylated proteins 
such as c-Src, BID, PAK2, or gelsolin play 
important roles in various biological processes 
including cellular transformation and effecting 
protein localization (Hannoush 2015; Wright 
et  al. 2010). N-Myristoylation is involved in 
pathogen survival and altered myristoylation pat-
terns are linked to carcinogenesis (Wright et al. 
2010).

S-Palmitoylation is the most common form of 
protein S-acylation affording reversibly-tagged 
proteins with a 16-carbon palmitic acid unit 
(Chamberlain and Shipston 2015; Resh 2016). 
S-Palmitoylation can occur at the cysteine moiety 
located in the proximity of either the N -or 
C-terminus of proteins, Fig. 9.1b. Attachment of 
stearic acid (C18:0) and monounsaturated 
omega-9 oleic acid (C18:1) via the thiol group of 
a cysteine residue has also been described 
(Chamberlain and Shipston 2015).

Due to labile nature of the thioester bond used 
to link a fatty acid with a protein backbone, a 
dynamic equilibrium between protein S-acylation 
and deacylation with distinct turnover rates 
occurs that influences intracellular localization, 
membrane association, and the regulatory 

(b) S-palmitoylation (C16:0) at Cys

(a) N-terminal myristoylation (C14:0) at Gly

(c) N-terminal palmitoylation (C16:0) at Cys and C-terminal cholesterol addition

(d) cis-9-palmitoleate attachment (C16:1) at Ser(e) Octanoylation at Ser
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Fig. 9.1  Protein modifications with various lipids found in nature

9  Peptide Lipidation – A Synthetic Strategy to Afford Peptide Based Therapeutics



188

functions of a diverse family of proteins. 
S-Acylation of cellular proteins is mediated via 
S-acyl transferases from the zDHHC protein fam-
ily. However, only scant information is available 
on the S-acyl thioesterases involved in protein 
deacetylation and the dynamic S-acylation pro-
cess (Chamberlain and Shipston 2015). It is pro-
posed that enzymes from the serine hydrolase 
family including acyl protein thioesterases 
(APTs) (Davda and Martin 2014), and protein 
palmitoyl thioesterases (PPTs) (Lin and Conibear 
2015) may be involved (Chamberlain and 
Shipston 2015).

S-Acylation facilitates stable membrane bind-
ing of peripheral proteins and mediates protein 
targeting to specific endoplasmic reticulum (ER) 
subdomains. Protein S-acylation controls traf-
ficking and localization of cellular proteins, and 
improves protein stability in addition to regulat-
ing cellular signalling receptors (Chamberlain 
and Shipston 2015).

The Hedgehog protein family are critical pro-
teins with roles in embryonic development and 
tumorigenesis (Resh 2016; Pepinsky et al. 1998). 
These mature signalling proteins are dually lipi-
dated comprising a palmitate unit which is incor-
porated through an amide bond at N-terminal 
cysteine (N-palmitoylation) via the action of 
hedgehog acyltransferase (Hhat), a member of a 
membrane-bound O-acyltransferases (MBOAT) 
protein superfamily (Konitsiotis et  al. 2015; 
Matevossian and Resh 2015), and a cholesterol 
moiety covalently attached to the C-terminal gly-
cine via its 3β-hydroxyl group, Fig.  9.1c (Resh 
2013, 2016). N-Palmitoylation is essential for 
signalling activity of Hh proteins during develop-
ment while the cholesterol unit aids the signal-
ling functions (Resh 2013, 2016). Aberrant Hh 
signalling pathways result in birth defects in 
humans including microencephaly, cyclopia, 
absent nose or cleft palate. The development of 
breast, prostate and lung cancer has also been 
associated with Hh signaling anomalies (Gupta 
et al. 2010).

Another member of MBOAT superfamily is 
porcupine (Porcn) transferase which mediates 
attachment of a monounsaturated cis-Δ9-
palmitoleate unit via a side chain of serine resi-

due to a secreted Wnt glycoprotein family (Resh 
2016; Hofmann 2000; Nile and Hannoush 2016; 
Shindou et al. 2009). This post-translational lipid 
attachment plays a crucial role in regulating sig-
nalling during embryonic development and tissue 
homeostasis, Fig.  9.1d (Resh 2016; Nile and 
Hannoush 2016). It has been recently reported 
that Wnts palmitoylation is reversible; notum 
hydrolase, which participates in deacylation, 
affords an inactive form of Wnts with inhibited 
signalling ability (Resh 2016; Nile and Hannoush 
2016; Zhang et al. 2015; Kakugawa et al. 2015). 
Targeting Wnt signalling pathways using syn-
thetic modulators including small molecules and 
peptides is therefore a promising tool to inhibit 
Wnt-driven diseases such as cancer (Nile and 
Hannoush 2016; Anastas and Moon 2013).

Ghrelin O-acyltransferase (GOAT), another 
MBOAT enzyme, mediates the covalent attach-
ment of octanoic acid onto Ser-3 of the 28-amino 
acid peptide hormone ghrelin (Fig.  9.1e) (Resh 
2016; Yang et  al. 2008; Gutierrez et  al. 2008; 
Kojima et al. 1999; Müller et al. 2015). Ghrelin 
octanoylation is essential for the secretion of 
insulin and growth hormone, and hormone activ-
ity including appetite stimulation, adiposity and 
cardiovascular functions (Resh 2016; Gutierrez 
et al. 2008; Müller et al. 2015; Sato et al. 2015). 
Therefore, ghrelin is an attractive target in novel 
therapies to treat obesity and diabetes (Müller 
et al. 2015; Sato et al. 2015).

Protein prenylation refers to a post-
translational attachment of isoprenoid lipids. 
Incorporation of farnesyl (C15) and geranylgera-
nyl (C20) groups is effected by formation of a 
thioether bond using a cysteine moiety in the 
C-terminal proximity of the protein via protein 
farnesyltransferase (FT) and geranylgeranyl-
transferase 1 (GGT 1), Fig. 9.1f, g, respectively 
(Wang and Casey 2016). The fully processed lipi-
dated protein contains a prenylated cysteine resi-
due with a methylated carboxylic acid moiety, at 
the protein C-terminus. Members from HRAS, 
KRAS, NRAS, prelamin A, lamin B, and RAS-
related GTPases are examples of protein families 
incorporating isoprenoid lipids within their struc-
tures (Wang and Casey 2016). Prenylation con-
trols the oncogenic activity of many proteins 
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including farnesylated RAS proteins that are 
involved in 30% of human cancers (Wang and 
Casey 2016).

Another common eukaryotic post-translational 
lipid modification is the attachment of a complex 
glycosylphosphatidylinositol anchor to the 
C-terminus of proteins (Paulick and Bertozzi 
2008; Ferguson et  al. 2009). GPI comprises a 
phosphoethanolamine linker, a highly conserved 
glycan core (mannose(α1-2)mannose(α1-6)
mannose(α1-4)glucosamine(α1-6)myo-inositol) 
and phospholipid tail which links the GPI anchor 
to the cell membrane (Paulick and Bertozzi 2008; 
Ferguson et al. 2009). The sugar-rich domain can 
be further modified with the addition of various 
groups including other glycans, sialic acid and 
phosphoethanolamine moieties affording func-
tionally diverse glycoforms of GPI anchors 
(Paulick and Bertozzi 2008; Ferguson et  al. 
2009). The lipid portion of the GPI moiety differs 
depending on the protein which it is attached to 
and the organism it originates from. The GPI 
anchor of human erythrocyte acetylcholinester-
ase for example, comprises three fatty acids in 
various states of saturation and lengths ranging 
from 16 to 22 carbons (Fig.  9.2) (Paulick and 
Bertozzi 2008; Ferguson et al. 2009; Deeg et al. 
1992; Roberts et  al. 1988b, a). The exact 
structure-activity relationship of GPI-anchored 

proteins is poorly understood due to the complex 
nature of the GPI anchor structure. GPI-anchored 
proteins are multifunctional; these proteins have 
been identified in receptors, hydrolytic enzymes, 
adhesion and regulatory molecules etc (Paulick 
and Bertozzi 2008; Ferguson et al. 2009).

Atg8 and LC3 proteins found in yeast and 
mammals respectively, contain a phospholipid 
moiety, namely phosphatidylethanolamine (PE) 
that is post-translationally anchored to a 
C-terminal glycine residue via numerous steps of 
ubiquitination-like reactions catalysed by 
autophagy-related (Atg) proteins (Resh 2013). It 
has been reported that increased levels of PE 
enhance autophagy, a cytoprotective mechanism 
responsible for degradation of toxic proteins and 
potentially harmful and damaged organelles 
(Feng et  al. 2014; Rockenfeller et  al. 2015). 
Modulating autophagy can be used for the treat-
ment of human disorders including cancer, diabe-
tes, and Alzheimer’s and Parkinsons’ disease 
therefore new autophagy controllers are strongly 
desirable (Feng et  al. 2014; Rockenfeller et  al. 
2015).

In summary, regulating the action of lipidated 
proteins may lead to potential therapies to treat 
infectious disease and human pathologies. 
Targeting NMT, Hedgehog acyltransferase, FT 
and GGT 1 inhibitors may play a role in anticancer 
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therapies (Wang and Casey 2016; Berndt et  al. 
2011). Effective techniques to modulate prenyl-
ation patterns can be used in hepatitis D and C 
viruses (HDV and HCV) treatment (Koh et  al. 
2015; Cory et al. 2015; Ye et al. 2003), premature 
ageing disorders such as Hutchinson-Gilford pro-
geria syndrome (HGPS) (Gordon et  al. 2014; 
Young et al. 2013) in addition to neurodegenera-
tive pathologies like multiple sclerosis and 
Alzheimer’s disease (Wang and Casey 2016; Gao 
et al. 2016).

9.1.2	 �Nature-Derived Lipopeptides 
with Therapeutic Potential

Lipopeptides isolated from microorganisms such 
as fungi and bacteria show great therapeutic 
promise in the development of novel antimicro-
bial (Cochrane and Vederas 2016), antifungal, 
antitumor, and anti-inflammatory agents. In case 
of the plipastatins they can also act as potential 
therapies for neurological diseases (Dey et  al. 
2015).

Bacillus and Paenibacillus spp. produce lipo-
peptides of various structures including cyclic 
cationic and non-cationic lipopeptides where ring 
formation mostly occurs via the ester or amide 
bond and engages the C-terminal carboxylic acid 
residue (Cochrane and Vederas 2016). The pres-
ence of both, d- and l-amino acids together with 
non-natural amino acids in these lipopeptide 
sequences is common and improves peptide sta-
bility against enzymatic degradation. Branched 
saturated or unsaturated fatty acids with diverse 
structures with the main chain varying mostly 
between C11 to 14 carbons are mostly incorpo-
rated into the Nα-terminal side of the peptides 
and often feature a β-hydroxyl moiety in their 
structure (Cochrane and Vederas 2016; Jacques 
2011).

Polymyxins, octapeptins, pelgipeptins, and 
paenibacterins exhibit non-proteinogenic 
2,4-diaminobutyric acid (Dab) residues that 
amplify the cationic character of these peptides 
(Cochrane and Vederas 2016). Examples of non-
cationic cyclic lipopeptides include the iturin-, 
surfactin-, fengycin-, fusaricidin-, marihysin-, 

and kurstakin-families (Fig. 9.3) (Cochrane and 
Vederas 2016).

Linear cationic lipopeptides derived from 
Bacillus and Paenibacillus spp. such as cerexins 
and tridecaptins display promising antibacterial 
activity against Gram-positive and Gram-
negative microbes (Fig.  9.3). A more detailed 
description of exact structures and biological 
activities for Bacillus and Pseudomonas spp. 
derived lipopeptides has recently been published 
(Cochrane and Vederas 2016; Jacques 2011; 
Mnif and Ghribi 2015).

Lipopeptides isolated from Pseudomonas 
spp., which mainly include the viscosins, amphi-
sins and tolaasins in addition to syringomycins, 
are mostly known for their antiviral and antimi-
crobial properties (Mnif and Ghribi 2015; 
Raaijmakers et  al. 2006). These structurally 
diverse cyclic peptides differ in the chain length 
and comprise 9-25 residues in the form of natural 
and non-natural amino acids including allo-
threonine (allo-Thr), allo-isoleucine (allo-Ile), 
3-hydroxyaspartic acid, Dab and homoserine 
(Hse). 4-Chlorothreonine is the amino acid 
responsible for the antifungal activity of syringo-
mycin (Fig. 9.4) (Grgurina et al. 1994). The fatty 
acid moiety attached to the N-terminus of the 
peptide chain varies in length and composition 
and, similar to Bacillus-derived peptides, often 
features the β-hydroxyl unit. The lactone ring is 
generally formed between the carboxylic acid of 
the C-terminal amino acid and the hydroxyl 
group of either Ser, Thr or allo-Thr present within 
the peptide chain (Mnif and Ghribi 2015; 
Raaijmakers et al. 2006).

Other microbial sources of biologically active 
lipidated peptides with promising therapeutic 
potential found in nature include strains of 
Acremonium, Streptomyces, and Actinoplanes 
(Mnif and Ghribi 2015).

Lipopeptides exhibit a broad spectrum of 
activities against many pathogens and some 
naturally-derived compounds, as in the case of 
daptomycin, polymyxin B or colistin, have 
already received the Food and Drug 
Administration (FDA) approval. Daptomycin 
(Cubicin) isolated from Streptomyces roseospo-
rus is a 13-amino acid, cyclic lipopeptide, 
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containing decanoic acid at the Nα-amino group 
of the N-terminal l-tryptophan. Daptomycin 
exhibits potent activity against Gram-positive 
pathogens (Fig. 9.5) (Debono et al. 1987; Vilhena 
and Bettencourt 2012).

Polymyxins are mixed peptide antibiotics pro-
duced by Bacillus polymyxa and are considered 
to be the last-line of defence agents against 
Gram-negative organisms; their use is limited 

due to concerns with nephrotoxicity (Stansly and 
Schlosser 1947; Benedict and Langlykke 1947). 
The general structure of polymyxins comprises a 
cyclic heptapeptide core attached to a tripeptide 
unit containing a lipid portion at the Nα-terminal 
site of the linear fragment (Velkov et al. 2016). 
Polymyxins are mixtures of structurally similar 
peptides. Members of the polymyxin B family 
mostly differ in the fatty acid component of the 
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antibiotics. Examples include (S)-6-
methylheptanoic acid for polymyxin B1 and B2 
respectively (Velkov et  al. 2016; Orwa et  al. 
2001). Colistin A and colistin B are highlighted 
examples of the polymyxin E family; these anti-
biotics differ in the substitution of d-phenylalanine 

to d-leucine at position six of polymyxin B 
(Fig. 9.6) (Velkov et al. 2016; Brink et al. 2014).

The concept of protein lipidation is clearly not 
uncommon in nature hence application of this 
strategy to the therapeutic arena offers enormous 
potential for the generation of effective peptide-
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based drug candidates. Therefore, development 
and synthetic optimisation of naturally derived 
lipopeptides may afford fine-tuned therapeutics, 
which are less toxic, more potent and capable of 
treating multidrug-resistant infections. 
Interestingly, it has been reported that the attach-
ment of aliphatic chains of various length (C12-
C16) can modulate antimicrobial and antifungal 
activity of otherwise inert short peptides 
(Makovitzki et al. 2006). Therefore, peptide lipi-
dation can be used as an effective strategy to gen-
erate peptide drug leads with clinical potential.

9.1.3	 �Peptide Lipidation 
to Generate Peptide-Based 
Therapeutics

Peptide lipidation can modulate the physico-
chemical and pharmacological properties of bio-
active peptides generating therapeutically useful 
targets. Increased lipophilicity of peptides due to 
the presence of fatty acids affects the secondary 
structure and receptor and membrane binding 
characteristics of peptides; accordingly lipidation 
alters absorption, distribution, metabolism, and 
excretion (ADME) properties and therefore is an 
attractive tool to convert peptides into drug can-
didates (Zhang and Bulaj 2012). The most nota-
ble examples of clinically relevant lipidated 
peptides include long-acting insulin detemir 
(Levemir®) (Home and Kurtzhals 2006; Le Floch 
2010) and liraglutide (Victoza®) (Jackson et  al. 
2010; Knudsen et al. 2000), a glucagon-like pep-
tide-1 (GLP-1) receptor agonist, which are both 
used to treat diabetes (Fig. 9.7).

The prolonged activity of insulin detemir is 
due to the presence of C14 myristic acid incorpo-
rated into lysine-29 of the B chain of a modified 
insulin peptide sequence where the threonine-30 
residue was removed (Fig. 9.7) (Le Floch 2010; 
Kurtzhals 2007).

Liraglutide is a long-acting analogue of GLP-
1(7-37) where Lys-34 was replaced with Arg and 
Lys-26 was acylated with a C16 fatty acid 
attached to γ-glutamic acid as a spacer. The pal-
mitic acid moiety plays a crucial role in delaying 
liraglutide absorption and extending the half-life 

of the drug which has been estimated to be 13 
hours after subcutaneous injection compared to 
approximately 2 minutes for the native GLP-1 
(Rigato and Fadini 2014; Elbrond et al. 2002). In 
addition, renal clearance of the drug is reduced 
due to the shielding effect of the fatty acid moi-
ety; liraglutide binds to plasma albumin via the 
fatty acid group preventing drug degradation by 
dipeptidyl peptidase-4 (DPP-4) (Malm-Erjefalt 
et  al. 2010; Watson et  al. 2010). Lipidation of 
potent, but unstable GLP-1(7-37), much 
improved the pharmacokinetic profile of the pep-
tide making it suitable for once-daily administra-
tion (Elbrond et al. 2002; Ryan and Hardy 2011). 
Liraglutide (Saxenda®) has been recently 
approved by the FDA and the European 
Medicines Agency (EMA) for adjunctive treat-
ment of obesity (December 2014 and March 
2015, respectively) (Iepsen et  al. 2015; Bray 
2015; Tomlinson et al. 2016).

It has been reported that the type and compo-
sition of the fatty acid attached to a bioactive pep-
tide as well as the nature of the spacer between 
the peptide chain and the fatty acid moiety influ-
ences its activity and plasma half-life (Knudsen 
et al. 2000; Madsen et al. 2007; Lau et al. 2015).

Structure-activity studies of liraglutide ana-
logues revealed the importance of the length, 
composition, polarity and bulkiness of the fatty 
acid moiety as well as the type of spacer between 
the active molecule and the lipid tail on half-life 
calculations (in vivo in pigs) and potency using 
the cloned human GLP-1 model (Knudsen et al. 
2000; Madsen et  al. 2007). Linear fatty acids 
ranging from C10 to C18 (1) incorporated into 
the liraglutide sequence using various linkers 
including α-, d-γ-glutamic acid, 4-aminobutanoic 
acid (GABA), β-alanine and triethyleneglycol 
were evaluated (Fig. 9.8a) (Madsen et al. 2007). 
Interestingly, prolonged activity increased with 
the fatty acid chain length starting from 0.8 hours 
for C10, increasing to 5.1 h (C11), 7.6 (C12), 9 h 
(C14), 16 h (C16) and 21 h (C18); receptor 
potency was only affected when the acid chain 
length was longer than 16 carbons (Madsen et al. 
2007). The study underlined the importance of 
the spacer between the active peptide and the 
fatty acid and revealed the complete loss of 
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receptor potency when palmitic acid was directly 
bound to Lys-26 (Madsen et al. 2007). Liraglutide 
analogues containing α- or d-γ-glutamic acid (2 
and 3), GABA (4) or β-Ala (5), as linkers in place 
of the native γ-Glu demonstrated similar activi-
ties and half-life values to those of liraglutide; 
unlike the triethylene glycol linker (6) which 
caused a 25-fold decrease in activity (Fig. 9.8b) 
(Knudsen et  al. 2000; Madsen et  al. 2007). 
Increasing the polarity of the fatty acid compo-
nent by introducing one or more ether groups (7-
9) or inserting hydroxyl group at the omega 
terminus (10) decreased the protraction of the 
analogues possibly due to reduced interactions 
with the fatty acid sites present on albumin, 
Fig. 9.8c (Madsen et al. 2007). Modification of 
the C16 palmitic acid in the liraglutide sequence 
with 2-hexyldecanoyl acid (11) which is equiva-
lent to 16 carbon atoms led to slightly improved 
protraction (18 hours versus 16 h) and a signifi-
cant decrease in potency of the analogue. 
Incorporation of more bulky phenyl- and cyclo-
hexyl rings (12 and 13, respectively) in place of 
palmitate, or palmitate replacement with a pen-
tylbenzenesulfonyl group (14) was not beneficial 
in regards to improved potency and half-life val-
ues compared to the original molecule (Fig. 9.8d) 
(Madsen et al. 2007).

Further derivatization of the liraglutide struc-
ture resulted in the development of semaglutide 
(Lau et al. 2015; Nauck et al. 2016). Semaglutide 
is the once-weekly GLP-1(7-37) analogue cur-
rently in phase 3 clinical development for the 
treatment of type 2 diabetes (Lau et  al. 2015; 
Nauck et  al. 2016). Extending the half-life of 
semaglutide to 165 hours was realised through 
systematic study of the fatty acid chain type and 
the spacer attached to liraglutide (Lau et  al. 
2015). The superior effect of a C18 octadecane-
dioic acid moiety attached to Lys-26 and a long 
spacer unit composed of γ-Glu attached to two 
8-amino-3,6-dioxaoctanoic acid moieties pro-
vided the optimal lead candidate (Fig. 9.9). Non-
natural modification of Ala-8 with 
2-aminoisobutyric acid (Aib) allowed for addi-
tional shielding of the molecule from degradative 
DPP-4 action (Lau et al. 2015).

The therapeutic potential of peptides as drugs 
is often hampered by undesirable ADME profiles; 
peptides are subjected to rapid proteolytic cleav-
age in the digestive system and are unable to cross 
the epithelial layer (Karsdal et al. 2015; Di 2015). 
Oral administration of peptide-based therapeutics 
is therefore limited. Many strategies to enhance 
oral delivery of peptides have been described in 
the literature. Generally, they include attachment 
of permeation enhancers (such as glycosides, lip-
ids and PEG) and/or targeting proteolytic enzyme 
inhibitors. Exploration of multifunctional poly-
mers as a polymeric matrix to provide controlled 
drug release and drug encapsulation in polymeric 
nanoparticulate systems has also been reported. 
Using ligand-specific binding and uptake tech-
niques which employ vitamin B12, biotin, folate, 
and lectins to name a few, as drug carriers was 
also demonstrated. A more detailed discussion on 
these topics is covered elsewhere (Park et  al. 
2011; Karsdal et al. 2011, 2015). A brief discus-
sion of lipidation phenomena affecting oral bio-
availability with selected examples of biologically 
active peptides is described herein.

Chemical modification of the 32-amino acid 
salmon calcitonin (sCT) with an N-palmitoylated 
cysteine moiety attached to Cys-1 and Cys-7 of 
sCT via disulphide bonds greatly improved the 
bioavailability of the orally administrated native 
peptide (Wang et al. 2003). Significant levels of 
sCT could still be detected in rat plasma up to 12 
hours after oral administration of lipidated-sCT 
compared to undetectable levels after 1 hour 
when the same dose of native sCT was used 
(Wang et  al. 2003). In this report, a method 
termed ‘reversible aqueous lipidization’ (REAL) 
was used that allows for selective conjugation of 
a protein to a fatty acid via reversible disulphide 
linkage in aqueous solution using the water solu-
ble N-palmitoyl cysteinyl 2-pyridyl disulphide 
reagent 15 (Scheme 9.1a) and the protein thiol 
(Ekrami et al. 1995). The REAL technique was 
applied to the lipidation of other therapeutic pep-
tide drugs including Bowman-Birk protease 
inhibitor (BBI) (Ekrami et al. 1995), desmopres-
sin (Wang et  al. 1999; Wang et  al. 2002) and 
octeotride (Yuan et al. 2005).
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Peptide lipidation to improve oral bioavailabil-
ity was also applied to the endogenous opioid pep-
tide leu-enkephalin (ENK) using a modified 
REAL technique wherein 3,4-bis(decylthiomethyl)-
2,5-furandione 16 was used to introduce a lipo-
philic moiety onto the Nα-amino group of the 
N-terminus (Scheme 9.1b) (Wang et al. 2006).

It has been reported that incorporation of lauric 
acid to the N-terminal pyroglutamyl group of thyro-
tropin-releasing hormone (TRH) significantly 
improved peptide penetration across the upper small 
intestine (Muranishi et al. 1991; Tanaka et al. 1996).

There is ongoing interest in developing an 
insulin formulation that could bypass the require-

ment for daily subcutaneous insulin injection for 
the management of diabetes (Wong et  al. 2016; 
Ramesan and Sharma 2014). Promising reports 
on improved stability of mono- and di-
palmitoylated insulin analogues in mucosal tissue 
homogenates compared to native insulin 
(Hashimoto et  al. 1989; Hashizume et al. 1992) 
prompted further research into the effects of lipi-
dation on the pharmacokinetic profile of insulin 
(Asada et al. 1994, 1995). The effect of acylation 
on the stability and absorption of insulin from the 
small and large intestines was examined using 
mono- and di-acylated bovine insulin analogues 
(Asada et  al. 1994, 1995). Mono-acylated ana-
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logues were constructed via incorporation of 
caproic (C6), lauric (C12) and palmitic acid (C16) 
at the Nα-amino group of Phe-1 of the insulin B 
chain; di-acylated analogues were prepared by 
modification of both the Nα-amino group of Phe-1 
and the Nε-amino group of Lys-29 of insulin B 
chain, with two copies of C6, C12, or C16 fatty 
acids (Fig. 9.10a). Mono-acylated analogues were 
found to be more stable in small intestinal fluid at 
37 °C (Asada et al. 1994) and increased absorp-
tion of caproic acid-modified analogues from the 
large intestine was observed compared to the 
native compound (Asada et al. 1995).

Acylation of insulin and insulin analogues 
incorporating arginine residues at various sites 
within the insulin sequence, with various satu-
rated and unsaturated fatty acids attached to the B 
chain showed improved solubility at moderately 
acidic pH inducing long-acting basal control of 
glucose levels (Flora 2002).

Hexyl-insulin monoconjugate 2 (HIM2) is an 
insulin analogue that can be administrated as an 
oral semisolid formulation in hard gelatin cap-
sules (Clement et  al. 2002; Still 2002; Kipnes 
et al. 2003; Clement et al. 2004). HIM2 was cre-
ated by chemical modification of recombinant 

insulin by covalent attachment of an amphiphilic 
oligomer consisting of a lipophilic alkyl unit (C6) 
and a hydrophilic PEG moiety covalently bound 
to the Nε amino group of the Lys-29 (B chain) 
(Fig.  9.10b) (Clement et  al. 2002, 2004; Still 
2002; Kipnes et al. 2003).

Despite various scientific efforts, formulation 
of orally available insulin and other peptide-based 
drugs remains a challenging task (Lewis and 
Richard 2015; Hamman et al. 2005; Renukuntla 
et al. 2013; Karsdal et al. 2011, 2015).

Peptide lipidation has also been used to mimic 
the post-translational processes of sterol or lipid 
attachment facilitating protein association with 
cell membranes and subsequent initiation of pro-
tein activation or deactivation processes (Mejuch 
and Waldmann 2016; Resh 2013; Avadisian and 
Gunning 2013). This nature-derived strategy is 
often designed to generate lipid-anchored drugs 
including lipidated peptide inhibitors with 
improved in vivo half-life and cell-penetrating 
potential. The lipid moiety attached to a peptide 
allows drug anchoring within the cell membrane 
and enabling action on soluble cytosolic proteins 
and membrane-bound/associated proteins 
(Avadisian and Gunning 2013; Rajendran et  al. 
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2012). Cholesterol and fatty acids of various chain 
lengths such as C8-caprylic, C12-lauric, and C16-
palmitic are often utilized as lipid motifs that are 
covalently attached to a peptide inhibitor via ester, 
ether, amide or carbamate bonds (Avadisian and 
Gunning 2013; Zhao et  al. 2012; Wexler-Cohen 
and Shai 2009; Remsberg et al. 2007; Rajendran 
et al. 2008a, b; Porotto et al. 2010; Johannessen 
et al. 2011; Avadisian et al. 2011).

This ‘lipid anchoring technique’ allowing for 
subcellular drug delivery by drug conjugation to 
a lipid via a linker, was recently used to effec-
tively inhibit the action of endosomal β-secretase 
(Rajendran et al. 2008a, b). β-Secretase inhibitors 
may be useful for the treatment of Alzheimer’s 
disease by blocking the enzyme involved in amy-
loid formation. The lipid-anchored inhibitors 
consist of three main parts which include the 
pharmacophore (‘message’), the lipid anchor 
(‘address’), and the linker which conjugates both 
parts together and allows for optimal flexibility 
of the pharmacophore within the lipid bilayer to 
bind with the target (Rajendran et  al. 2012). 
Simons et al. (Rajendran et al. 2008a, b) showed 
that that conjugation of a sterol to the β-secretase 
inhibitor (Glu-Val-Asn-statine-Val-Ala-Glu-Phe) 
via a polyglycol linker resulted in greater effi-
cacy; β-secretase cleavage of β-amyloid precur-
sor protein (APP) was decreased resulting in 
reduced β-amyloid peptide formation (Fig. 9.11). 
Importantly, the cholesterol-enriched drug was 
readily internalized into endosomes and 
cholesterol-sphingolipid domains (rafts) within 

cellular membranes where β-secretase activity is 
observed (Rajendran et al. 2008a, b; Hicks et al. 
2012; Cordy et al. 2006). Comparison of stearyl-, 
palmityl-, myristyl-, and oleyl-linked inhibitors 
revealed cholesterol- and palmitoyl-linked ana-
logues to be superior in terms of raft partitioning 
ability (Rajendran et al. 2008a).

The lipidation site within the peptide chain is 
critical as it can determine the pharmacokinetic 
and pharmacodynamic properties of drug candi-
dates by affecting the solubility and the self-
aggregating potential of lipopeptides. Ward et al. 
(Ward et al. 2013) investigated lipidated glucagon-
based peptides to identify acylated co-agonists for 
the glucagon and glucagon-like peptide 1 recep-
tors (GCGR and GLP-1R, respectively). A num-
ber of palmitoylated and C-amidated glucagon 
analogues were prepared where Ser-2 was substi-
tuted with an Aib moiety to prevent enzymatic 
degradation by dipeptidyl peptidase-4. The Nε-
amino group of Lys-12 or an introduced lysine 
residue that was used to replace the mid-region 
moieties of glucagon, namely Tyr-10 or Tyr-13, 
Leu-14 or Ser-16, Arg-17 or Gln-20, was explored 
to attach a palmitic acid via a γGlu-γGlu dipep-
tide spacer (Ward et al. 2013). The solubility and 
aggregate-forming potential of glucagon ana-
logues in phosphate-buffered saline (PBS) (pH 
7.4) was variable. Decreased solubility and 
increased aggregation was observed for the acyl-
ated analogue at position 14 which correlated 
with its reduced in vivo activity compared to the 
other analogues (Ward et al. 2013). Interestingly, 
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the study also revealed an increased proportion of 
helical content for all C16 fatty acid-tagged ana-
logues in addition to improved potency at gluca-
gon and GLP-1 receptors for most of the 
palmitoylated analogues. This is the first indica-
tion of enhancing in vitro receptor potency 
through helix stabilization by lipidation (Ward 
et  al. 2013). This finding further reinforced the 
importance of lipidation in the development of 
therapeutic peptides (Ward et  al. 2013). It was 
observed that saturated fatty acids with longer 
chains (>C8) have greater conformation-
stabilising potential compared with unsaturated or 
hydroxyl counterparts due to enhanced hydropho-
bic interactions with the peptide chains (Zhang 
and Bulaj 2012). Lipidation was also shown to be 
an effective tool to induce peptide oligomeriza-
tion and self-assembly resulting in the formation 
of micelles, tubules, vesicles, mono- and bilayer 
structures that can be used in both the drug deliv-
ery and tissue engineering fields (Zhang and Bulaj 
2012; Hutchinson et al. 2017; Hamley 2015).

Peptide lipidation is an effective strategy to 
increase the drugable potential of bioactive pep-
tides and has been applied to many other biomol-
ecules not mentioned in this report including 
angiotensin II (Maletínskâ et al. 1996; Maletinska 
et al. 1997), BBI (Honeycutt et al. 1996), desmo-
pressin (Wang et  al. 1999; Wang et  al. 2002), 
galanin, (Saar et al. 2013; Robertson et al. 2010; 
Zhang et al. 2009), ghrelin (Bednarek et al. 2000), 
neuropeptide Y (NPY) (Green et al. 2011; Green 
et al. 2010), octreotide (Yuan et al. 2005), lutein-
izing hormone releasing hormone (LHRH) (Toth 
et al. 1994), tetragastrin (Fujita et al. 1998; Setoh 
et al. 1995; Yodoya et al. 1994), and more. Further 
details relating to the above mentioned lipidated 
analogues can be found in the recent review by 
Zhang and Bulaj (Zhang and Bulaj 2012).

9.1.4	 �PamnCys Ligand as Adjuvant 
for Peptide-Based Vaccines

There has been significant interest directed 
towards the development and synthesis of 
peptide vaccines as alternatives to conventional 
vaccines, where potentially toxic, whole live 

attenuated or killed microorganisms are used to 
elicit immune responses (Simerska et  al. 2011; 
Moyle and Toth 2008; Li et al. 2014; Brown and 
Jackson 2005). One of the limitations of peptide-
based vaccines is the lack of immunogenicity 
thus requiring the inclusion of an effective and 
safe adjuvant (Simerska et al. 2011; Moyle and 
Toth 2008; Khong and Overwijk 2016).

A less explored class of immune adjuvants are 
compounds stimulating innate-like T cells, semi-
activated T cells with an invariant T cell receptor 
(TCR) represented by the invariant natural killer 
T cells (NKT) that recognize glycolipid antigens 
binding to the lipid antigen-presenting molecule 
CD1d (Fujii et  al. 2003; Hermans et  al. 2003). 
The most well-known CD1d ligand is 
α-galactosylceramide (α-GalCer, KRN 7000) 
(Godfrey and Kronenberg 2004) and studies on 
the use of α-GalCer conjugated to peptide anti-
gens generating potent self-adjuvanting vaccine 
constructs have been reported (Anderson et  al. 
2014, 2015 Cavallari et al. 2014).

Toll-like receptors (TLRs) are transmembrane 
glycoproteins which play an important role in 
initiating an innate immunity response and devel-
oping the adaptive immune response (Gay and 
Gangloff 2007; Basto and Leitao 2014). Ten 
members of the human TLR family namely 
TLR1-TLR10 have been identified. TLR agonists 
vary and include viral genetic material, microbial 
nucleic acids and microbial membrane compo-
nents (Mifsud et al. 2014). Stimulation of TLRs 
may therefore lead to potent therapies against 
infectious diseases and many TLR ligands have 
been evaluated as potential treatments of viral 
and bacterial infections (Basto and Leitao 2014; 
Mifsud et al. 2014; Zaman and Toth 2013; Khong 
and Overwijk 2016).

Lipopeptides derived from bacterial cell wall 
components including lipoproteins, peptidogly-
cans, lipoteichoic acid and lipopolysaccharides can 
activate Toll-like receptor 2 (TLR2) (Basto and 
Leitao 2014; Zaman and Toth 2013). Conjugation 
of lipids and liposaccharides to peptide antigens is 
therefore used to elicit an immune response and 
plays an important role in self-adjuvanting vaccine 
development (Simerska et  al. 2011; Moyle and 
Toth 2008; Zaman and Toth 2013).
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Common lipidated moieties employed in vac-
cine design to induce immunogenicity include 
synthetic analogues of lipoprotein components of 
Escherichia coli (Braun 1975) and Mycoplasma 
(Muhlradt et  al. 1998; Muhlradt et  al. 1997), 
namely S-[2,3-bis(palmitoyloxy)propyl]-N-
palmitoyl-l-cysteine (Pam3Cys) (17) and S-[2,3-
bis(palmitoyloxy)propyl]-l-cysteine (Pam2Cys) 
(18) (Zeng et al. 2002), respectively (Fig. 9.12) 
(Khong and Overwijk 2016).

Pam3Cys and Pam2Cys have been used as 
adjuvants in several peptide-based vaccine stud-
ies directed towards treating various infectious 
diseases including, HIV, HBV, hepatitis C (Chua 
et  al. 2008; Chua et  al. 2012; Eriksson and 
Jackson 2007), Lyme disease and influenza 
(Moyle and Toth 2008; Khong and Overwijk 
2016; Zaman and Toth 2013; Chua et  al. 2015; 
Tan et al. 2012) in addition to melanoma (Zom 
et al. 2014). Better water solubility and similar or 
improved immunogenicity shown by Pam2Cys 
compared to Pam3Cys (Zaman and Toth 2013; 
Jackson et  al. 2004), makes this motif an even 
more interesting synthetic target for incorpora-
tion into peptide-based vaccines. Structure-
activity studies carried out for Pam2Cys 
demonstrated enhanced activity by the natural 
(R) configuration at the asymmetric glyceryl car-
bon, in comparison to the (S) isomer, namely 
S-[2(R),3-bis(palmitoyloxy)propyl]-l-cysteine 
[(R)-Pam2Cys], and S-[2(S),3-bis(palmitoyloxy)
propyl]-l-cysteine [(S)-Pam2Cys], respectively 
(Moyle and Toth 2008; Zaman and Toth 2013; 
Wu et al. 2010; Takeuchi et al. 2000). Conversely, 
incorporation of the (R/S) diastereoisomer of 
Pam3Cys within the MUC1 antitumor vaccine 
construct elicited immune responses similar to 
that of the same MUC1 glycopeptide comprising 
only the (R)-enantiomer (Shi et al. 2016).

It has been reported that the Pam2Cys fatty 
acid chain length plays a crucial role in determin-
ing TLR2 activation; the minimum carbon chain 
length required for immunogenic activity is C8 
and the strength of immune response increases 
with carbon addition up to C16 
(C18=C16>C12>C8) (Moyle and Toth 2008; 
Zaman and Toth 2013; Buwitt-Beckmann et  al. 
2005b; Chua et al. 2007). A more soluble deriva-
tive of Pam2Cys, namely Pam2CysSK4 showed 
the most promising activity amongst a range of 
adjuvants tested in the evaluation of a Chlamydia 
trachomatis vaccine (Cheng et  al. 2011; Spohn 
et al. 2004). It has been reported that the presence 
of a serine moiety within the Pam2CysSK4 motif 
plays a role in enhanced agonist activity for 
TLR2 (Wu et al. 2010; Kang et al. 2009).

Further SAR studies on Pam2CysSK4 led to 
identification of a structurally simpler and water 
soluble monopalmitoylted analogue 19 and its 
Nα-amino acetylated variant 20 possessing strong 
TLR2-agonistic activities, comparable to that of 
Pam2CysSer, in human (but not murine) blood 
(Fig. 9.12) (Agnihotri et al. 2011; Salunke et al. 
2012). The correct spacing between the ester-
linked palmitate and the thioether was found to 
be crucial for activity of analogue 19 and replace-
ment of the ethyl chain with a propyl chain 
resulted in loss of activity (Wu et  al. 2010; 
Agnihotri et al. 2011; Salunke et al. 2012).

Replacement of the native amide bond within 
the Pam3Cys motif with an urea led to discovery 
of a novel TLR2 ligand termed UPam; substitu-
tion of the native N-palmitoyl chain of Pam3Cys 
with an N-tetradecylcarbamyl moiety afforded a 
ligand with improved immunostimulatory 
activity compared to the parent lipopeptide 
(Fig. 9.12) (Zom et al. 2014, 2016; Willems et al. 
2014).
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The use of a cationic lipidated peptide such as 
R4Pam2Cys to elicit T-cell immunity via TLR2 
stimulation was recently described; the strategy 
relies on electrostatic attraction of the R4Pam2Cys 
moiety with soluble protein antigens obviating 
the need for covalent bond generation between 
the TLR2 ligand and the antigen (Chua et  al. 
2014).

The use of palmitic acid, lipoamino acids and 
other lipid-based immunopotentiators, as an 
alternative to PamnCys, covalently bound to syn-
thetic (glyco)peptides to improve the self-
adjuvanting effect of vaccine constructs has been 
reported and is reviewed elsewhere (Moyle and 
Toth 2008; Khong and Overwijk 2016; Basto and 
Leitao 2014; Zaman and Toth 2013; McDonald 
et al. 2015; Steinhagen et al. 2011).

9.1.5	 �Chemical Approaches 
for Incorporation of PamnCys 
Ligands

Finding efficient methods to conjugate antigens 
to lipopeptide adjuvants remains challenging 
(McDonald et al. 2015). A simple and low-cost 
synthetic approach for peptide-lipid conjugation 
to effectively activate TLR2 to afford synthetic 
material in significant quantities for biological 
evaluation, is highly desired. A synthetic strategy 
must be devised using techniques from the chem-
istry toolbox that are compatible with the pres-
ence of lipid, carbohydrate and peptide moieties 
often required for self-adjuvanting vaccines. 
Herein, the most recent advances in synthetic 
techniques used to incorporate TLR2 ligands 
based on the PamnCys moiety into (glyco)pep-
tides are summarized.

A solution phase synthesis of a simple 
dipeptide by direct condensation of Nα-9-
fluorenylmethoxycarbonyl (Fmoc)-protected 
S-(2,3-bis(hydroxyl)propyl)-l-cysteine with ser-
ine where the side chain hydroxyl is protected 
with a tert-butyl (tBu) ether was reported by Jung 
et  al. (Metzger et  al. 1991). Subsequent palmi-
toylation of S-glycerylcysteinyl hydroxyls using 
palmitic acid, N,N′-diisopropylcarbodiimide 
(DIC) and 4-(dimethylamino)pyridine (DMAP), 

followed by tBu protecting group removal from 
the serine side chain effectively provided Fmoc-
Pam2CysSer (Metzger et al. 1991).

Danishefsky et  al. (Kudryashov et  al. 2001) 
employed a solution phase approach to success-
fully incorporate the Pam3Cys ligand into a triva-
lent Lewis Y antigen resulting in antibody 
production in animal models. However, more 
common approaches to incorporate the PamnCys 
motif into peptides when designing a synthetic 
vaccine mostly rely on Fmoc solid phase peptide 
synthesis (SPPS). In this case, the peptide-based 
vaccine construct is synthesized first followed by 
lipid attachment. This approach however may 
prove problematic when synthesizing long or dif-
ficult peptide sequences (Zeng et al. 2011).

Alternatively, a convergent or modular 
approach can be used requiring initial prepara-
tion of vaccine motifs that are later conjugated, 
mostly via a linker, affording a self-adjuvanting 
vaccine construct (Zeng et al. 1996, 2001, 2002, 
2011; Harris et al. 2007; Buwitt-Beckmann et al. 
2005a; Metzger et al. 1995). The choice of chem-
ical linkage used for adjuvant-antigen conjuga-
tion is very important and may influence the 
bioactivity of the construct (Zeng et al. 2011).

9.1.5.1	 �Convergent and Modular 
Approaches to Self-
Adjuvanting Vaccine Constructs

A fully synthetic convergent approach for the 
preparation of the minimal vaccine construct 
consisting of the S-[2(R),3-bis(palmitoyloxy)
propyl]-N-palmitoyl-l-cysteine [(R)-Pam3Cys)], 
a helper T cell epitope and TN antigen (GalNAc) 
leading to high titres of IgG antibodies in mice 
was reported by Boons et al. (Buskas et al. 2005). 
In this example, the resin-bound and side chain 
protected peptide T cell epitope derived from an 
outer-membrane protein of Neisseria meningiti-
des (Wiertz et  al. 1992) was first synthesized 
using Fmoc SPPS using the extremely acid sensi-
tive 4-(4-hydroxymethyl-3-methoxyphenoxy)
butyryl-p-methylbenzhydrylamine (HMPB-
MBHA) resin affording H2N-Y(tBu)AFK(Boc)
Y(tBu)AR(Pbf)H(Trt)AN(Trt)VGR(Pbf)N(Trt)
AFE(OtBu)LFLG-resin (21) (Scheme 9.2). To 
minimize racemization at cysteine, Pam3Cys was 
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introduced into the epitope sequence using the 
Fmoc-S-[2(R),3-bis(palmitoyloxy)propyl]-l-
cysteine (Fmoc-(R)-Pam2Cys-OH) 22 under the 
activation of (benzotriazol-1-yloxy)tripyrrolid-
inophosphonium hexafluorophosphate (PyBOP), 
1-hydroxybenzotriazole (HOBt), N,N-
iisopropylethylamine (iPr2NEt) in a mixture of 
N,N-dimethylformamide (DMF) and CH2Cl2. 
Subsequent acylation of the Fmoc-deprotected 
Nα-amino group of Cys with palmitic acid and 
using PyBOP and HOBt, followed by resin cleav-
age [2% trifluoroacetic acid (TFA) in CH2Cl2] 
gave the side-chain protected Pam3Cys-tagged 
lipidated peptide 23. Finally, condensation of 23 
with a spacer containing tumour-associated TN 
antigen 24 activated by DIC, 1-hydroxy-7-
azabenzotriazole (HOAt) and iPr2NEt and ulti-
mate side chain protecting group removal using 
95% TFA gave the target vaccine construct 25 
(Scheme 9.2) (Buskas et al. 2005)

Jackson et  al. (Zeng et  al. 2011) proposed a 
modular approach (Zeng et al. 2001) for the prep-

aration of self-adjuvanting vaccine constructs, 
where standard Fmoc SPPS was used. On-resin 
incorporation of the Fmoc-Pam2Cys-OH (Zeng 
et al. 2002; Metzger et al. 1991; Jones 1975; Hida 
et al. 1995) via a diserine spacer to the Nε of an 
N-terminal lysine afforded lipidated CD4+ T(TH) 
cell epitope (Zeng et al. 1996, 2002, 2011). The 
lipid-tagged TH epitopes were then further 
N-terminally modified to facilitate a chemoselec-
tive ligation with complementary functional 
groups present at the target epitope modules 
affording oxime-, thioether-, and disulphide 
bond-linked lipidated vaccine constructs, ready 
for antibody response studies using animal mod-
els (Zeng et al. 2011).

Thus, Fmoc SPPS of TH epitopes containing 
N-terminal lysine with Nα-and Nε-amino groups 
orthogonally protected using 1-(4,4-dimethyl-
2,6-dioxocyclohexylidene)ethyl (Dde) and Fmoc 
protecting groups respectively, were prepared 
affording TH constructs of general structure 26 
(Scheme 9.3). Removal of the Fmoc protecting 

O S OH

O

NHFmocO

14

O 14
O

22 O
OHHO

O
NHAc

OH

NHAc
N
H

O

3H2N

24

21

H2N-YAFKYARHANVGRNAFELFLG

tBu

Boc

tBu

Pbf

Trt

Trt

Pbf

Trt

OtBu

O S

O

HNO

14

O 14
O

YAFKYARHANVGRNAFELFLG

tBu

Boc

tBu

Pbf

Trt

Trt

Pbf

Trt

OtBu

O

14
23

O S

O

HNO

14

O 14
O

YAFKYARHANVGRNAFELFLG
O

14

25

O
OHHO

O
NHAc

OH

NHAc
N
H

O

3N
H

O

i, ii, iii, iv

v, vi

Fmoc-S-[2(R),3-bis(palmitoyloxy)propyl]-L-cysteine
(Fmoc-(R)-Pam2Cys-OH)

Scheme 9.2  Convergent approach to a self-adjuvanting 
lipidated vaccine construct incorporating Pam3Cys TLR2 
ligand by Boons et al. (Buskas et al. 2005). Reagents and 
conditions: (i) 22, PyBOP, HOBt, iPr2NEt, DMF/CH2Cl2 
(1:5, v/v); (ii) 20% piperidine in DMF; (iii) 

CH3(CH2)14COOH, PyBOP, HOBt, DMF/CH2Cl2 (1:5); 
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DMF/CH2Cl2 (2:1, v/v), 79%; (vi) TFA/H2O/1,2-
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group using piperidine then allowed for peptide 
elongation via the exposed Nε-amino group to 
effect incorporation of the diserine spacer. 
Subsequently, the Fmoc-Pam2Cys-OH building 
block was attached using N-[(1H-benzotriazol-
1 - y l ) ( d i m e t h y l a m i n o ) m e t h y l e n e ] - N -
methylmethanaminium tetrafluoroborate N-oxide 
(TBTU), HOBt and iPr2NEt in CH2Cl2. The Fmoc 
protecting group of Pam2Cys moiety was then 
exchanged for the N-(tert-butoxycarbonyl) (Boc) 
(di-tert-butyl dicarbonate, Boc2O) allowing for 
orthogonal removal of the Dde from the 
N-terminal amino group of Lys using 2% hydra-
zine hydrate in DMF, providing lipidated TH con-
struct 27. Boc-Cys(Trt)-OH or (Boc-aminooxy)
acetic acid were then coupled to the lipidated epi-
tope 27 with subsequent peptide cleavage from 
the resin using TFA to give Pam2Cys-tagged TH 
epitopes with sulphydryl- (28), or 
aminooxyacetyl-functionality (29) at the 
N-terminus, as handles for subsequent elongation 
with target epitopes (Scheme 9.3).

The target epitopes were separately synthe-
sized using Fmoc SPPS and their N-termini acyl-
ated with bromoacetic acid or cysteine while still 
bound to resin. TFA-mediated peptide cleavage 
from the resin subsequently afforded bromoace-
tyl-, and thiol-tagged epitopes 30 and 31, respec-
tively. Alternatively, an additional serine residue 
was inserted at the N-terminus of the peptide 
sequence allowing for off-resin and sodium 
periodate-mediated serine oxidation affording an 
epitope with an N-terminal aldehyde handle 32. 
Chemoselective ligation between complementary-
tagged TH and target epitopes in buffer solutions, 
namely 28 and 30 (aq buffer, pH 8), 28 and 31 
(2,2′-dipyridyl disulphide), 29 and 32 (aq buffer, 
pH 3) gave thioether-, disulphide, and oxime-
bond linked self-adjuvanting peptide-based vac-
cine constructs 33-35, ready for further 
bioanalysis (Zeng et al. 2011) (Scheme 9.4).

This modular approach (Zeng et  al. 2001) 
ensured that attachment of the Pam2Cys motif at 
the Nε-amino group of Lys “in between” both 
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Scheme 9.3  Synthesis of lipidated-TH epitopes incorpo-
rating Pam2Cys TLR2 ligand by Jackson et al. (Zeng et al. 
2011). Reagents and conditions: (i) 20% piperidine in 
DMF; (ii) Fmoc-Ser(tBu)-OH, HBTU, HOBt, iPr2Net, 
DMF, then (i), repeated twice; (iii) Fmoc-Pam2Cys-OH, 

TBTU, HOBt, iPr2NEt, CH2Cl2, 16 h, then (i); (iv) Boc2O, 
DMF; (v) 2% hydrazine hydrate in DMF, 10 min; (vi) 
Boc-Cys(Trt)-OH, HBTU, HOBt, iPr2Net, DMF; (vii) 
(Boc-aminooxy)acetic acid, DMF; (viii) TFA/phenol/
H2O/triisopropylsilane (iPr3SiH) (88:5:5:2)
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epitopes orientating the vaccine constructs in a 
branched configuration. The Pam2Cys motif can 
also be incorporated at the Nα-amino group at the 
N-terminus of a vaccine construct; however, 
decreased immunogenic activity resulted follow-
ing linear assembly, partially due to reduced sol-
ubility, compared to the branched vaccine 
counterparts (Zeng et al. 2002).

A new thioether ligation strategy to create 
self-adjuvanting peptide vaccine constructs using 
the Pam3CysSK4 moiety has been recently 
reported (Cai et  al. 2013). This approach takes 
advantage of the complementary modified 
Pam3CysSK4 motif with a bromo-handle and 
thiol-containing antigen that are subsequently 
linked together via a thioether bond. Key to this 
approach was the initial preparation of an active 
intermediate Pam3CysSK4-K(COCH2Br)-OH 36 
that was accessed by microwave-enhanced (MW) 
Fmoc SPPS. Herein, a Wang-resin was initially 
preloaded with lysine orthogonally protected 
with Fmoc at Nα and with a 1-(4,4-dimethyl-2,6-
dioxo-cyclohexylidene)-3-methyl-butyl (ivDde) 
at Nε. Subsequent peptide chain elongation via 
the Nα-amino group followed by lipidation using 
Pam3Cys-pentafluorophenyl (Pfp) ester [HOBt in 

N-methyl-2-pyrrolidone (NMP) for 45  min at  
50 °C] afforded resin-bound and side-chain pro-
tected Pam3CysS(OtBu)[K(Boc)]4-K(ivDde). 
The ivDde protecting group was then removed 
using hydrazine, and the Nε-amino group acyl-
ated with pentafluorophenyl bromoacetate. 
Subsequent TFA-mediated peptide cleavage gave 
Pam3CysSK4-K(COCH2Br)-OH 36. The key 
intermediate 36 was then converted into an active 
iodo-acetyl derivative using potassium iodide 
(KI) in urea/sodium acetate (NaOAc) mixture 
affording 37 (Scheme 9.5a). The iodo-acetyl 
moiety 37 was then ligated with several peptide 
epitopes that incorporated a thiol-terminated 
PEG spacer at their N-terminus. For example 
construct 38 was treated with 37 and trimethyl-
amine (Et3N) in DMF at 40 °C affording con-
struct 39 (Scheme 9.5b). The authors successfully 
applied this strategy for conjugation of a 
Pam3CysSK4 motif via a thioether linkage to B- 
and T-cell epitopes affording various self-
adjuvanting vaccine constructs (Cai et al. 2013). 
The three-component construct 39 comprising P4 
tetanus toxoid T cell epitope (Demotz et al. 1989; 
Monji and Pious 1997), linked via a PEG spacer 
with MUC1 glycopeptide comprising TN antigen, 
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and a conjugated Pam3CysSK4 via a thioether 
linkage proved most efficacious (Cai et al. 2013).

9.1.5.2	 �Native Chemical Ligation 
Approach to Self-Adjuvanting 
Vaccine Constructs

Native Chemical Ligation (NCL) (Dawson et al. 
1994) enables synthetic access to long peptides 
and large biomolecules and has been used by our 
research group in numerous studies (Yang et al. 
2013; Harris and Brimble 2015; Medini et  al. 
2015; Harris et  al. 2015; Harris and Brimble 
2013; Medini et al. 2016; Lee et al. 2011; Brimble 
et al. 2015; Son et al. 2014; Harris and Brimble 
2010). NCL conjugates two synthetic partners 
containing complementary reactive sites, namely 
an N-terminal cysteine and a C-terminal thioester 
moiety via a thiol-catalysed chemoselective reac-
tion affording a thioester-linked product; subse-
quent S→N transfer ensures the formation of a 
native peptide bond (Dawson et  al. 1994). 
Brimble et al. (Harris et al. 2007) explored syn-

thetic pathways to access Pam2Cys-linked thioes-
ter moiety that could be later incorporated into a 
long peptide via NCL. The initial effort to syn-
thesise a more soluble derivative of Pam2Cys, 
namely Pam2CysSK4G thioester using tert-
butyloxycarbonyl (Boc) SPPS resulted in unex-
pected cleavage of the palmitoyl esters during the 
final hydrofluoric acid (HF)-mediated peptide 
removal from the resin (Zeng et  al. 2011). 
Successful synthesis of Pam2CysSK4G thioester 
was however completed using an alternative 
Fmoc SPPS strategy employing a sulfonamide 
‘safety catch linker’ (Backes and Ellman 1999; 
Ingenito et  al. 1999) and Fmoc-S-[2(S),3-
bis(palmitoyloxy)propyl]-l-cysteine (Fmoc-(S)-
Pam2Cys-OH) (40) as the building block (Scheme 
9.6) (Harris et  al. 2007). Loading of 
4-sulfamylbutyryl aminomethyl polystyrene 
resin with Fmoc-Gly-OH was initially performed 
[DIC, N-methylimidazole (N-Melm) in DMF/
CH2Cl2 mixture] followed by standard Fmoc 
SPPS affording side chain protected peptidyl-
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Scheme 9.5  Exemplified synthesis of three component 
synthetic vaccine incorporating Pam3Cys TLR2 ligand 
using thioether ligation strategy by Kunz et al. (Cai et al. 
2013). Reagents and conditions: (i) MW Fmoc SPPS; (ii) 
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resin 41. Subsequent coupling of lipidated building 
block 40 (Metzger et al. 1991; Hida et al. 1995) 
was effected (PyBOP/HOBt) and the Fmoc pro-
tecting group was exchanged to Boc (Boc2O in 
DMF/CH2Cl2 mixture) to provide 42. Resin-
bound 42 was then activated with iodoacetoni-
trile in NMP, with subsequent cleavage from 
resin using benzyl thiol (BnSH). Finally side 
chain protecting groups removal using TFA 
afforded the desired Pam2CysSK4G thioester 43 
(Harris et al. 2007).

Boons et al. (Ingale et al. 2006) were the first to 
demonstrate a successful synthesis of a three-
component glycolipidated peptide vaccine by 
sequential NCL of the suitably prepared ligation 
fragments; Fmoc SPPS was employed to synthe-
sise the T-cell epitope C(Acm)
YAFKYARHANVGRNAFELFLG-thioester 
(44), the tumour-associated glycopeptide frag-
ment derived from MUC-1 CTSAPDT(GalNAc)
RPAP (45), and the TLR2 ligand Pam3CysSK4G-
thioester (46). Due to limited success when liga-
tion of 44 with 45 was undertaken using standard 

NCL conditions (phosphate buffer containing 
6  M guanidinium hydrochloride, thiophenol, 
37 °C), new methodology involving incorporation 
of 44 with 45 into liposomes to aid solubility was 
used. A film of dodecylphosphocholine (DPC), 
thioester 44 and thiol 45 were hydrated via incu-
bating in a phosphate buffer (pH 7.5) for 4 h at 37 
°C in the presence of tris(2-carboxyethyl)phos-
phine (TCEP) and ethylenediaminetetraacetic 
acid (EDTA) to suppress disulphide bond forma-
tion. The mixture was then sonicated and the 
resulting peptide/lipid suspension formed uni-
form 1 μm vesicles. Sodium 2-mercaptoethane 
sulfonate (MESNA) was subsequently added and 
ligation completed after 2 h at 37 °C affording 47 
in high 78% yield after reversed-phase high-
performance column chromatography (RP HPLC) 
purification (Ingale et  al. 2006). Ligation of 
Pam3CysSK4G-thioester 46 with thiol 48, 
accessed by removal of the acetamidomethyl 
(Acm) protecting group from 47 [Hg(OAc)2], 
using liposome-mediated NCL afforded a three-
component vaccine construct 49 in 83% yield 
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dine in DMF; (v) Boc2O, CH2Cl2, DMF; (vi) ICH2CN, 
NMP; (vii) BnSH, DMF; (viii) TFA/phenol/iPr3SiH/H2O 
(88:5:2:5, v/v/v/v)

R. Kowalczyk et al.



207

after purification by chromatography (Scheme 
9.7). The scope of this technique was later demon-
strated by the synthesis of other self-adjuvanting 
vaccine constructs that differ in the composition 
of the (glyco)peptide and lipid component; some 
of the constructs proved highly immunogenic 
when tested in mice models (Ingale et al. 2006; 
Ingale et al. 2007; Lakshminarayanan et al. 2012; 
Abdel-Aal et al. 2014; Ingale et al. 2009).

The liposome-mediated NCL approach 
allowed for the generation of a native amide link-
age between each of the required vaccine mod-
ules. However, the use of dodecylphosphocholine 
liposomes in ligation buffers can be limiting 
owing to the need for RP HPLC purification after 
each ligation step to isolate the product 
(McDonald et al. 2015; Ingale et al. 2006).

9.1.5.3	 �Fragment Condensation 
Approach to Self-Adjuvanting 
Vaccine Constructs

Kunz et al. (Kaiser et al. 2010) and Payne et al. 
(Wilkinson et al. 2010) described a fragment con-

densation approach to incorporate a Pam3Cys 
TLR2 ligand into mono- and per-glycosylated 
MUC1 glycopeptides respectively, using a PEG-
based spacer to access fully synthetic vaccine 
constructs.

The Kunz approach involved initial synthesis 
of the lipidated, side-chain protected and the 
C-terminal carboxylic acid Pam3CysS(tBu)
K(Boc)K(Boc)K(Boc)K(Boc) (50) unit using 
Fmoc SPPS.  The MUC1 glycopeptides 
N-terminally modified with PEG linker, namely 
H 2N ( C H 2C H 2O ) 3C H 2C H 2C O N H - PA H -
GVT(sugar)-SAP-DTR-PAP-GST-AP-OH, com-
prising either TN- (51), T- (52) or 
2,6-sialyl-T-antigen (53) at the singly glycosyl-
ated Thr-6 were then accessed via Fmoc 
SPPS.  The fragment condensation was subse-
quently effected in solution and using 
N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]
p y r i d i n - 1 - y l m e t h y l e n e ] - N -
methylmethanaminium hexafluorophosphate 
N-oxide (HATU)/HOAt and 4-methylmorpholine 
(NMM) in DMF which was followed by TFA-
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of three-component vaccine construct incorporating 
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mM dl-dithiothreitol (DTT), 89%
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mediated protecting group removal and purification 
affording three novel vaccine constructs, 54, 55 
and 56 in 25%, 21% and 20% yield, respectively 
(Scheme 9.8). Importantly, bio-assessment of 
TLR2 ligand-MUC1 assembly comprising 
T-antigen 55 showed the ability to elicit humoral 
immune response in mice (Kaiser et al. 2010).

The Payne group employed the lipopeptide 
component with a PEG-like spacer at C-terminus, 
namely Pam3CysS(tBu)-CONH(CH2CH2O)2 
CH2COOH (57), and per-glycosylated full copies 
of the MUC1 VNTR domain epitope (GVT(sugar)- 
S(sugar)-APDT(sugar)-RPAPGS(sugar)T(sugar)
APPAH), incorporating no copies (58) or multi-
ple-copies of either TN- (59) or T-antigen (60), for 
convergent conjugation. All peptide fragments 
57-60 were synthesized using Fmoc SPPS. The 
free carboxylic acid of the lipid partner 57 was 
pre-activated using pentafluorophenyl ester with 
ensuing fragment condensation with the requisite 
MUC1 epitopes 58, 59 or 60 using HOBt and 
iPr2NEt in DMF affording desired MUC1-
Pam3Cys chimeras with no sugars 60, or contain-
ing five copies of either TN-or T-antigen, 62 and 

63, respectively (Scheme 9.9) (Wilkinson et  al. 
2010). This fragment condensation approach was 
also used in other studies by the Payne group to 
synthesise multiple-component vaccine con-
structs incorporating Pam3Cys (Wilkinson et al. 
2012; McDonald et  al. 2014; Wilkinson et  al. 
2011). The fragment condensation strategy is a 
good alternative to the liposome-mediated NCL 
approach reported by Boons et al. (Ingale et al. 
2006, 2007; Lakshminarayanan et al. 2012) with 
no requirements for solubilizing agents.

9.1.5.4	 �Linear Approach to Self-
Adjuvanting Vaccine Construct

The Boons group has recently reported a linear 
synthesis to access a three-component cancer 
vaccine composed of a B-cell epitope glycosyl-
ated with a sialyl-TN moiety, a TH epitope derived 
from polio virus (Leclerc et  al. 1991) and a 
Pam3CysSK4 ligand. The key strategies employed 
by the Boons group included the use of 
microwave-enahanced Fmoc SPPS and on resin 
incorporation of the Fmoc-(S)-Pam2Cys-OH (40) 
building block onto the free Nα-amino group of 
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the pre-synthesised glycopeptide construct 
containing deprotected hydroxyl groups of the 
sugar moiety (Thompson et al. 2015). Fmoc pro-
tecting group removal from the Fmoc-(S)-
Pam2Cys-tagged vaccine construct (piperidine) 
could be then followed by Nα-amino group pal-
mitoylation using palmitic acid, HATU, HOAt 
and iPr2NEt in DMF.  Finally, TFA treatment 
afforded fully synthetic vaccine construct 64 
incorporating the Pam3Cys TLR2 ligand 
(Fig.  9.13). Biological evaluation demonstrated 
induction of potent humoral and cellular immune 
responses in transgenic mice (Thompson et  al. 
2015).

A three-component vaccine construct similar 
to that described above, but incorporating the 
unnatural TN moiety, namely α-O-GalNAc-α-
methylserine in place of threonine, within the 
MUC1 epitope was recently accessed using the 
MW-enhanced Fmoc SPPS strategy previously 
reported by Boons et al. (Thompson et al. 2015; 
Martinez-Saez et  al. 2016). This novel vaccine 
construct however, showed only comparable effi-
cacy to that reported for the assembly containing 
native threonine.

As shown above, a linear approach for the 
synthesis of complex multi-component lipidated 
peptides containing only natural peptide bonds 
demonstrates the efficiency of the microwave-
assisted Fmoc SPPS technique. However, longer 
and/or more hydrophobic lipopeptide constructs 

may still be difficult to access when using a linear 
SPPS and alternative synthetic routes for lipid 
incorporation are in demand.

9.1.5.5	 �TLR2 Ligand Conjugation Using 
Copper(I)-Catalysed Huisgen 
1,3-Dipolar Cycloaddition

The need for large quantities of Fmoc-Pam2Cys 
building block required for SPPS conjugation 
poses a considerable obstacle due to the difficulty 
and cost involved in its synthesis. An alternative 
conjugation approach to incorporate the Pam2Cys 
moiety into a peptide could mitigate this conun-
drum. The copper(I)-catalysed Huisgen 
1,3-dipolar cycloaddition of alkynes and azides 
to afford a 1,2,3-triazole conjugate (CuAAC 
‘click chemistry’) offered promise for the conju-
gation of Pam2Cys with a peptide due to its toler-
ance of various functional groups and its complete 
regioselectivity to form 1,4-disubstituted prod-
ucts (Tornoe et al. 2002; Rostovtsev et al. 2002). 
The Brimble group therefore designed a Pam2Cys 
click building block containing an azide handle 
in place of the Nα-amino group of the cysteine 
residue which could be then clicked to a peptide 
functionalized with a propargyl moiety (Yeung 
et al. 2012). However, initial attempts to directly 
introduce an azide onto a free Nα-amino group of 
Pam2Cys using a diazotransfer reaction (Goddard-
Borger and Stick 2007) proved unsuccessful, 
potentially due to obstruction of the reactive sites 
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by the long palmitate groups (Yeung et al. 2012). 
A revised strategy was developed starting from 
an S-glyceryl cysteine intermediate 65 (Metzger 
et al. 1991; Pattabiraman et al. 2008) which was 
subjected to Nα-amino group deprotection 
(piperidine in CH2Cl2) to reveal the amino group 
for the ensuing diazotranfer reaction using 
imidazole-1-sulfonylazide.HCl, K2CO3 and 
CuSO4

.5H2O in MeOH (Goddard-Borger and 
Stick 2007) affording an azide-diol in 50% yield 
over 2 steps (Scheme 9.10a). Subsequent palmi-
toylation of the azide-diol [palmitic acid, DIC, 

and catalytic 4-(dimethylamino)pyridine 
(DMAP)] provided tBu-protected Pam2Cys azide 
66 in 74% yield. Subsequent TFA treatment to 
remove the carboxyl protecting group gave the 
desired lipidated and azide-tagged ‘click’ ligation 
partner 67 in 84% yield (Yeung et al. 2012).

The synthesis of the alkyne-containing pep-
tides for subsequent Cu(I) conjugation with 67 
was undertaken using Fmoc SPPS (Yeung et al. 
2012). Pentynoyl acid was coupled to the 
N-terminus affording 68 and propargylglycine 
(Pra) was used as an alkyne handle within the 
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modified MUC1 peptide sequence, namely 
HGV-Pra-SAPDTRPAPGSTAPPA 69. The 
‘click’ reaction of both alkyne-enriched peptides 
68 and 69 using azide 67 was completed within 
30  min as evidenced by RP HPLC using 
CuI·P(OEt)3 and iPr2NEt in DMF affording 
1,2,3-triazole-linked Pam2Cys peptides 70 and 
71, respectively. The amenability of the Pam2Cys 
azide to direct conjugation onto suitably modi-
fied peptides using the ‘click’ technique was suc-
cessfully demonstrated (Scheme 9.10b) (Yeung 
et al. 2012). However, construct 70 was immuno-
logically inactive possibly due to difference in 
the distance between the serine and the Pam2Cys 
(unpublished data). It has been reported that the 
exact length and geometry around the Cys-Ser 
unit is critical for activity of the Pam2CysSK4 
motif (Wu et al. 2010; Kang et al. 2009).

Kunz et  al. were the first to report CuAAC-
assisted ligation of Pam3CysSK4 to a MUC1 gly-
copeptide to synthesise mono-, di- and tetra-valent 
MUC1 tandem repeat glycopeptide constructs to 
prepare of fully synthetic antitumour vaccines 
(Cai et al. 2011). The Kunz approach for the syn-
thesis of monovalent MUC1 derivatives used 
Fmoc SPPS of MUC1 glycopeptide in which the 
N-terminal Nα-amino group was acylated with a 
PEG linker suitably modified with an azide han-
dle affording construct 72. The ‘click’ synthetic 
partner 73 incorporated an alkyne group via a 
PEG spacer linking with the Pam3CysSK4 ligand 
by the Nε-amino group of the additional 
C-terminal lysine residue. The copper(I)-medi-
ated reaction of the suitably prepared ‘click’ part-
ners was then performed using copper acetate 
and Na ascorbate in H2O at 40 °C affording the 
monovalent vaccine construct 74 with >70% 
yield (Scheme 9.11) (Cai et al. 2011).

The Nε-amino group of the C-terminal lysine 
linked to the Pam3CysSK4 moiety was later used 
as a point of attachment of additional lysine 
groups forming a multibranched lysine core 
which terminated with two or four copies of PEG-
alkyne handles. Subsequent Cu(I) ‘click’ using 
the Pam3CysSK4 ligand incorporating two- or 
four alkyne groups and azide construct 72 afforded 
the desired di- (75) and tetra-valent (76) assem-
blies, respectively (Scheme 9.11) (Cai et al. 2011). 

Importantly, the tetravalent construct of general 
structure 76 synthesized using this strategy that 
incorporated the STN glycoside within the MUC1 
sequence proved effective in inducing strong 
immune responses in mice including stimulation 
of killer cells (Cai et al. 2014).

The Sucheck group has reported the 
1,2,3-triazole-mediated conjugation of a Pam3Cys 
ligand equipped with a C-terminal alkyne, with a 
20-amino acid azide-tagged tandem repeat of 
MUC1 incorporating the TN unit (Sarkar et  al. 
2013). The alkyne-containing ‘click’ partner was 
available from Fmoc-Pam2Cys(OtBu) 77 by tert-
butyl protection removal (TFA) followed by cou-
pling with propargyl amine in the presence of 
PyBOP, HOBt and iPr2NEt in CH2Cl2. Fmoc pro-
tecting group removal and acylation of the 
revealed Nα-amino group with palmitic acid 
using PyBOP, HOBt, and iPr2NEt gave the alkyne 
functionalized Pam3Cys 78, Scheme 9.12a. The 
glycopeptide-azide was prepared via Fmoc SPPS 
on Fmoc-Ala-WANG resin using DIC/HOBt as 
coupling reagent and piperidine in DMF for 
Fmoc removal, affording resin-bound 79. The 
azido group was installed on-resin by coupling 
6-azidohexanoic acid to the N-terminal proline 
residue of MUC1 followed by TFA-mediated 
peptide cleavage from the resin and acetyl depro-
tection of the TN hydroxyls (sodium methoxide in 
MeOH) to provide azide-containing MUC1 epit-
ope 80 (Scheme 9.12b). The ‘click’ conjugation 
of both constructs, alkyne-functionalized 
Pam3Cys 78 and the azide-MUC1 component 80 
was undertaken with CuSO4

.5H2O, Na ascorbate 
with the aid of a Cu(I) stabilizing agent tris[(1-
benzyl-1H-1,2,3-triazol-4-yn)methyl]amine 
(TBTA) in water/MeOH/THF mixture affording 
Pam3Cys-MUC1 conjugate 81 quantitatively 
(Scheme 9.12c) (Sarkar et al. 2013).

The Brimble group recently employed a 
Pam2CysSK4 motif for the synthesis of a series of 
lipopeptide-based TLR2 agonists using ‘click’ 
chemistry (Wright et al. 2013c). Incorporation of 
an acetylene handle at the C-terminal end of the 
Pam2CysSK4 construct would allowing for the 
chemoselective ‘click’ conjugation with an azide-
tagged epitope. Unlike the previous study by the 
Brimble group (Yeung et al. 2012) this approach 

9  Peptide Lipidation – A Synthetic Strategy to Afford Peptide Based Therapeutics



212

maintained the critical atomic distance between 
the Pam2Cys and adjacent serine moiety[159]. 
Additionally, both the self-adjuvanting lipopep-
tide construct and the epitope were directly con-
jugated via a 1,2,3-triazole unit in contrast to 
approach by Kunz et  al. where a PEG linker 
spaced these units apart (Cai et al. 2011).

It has been reported that the immunogenicity 
of the antigen incorporated to a vaccine construct 
may be suppressed by the presence of a linker 
(Buskas et al. 2004). We were also interested if 
the location of the triazole between the antigen 
and the Pam2CysSK4 moiety affects the TLR2-
mediated stimulation of innate immunity; antigen 
conjugation with the lipid at either the N- or 
C-terminus of the peptide antigen was therefore 
investigated. It has been reported that acetylation 
of the Nα-amino group of the monoacyl PamCys 
moiety improved TLR2 activity (Salunke et  al. 
2012) hence the effects of this modification were 
also evaluated in this study (Wright et al. 2013c).

A lipidated and C-propargylated ‘click’ part-
ner 82, in addition to the N-acetylated analogue 
83 were first synthesized (Scheme 9.13a). 
Synthesis began by the N-terminal coupling of 
the Fmoc-(S)-Pam2Cys-OH building block 40 
prepared from l-cysteine (Zeng et  al. 2002; 
Metzger et  al. 1991; Jones 1975; Hida et  al. 
1995), to the resin-bound C-terminal propar-
gylated H2N-S(tBu)K(Boc)K(Boc)K(Boc)
K(Boc)-Pra-resin peptide synthesized using stan-
dard Fmoc SPPS (Wright et al. 2013c). The pep-
tide was lipidated using 40 and conditions 
adapted from Albericio et  al. [benzotriazol-1-
yloxytris(dimethylamino)phosphonium hexaflu-
orophosphate (BOP), 2,4,6-collidine, CH2Cl2/
DCM (1:1)] (Han et al. 1996). Subsequent Fmoc-
deprotection, followed by TFA-mediated resin 
cleavage and RP HPLC purification afforded the 
desired construct 82. Acylation of the Nα-amino 
group of cysteine to give 83 was performed using 
a mixture of acetic anhydride and iPr2NEt in 
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DMF, prior to peptide cleavage and purification 
(Wright et  al. 2013c). A truncated fragment of 
ppUL83 protein, namely NLVPMVATV, derived 
from the cytomegalovirus (CMV) known to stim-
ulate CD8+ cytotoxic T-cells (Kopycinski et  al. 
2010) was chosen as a model epitope for the 
‘click’ reaction. Synthesis of two NLVPMVATV 
analogues incorporating an azide handle at either 
the N- or C-terminus was also required. For the 
preparation of an azide-tagged antigen at the 
N-terminal site of the peptide 84, Fmoc SPPS 
was employed starting from 4-(hydroxymethyl)
phenoxypropanoic acid (HMPP) resin and cou-
pling of 2-azidoacetic acid to the N-terminal Asn 
at the last step of the SPPS.  Subsequent acid-
mediated peptide cleavage from the resin fol-
lowed by RP HPLC purification afforded the 
desired ‘click’ partner 84 (Scheme 9.13b).

For the synthesis of the NLVPMVATV ana-
logue with the C-terminally-tagged azide moiety 
2-azidoacetic acid was incorporated via the Nε-
amino group of an inserted lysine moiety at the 
C-terminus of the peptide. An orthogonally pro-

tected lysine residue [Dde-Lys(Fmoc)] was cou-
pled to the Rink-amide resin, followed by the 
selective Nε-Fmoc protecting group removal 
(20% piperidine in DMF) and coupling of the 
2-azidoacetic acid moiety. Subsequent hydrazine 
hydrate-mediated Dde group deprotection 
allowed for the iterative peptide chain elongation 
using Fmoc SPPS through readily unmasked Nα-
amino group of the lysine residue, affording con-
struct 85 (Scheme 9.13b). Chemoselective 
conjugation of propargylated-, or propargylated 
and N-acetylated- Pam2CysSK4 motives 82 and 
83, respectively with azidopeptides 84 and 85 
under activation with CuSO4 and Na ascorbate in 
DMSO, gave 1,2,3-triazole-linked constructs 86-
89 in good yields (30-40%) and high purities 
(>95% by RP HPLC) (Scheme 9.13c) (Wright 
et al. 2013c).

Biological evaluation of 82 and N-acetylated 
analogue 83 using fresh human blood and mea-
suring the level of CD80 surface expression com-
pared to commercially sourced Pam3CSK4 
interestingly revealed no major difference in 
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CD80 expression between both propargylated 
Pam2Cys analogues with free- (82) and 
N-acetylated-Nα-amine (83) in contrast to pub-
lished reports (Salunke et al. 2012). Importantly, 
there were no preferences regarding the N- or 
C-terminus for the antigen conjugation with lipi-
dated adjuvant via 1,2,3-triazole and similar 
CD80 expression levels were observed for both 
‘clicked’ analogues 86 and 87 and activity of 
‘clicked’ lipopetides was comparable with the 
activity of commercially available Pam3CysSK4 
(Wright et  al. 2013c). This efficient procedure 
can therefore be generally applied for rapid gen-
eration of lipopeptides providing access to vac-
cine constructs (Wright et al. 2013c).

9.1.5.6	 �Cysteine Lipidation 
on a Peptide or Amino acid 
(CLipPA)

The ‘thiol-ene’ reaction, a radical-promoted 
alkylation of a thiol with an alkene has been gain-
ing in popularity in polymer and material science 
(Lowe 2010; Lowe 2014) as well as providing an 
effective strategy for bioconjugation and for site-

selective modification of protein and organic mol-
ecules (Dondoni and Marra 2012; Hoyle and 
Bowman 2010; Liu and Li 2012; Krall et al. 2016; 
Madder and Gunnoo 2016). The Brimble group 
have recently applied for the first time, a single 
step ‘thiol-ene’ coupling to synthesise monoacyl 
lipopeptides that showed self-adjuvanting anti-
genic activity with potency comparable to that of 
the synthetically challenging Pam3Cys moiety 
(Wright et al. 2013a, b; Brimble et al. 2014). We 
envisaged lipid attachment via the ‘post-transla-
tional’ route where the desired peptide constructs 
incorporating a cysteine at the N-terminus are first 
synthesized followed by S-lipidation with inex-
pensive and commercially available vinyl palmi-
tate using the ‘thiol-ene’ reaction. The viability of 
the transformation was first tested by preparation 
of the S-palmitoylated, Nα-Fmoc protected cyste-
ine, starting from commercially available Fmoc-
Cys(Trt)-OH which thiol protecting group was 
removed (TFA) affording Fmoc-Cys-OH (90). 
This was followed by hydrothiolation of vinyl 
palmitate 91 using UV light at 365  nm and 
2,2-dimethoxy-2-phenylacetophenone (DMPA) 

a

SKKKK-PraH2N

tBu

Boc

i, ii, iii, iv

O S SKKKK-Pra

O

NHR'O

14

O 14
O

82: R' = H
83: R' = Ac

NH2

84

v

O S SKKKK-Gly

O

NHR'O

14

O 14
O

86 (31%): R' = H
87 (43%): R' = Ac

NH2

N N
N

H
N

O
OH

O S SKKKK-Gly

O

NHR'O

14

O 14
O

88 (37%): R' = H
89 (37%): R' = Ac

NH2

N N
N

H
N

O

NLVPMVATV

LysNLVPMVATVH2N NH2

4

85

c

b

N
H

84

OH

85

NH2

N
H

4

O
N3

LysH2N

N3

O

NLVPMVATV

NLVPMVATV

Scheme 9.13  Synthesis of Pam2Cys lipopeptide-based 
TLR2 agonists using ‘click’ chemistry by Brimble et al. 
(Wright et  al. 2013c). Reagents and conditions: (i) 40, 
BOP, 2,4,6-collidine, CH2Cl2/DMF (1:1); (ii) 20% piperi-

dine in DMF; (iii) Ac2O, iPr2NEt, DMF (only for 83); (iv) 
TFA/iPr3SiH/DODT/H2O (94:1:2.5:2.5, v/v/v/v), 4 h, rt; 
(v) CuSO4, Na ascorbate, DMSO, 10 min, 70 °C
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as photoinitiator in CH2Cl2 for 60  min. The 
S-palmitoylated, Nα-Fmoc protected cysteine 92 
was obtained in satisfactory yield (44%) (Scheme 
9.14a) (Wright et al. 2013a, b). Subsequent direct 
lipidation of short, unprotected peptides CysSK4 
and Nα-acetylated CysSK4 using 91, DMPA and 
photoinitiation (365 nm), was examined. The 
study revealed the need for extraneous thiols to 
obviate problems of vinyl palmitate telomeriza-
tion and mixed disulphide formation. The choice 
of solvent also proved critical for a successful 
reaction. The optimized ‘thiol-ene’ conditions 
(DMPA, DTT as thiol additive, NMP, hν 365 nm) 
were then used to directly lipidate Nα-acetylated 
CysSK4 93 using vinyl palmitate (91) with high 
conversion (>90%) to the S-palmitoylated peptide 
94 (Scheme 9.14b).

The utility of direct lipidation was explored 
using more structurally complex antigenic pep-
tide substrate derived from the cytomegalovirus 
ppUL85 protein (Kopycinski et  al. 2010) com-
prising an N-terminally CysSK4, motif 
Ac-CSKKKK-NLVPMVATV (95). Pleasingly, 
good conversion of 95 to S-palmitoylated peptide 
antigen 96 using the photoinitiated ‘thiol-ene’ 

reaction, 91 and optimized conditions (DMPA, 
DTT, DMSO) was observed as judged by RP 
HPLC profile (Scheme 9.14b) (Wright et  al. 
2013a; Wright et al. 2013b). We therefore coined 
the term ‘Cysteine Lipidation on a Peptide or 
Amino acid (CLipPA)’ to describe this efficient 
transformation allowing for one step lipidation of 
Nα-protected cysteine derivatives using vinyl 
palmitate.

We subsequently focused on a detailed study to 
optimise conditions for highly selective and effec-
tive mono-S-palmitoylation of peptides using 
CLipPA technology (Yang et al. 2016). Our first 
goal was to provide optimal conditions for the syn-
thesis of a lipidated Nα-protected cysteine build-
ing block that could be used directly in SPPS. The 
Nα-protecting group, radical initiator and activa-
tion method were revised. Treatment of Nα-
protected Fmoc, Boc or Nα-acetylated cysteine 
with an excess of vinyl palmitate in the presence of 
DMPA or 2,2-azo-bis(2-methylpropioniytile 
(AIBN) as radical initiator in either CH2Cl2 or 
1,2-dichloroethane as solvent and under thermal 
heating (reflux at 90  °C), microwave irradiation 
(100 W, 70 °C) or UV light (365 nm) was studied. 
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Scheme 9.14  (a) Model ‘thiol-ene’ reaction of Fmoc-
Cys-OH (90) with vinyl palmitate (91). (b) Direct 
S-palmitoylation of 93 and antigenic peptide 95 using 
vinyl palmitate 91 and ‘thiol-ene’ reaction by Brimble 

et al. (Wright et al. 2013a; Wright et al. 2013b). Reagents 
and conditions: (i) 91 (2 equiv) DMPA (0.2 equiv), 
CH2Cl2, 1 h, hν 365 nm, 44%; (ii) 91 (5 equiv), DMPA 
(0.4 equiv), DTT (3 equiv), hν 365 nm
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The S-palmitoylated products obtained were read-
ily purified by silica gel chromatography without 
the need for RP HPLC.

An optimal conversion of Nα-protected with 
Fmoc- or Boc cysteine 90 and 96 was observed 
under UV light activation, using excess DMPA (1 
equiv) for 1 h in CH2Cl2 affording 92 and 97 in 
85% yield (Scheme 9.15a). Heating, either con-
ventional or using microwave, gave lower yields 
due to the premature cleavage of Fmoc protecting 
group and the instability of the Boc group to high 
temperatures. Conversely, lipidation of Nα-Ac 
cysteine 98 appeared to be straightforward under 
all conditions tested giving good to excellent 
yields of the expected Nα-Ac and S-palmitoylated 
product 99. However the most effective conver-
sion was when CH2Cl2 and AIBN were used 
under microwave heating (100 W, 70 °C) for 
80  min leading to quantitative formation of 

desired product 99 (Scheme 9.15b) (Yang et al. 
2016).

The choice of Nα-protecting group may influ-
ence the degree of racemization during the cou-
pling step when SPPS is performed (Zhang et al. 
2012). Therefore, the coupling of S-palmitoylated, 
Nα–protected building blocks, 92 or 99 to a model 
peptide sequence was evaluated (Kopycinski et al. 
2010). The Met residue of NLVPMVATV was 
substituted with Cys(tBu) to demonstrate applica-
bility of the ‘thiol-ene’ reaction conditions to a 
suitably protected cysteine thiol. The resin-bound 
and side-chain protected peptide H2N-S(tBu)
K(Boc)K(Boc)K(Boc)K(Boc)-N(Trt)LVPC(tBu)
VAT(tBu)V-resin (100) was prepared using Fmoc 
SPPS at room temperature with HATU/iPr2NEt 
and piperidine as coupling and Fmoc deprotection 
reagents and acylation with the lipidated building 
blocks, 92 or 99 was undertaken using 
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Scheme 9.15  (a) Lipidation of Fmoc-Cys-OH (90) and 
Boc-Cys-OH (96) with vinyl palmitate (91) using opti-
mized conditions for CLipPA; (b) Lipidation of 
Ac-Cys-OH (98) with vinyl palmitate (91) using opti-
mized conditions for CLipPA; (c) On-resin lipidation of 
antigen 100 using Nα-protected S-palmitoylated cysteine 
building blocks 92 and 99 (Wright et  al. 2013a; Wright 
et al. 2013b; Yang et al. 2016). Reagents and conditions: 

(i) 91 (1.5 equiv), DMPA (1 equiv), CH2Cl2, 1 h, hν 365 
nm, 85%; (ii) 91 (1.5 equiv), AIBN (1 equiv), CH2Cl2, 80 
min, MW, 100 W, 70 °C, 99%; (iii) 92 or 99, PyBOP, 
2,4,6-trimethylcollidine, CH2Cl2/DMF (1:1), 1 h, rt; (iv) 
(for building block 92): 20% piperidine in DMF, then 20% 
Ac2O in DMF; (v) TFA/3,6-dioxa-1,8-octane-dithiol 
(DODT)/H2O/iPr3SiH (94:2.5:2.5:1, v/v/v/v)
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racemization-suppressing conditions (PyBOP, 
2,4,6-collidine, room temperature) (Zhang et  al. 
2012; Carpino et al. 1994; Carpino and El-Faham 
1994). In the case of Nα-Fmoc-protected 92, the 
Fmoc protecting group was removed after cou-
pling and subsequently exchanged for an acetyl 
group before TFA-mediated peptide cleavage was 
performed affording 101 (Scheme 9.15c). This 
allowed for a direct comparison of RP HPLC pro-
files to assess the degree of racemization. The RP 
HPLC chromatogram investigation of crude 101, 
obtained by using either 92 or 99 building block 
revealed that 1:1 ratio of epimers was formed 
when acetamide protecting group was used for 
lipidated cysteine incorporation. No detectable 
epimerization was however observed when Nα-
Fmoc-protected 92 was used for lipid incorpora-
tion. The type of Nα-protecting group clearly 
influenced the degree of racemization during the 
study indicating the preferred choice of Fmoc-
protected building block 92 for Fmoc SPPS-
mediated peptide lipidation.

We then focused on reaction conditions that 
would allow direct lipidation of a thiol-containing 

peptide affording an S-palmitoylated construct 
101 in a convergent-like approach.

The construct 102, derived from resin-bound 
100, incorporated two cysteine residues; an 
N-terminal Cys with a sulfhydryl group ready for 
‘thiol-ene’ conjugation and the side chain of the 
second, internally located cysteine was masked 
with tBu. Subsequent photoinitiated lipidation at 
365 nm of 102 using vinyl palmitate 91 (7 equiv) 
and previously reported conditions [DMPA (0.5 
equiv), DTT (3 equiv) in NMP for 60 min] 
afforded S-palmitoylated peptide 101 albeit in 
variable yields (Scheme 9.16a) (Wright et  al. 
2013a; Wright et al. 2013b). A careful examina-
tion of LC-MS profiles of the ‘thiol-ene’ reaction 
leading to desired conjugate 101 identified for-
mation of unwanted by-products such as DTT-
adducts and bis-palmitoylated peptide 104. The 
competitive formation of 104 by-product was 
found to increase with increasing levels of vinyl 
palmitate in the reaction mixture. Substitution of 
DTT with the more bulky mercaptan tert-butyl 
thiol (tBuSH) proved superior in suppressing an 
unwanted addition of the thiol scavenger to the 
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Scheme 9.16  CLipPA direct conjugation of vinyl palmi-
tate (91) and semiprotected peptide 102 under unopti-
mised conditions (a) and optimized conditions (b) (Yang 
et  al. 2016). Reagents and conditions: (i) 91 (7 equiv), 

DMPA (0.5 equiv), DTT (3 equiv) NMP, 1 h, hν 365 nm; 
(ii) 91 (70 equiv), DMPA (0.5 equiv), tBuSH (80 equiv), 
iPr3SiH (80 equiv), TFA/NMP (5:95, v/v), 30 min, hν 
365 nm
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carbon-centered radical 103. Formation of unde-
sired bis-palmitoylated adduct 104 was also 
diminished by including an organosilane-based 
coreductant (iPr3SiH) that facilitated hydrogen 
transfer to the radical intermediate 103. 
Furthermore, decreasing the pH of reaction mix-
ture with TFA led to a cleaner reaction profile, 
presumably a result of protonation of electron-
rich amine residues. Moreover, a large excess of 
vinyl palmitate (91), tert-butyl mercaptan and 
iPr3SiH were also needed to maximise conver-
sion of 102 to the desired 101. Although a large 
excess of vinyl palmitate was used in the opti-
mized, photoinitiated (hν 365 nm) conditions [91 
(70 equiv), DMPA (0.5 equiv), tBuSH (80 equiv), 
iPr3SiH (80 equiv), TFA (5% v/v) in NMP for 30 
min], a now quantitative conversion of peptide 
102 to the S-monopalmitoylated construct 101 
(95%, based on the corresponding peak integra-
tion on the RP HPLC profile) was observed with 
negligible levels of bis-adduct 104 formed 
(Scheme 9.16b).

The optimized CLipPA technology could be 
used to effect direct S-monopalmitoylation 
of complex, unprotected peptide substrates as 
demonstrated for long peptides including 

Ac-CSKKKK-GARGPESRLLEFYLAMPFATP
MEAELARRSLAQDAPPL-OH and H2N-
C S K K K K - V P G V L L K E F T V S G N I LT I R 
LTAADHR-OH, derived from NY-ESO-1(79-116) 
and NY-ESO-1(118-143), respectively. An excel-
lent conversion to the desired lipidated peptide 
105 (81%) and good 46% conversion to 106, 
based on RP HPLC profiles, demonstrated the 
power of this new strategy (Fig. 9.14) (Yang et al. 
2016).

The CLipPA technology offers a feasible one-
step approach to lipidated peptide constructs con-
taining all-natural bonds. We believe that this 
technique has strong potential to play a key role 
in self-adjuvanting peptide-based vaccine devel-
opment in the future. The use of CLipPA elimi-
nates the need for complex, multi-step and 
timeconsuming solution-phase synthesis of lipi-
dated building blocks that are not readily available 
in all research laboratories. Depending on the 
vaccine construct requirements, either a stepwise 
SPPS approach, or a direct, convergent-like sub-
strate lipidation can be executed using the ‘thiol-
ene’ reaction and the optimized CLipPA 
conditions to afford S-palmitoylated assemblies 
in excellent yields with high selectivity.
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9.2	 �Conclusions

Lipidation of peptides and proteins plays an 
important role in improving pharmacokinetic and 
pharmacodynamic profiles of peptides which 
may lead to potent analogues with clinical poten-
tial. Lipidated peptides activating TLR2 are cru-
cial for peptide-based self-adjuvanting vaccine 
development. A simple, efficient and low-cost 
synthetic approach for incorporation of lipid 
motifs into peptides for subsequent bioevaluation 
is required. Synthesis of lipidated peptides via a 
standard SPPS technique using orthogonal pro-
tecting group strategy poses a challenge due to 
decreased solubility of lipopeptides. Novel syn-
thetic advances such as the atom economical and 
functional group compatible CLipPA technique 
provides a useful approach to access 
S-palmitoylated peptides with a range of applica-
tions including vaccine design.
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