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With the recent advent of heterogeneous High-performance Computing (HPC) to
handle EO “Big Data” workloads, there is a need for a unified Cyber-infrastructure
(CI) platform that can bridge the best of many HPC worlds. In this chapter, we
discuss such a CI platform being developed at Geographic Information Science and
Technology (GIST) group using novel and innovative techniques, and emerging
technologies that are scalable to large-scale supercomputers. The CI platform
utilizes a wide variety of computing such as GPGPU, distributed, real-time and
cluster computing, which are being brought together architecturally to enable data-
driven analysis, scientific understanding of earth system models, and research
collaboration. This development addresses the need for close integration of EO
and other geospatial information in the face of growing volumes of the data,
and facilitates spatio-temporal analysis of disparate and dynamic data streams.
Horizontal scalability and linear throughput are supported in the heart of the
platform itself. It is being used to support very broad application areas, ranging
from high-resolution settlement mapping, national bioenergy infrastructure to urban
information and mobility systems. The platform provides spatio-temporal decision
support capabilities in planning, policy and operational missions for US federal
agencies. Also, the platform is designed to be functionally and technologically
sustainable for continued support of the US energy and environment mission for
the coming decades.
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Introduction

In today’s world, there is a multitude of heterogeneous Earth Observation High-
performance Computing (EO-HPC) systems, each designed to solve specific science
or technological missions. These EO-HPC systems often work independently of
each other, hindering the flow of information and limiting the ability to achieve
interoperability among systems. Bringing these systems together to create a fully
and closely knitted Cyber-infrastructure (CI) platform provides a shared universe
for EO data driven analysis and discovery capabilities for US federal agencies.
Though there have been some promising community efforts to build a CI platform
that can integrate various types of EO-HPC systems together, there does not exist
a unified CI platform currently (Kalidindi 2015; Bhaduri et al. 2015a). With “Big
Data” explosion changing the landscape of software architecture design, there is an
increasing need for such a platform that can meet the modern complex needs.

Geographic Information Science and Technology (GIST) and The Urban Dynam-
ics Institute (UDI) at Oak Ridge National Laboratory (ORNL) are building such a CI
platform by integrating our next-generation EO-HPC systems under one umbrella
using novel techniques and emerging technologies. We employ wide breadth of
techniques across the spectrum of scientific computing such as GPGPU, distributed,
real-time and cluster computing (Bhaduri et al. 2015a; Karthik 2014a; Sorokine
et al. 2012). The platform is designed to scale to petabytes of data and handle
massive workloads. One of the biggest architectural challenges in developing our
CI platform was addressing complex interdependencies among the various systems
without compromise in efficiency or functionalities of individual systems. The
platform achieves foundational, structural and semantic interoperabilities to create
a harmonized and seamless experience across various systems. With this platform,
various systems are designed to work together as a whole information system,
but also retain the ability to operate independently if desired. In this integrated
platform, the systems communicate with each other providing various levels of
control of components and functionality, yet allowing for independent control as
well. Modularity is being designed at the core of the CI platform to support future
EO-HPC systems for easier integration, and foster sustainable development to meet
US science and energy missions now and into the future. Our CI platform aims to
take the next major leap in Data Science and Cyber-infrastructure, while making the
best use of our existing EO-HPC systems.

In the following sections, we describe the challenges, trends and how our CI
platform plays an important role in our research initiatives illustrated with settlement
mapping, mobility science, and urban information system.

Settlement Mapping Tool (SMTOOL)

Understanding high-resolution population distribution data is fundamental to reduce
disaster risk, eliminate poverty, and foster sustainable development. Modern cen-
suses fail to cover population in remote, inaccessible areas in many underdeveloped
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nations. Small settlements are visible in high-resolution satellite imagery, which
have historically been computationally expensive for information extraction. Uti-
lizing GPUs, Oak Ridge National Laboratory is mapping the smallest settlements
and associated population across the globe for the first time in our history. The
high-resolution settlement and resulting 90 m LandScan HD population data have
profoundly enhanced our ability to reach and serve vast vulnerable populations from
local to planet scales (Bhaduri et al. 2015b).

Past 50 years have witnessed the global population increase by four billion and
with 150 new births every minute, an additional four billion people will settle
on this planet in the coming 50. Urban and rural population distribution data
are fundamental to prevent and reduce disaster risk, eliminate poverty and foster
sustainable development. Commonly available population data, collected through
modern censuses, do not capture this high-resolution population distribution and
dynamics. However, there is gross underestimation of global human settlements
and population distribution. Footprints of our expanding activities are impacting
the future of this planet from availability of natural resources to a changing climate.
Accurate assessment of high-resolution population data is essential for successfully
addressing key issues such as good governance, poverty reduction strategies, and
prosperity in social, economic and environmental health. Geospatial data and
models offer novel approaches to disaggregate Census data to finer spatial units;
with land use and land cover (LULC) data being the primary driver. With increasing
availability of LULC data from satellite remote sensing, “developed” pixels have
been nucleus to assessing settlement build up from human activity. However, the
processing and analysis of tera to peta scale satellite data has been computationally
expensive and challenging.

With the availability of moderate to high resolution LULC data derived from
NASA MODIS (250-500 m) or Landsat TM (30 m) have facilitated the development
of population distribution data at a higher spatial resolution such as Oak Ridge
National Laboratory’s (ORNL) LandScan Global (1 km) and LandScan USA
(90 m); two finest resolution population distribution data developed. Although these
LULC data sets have somewhat alleviated the difficulty for population distribution
models, in order to assess the true magnitude and extent of the human footprint, it
is critical to understand the distribution and relationships of the small and medium-
sized human settlements. These structures remain mostly undetectable from medium
resolution satellite derived LULC data. For humanitarian missions, the truly vul-
nerable, such as those living in refugee camps, informal settlements and slums
need to be effectively and comprehensively captured in our global understanding.
This is particularly true in suburban and rural areas, where the population is
dispersed to a greater degree than in urban areas. Extracting settlement information
from very high-resolution (1 m or finer), peta-scale earth observation imagery
has been a promising pathway for rapid estimation and revision of settlement
and population distribution data. As early as 2005, automated feature extraction
algorithms implemented on available CPU-based architectures demonstrated radical
improvement in image analysis efficiency when manual settlement identification
from a 100-km? area was reduced from 10 h to 30 min. However, this scaled
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inefficiently with limited resources on a workstation and at that rate processing 57-
million km? habitable area would take decades. The pressing need for identifying
population distribution in the smallest human settlements and monitoring settlement
patterns at local to planet scale as landscape changes are induced by population
growth, migration, and disasters, compels a computational solution to process large
volumes of very high resolution satellite imagery. Such a solution did not exist
before this work was accomplished at ORNL.

Extracting settlements at high-resolution satellite images was accomplished by
mapping sub-meter pixel data to unique patterns that correlate with the underlying
settlements. To account for the variations in settlement structures spanning from
skyscrapers to small dwellings, we generated patterns at different scales. The
mapping process involved simultaneously analyzing a set of connected pixels to
extract low-level structural features such as building edges, corners, and lines.
Next, the spatial arrangements of these structural features at different scales
were computed in parallel allowing us to generate unique settlement signatures
efficiently. Furthermore, pattern recognition based on a previously learned model
was integrated with the pattern generation step allowing us overcome the need to for
additional storage. Our strategy of mapping pixels to underlying structural patterns
was quite different from existing approaches that relied on spectral measurements
such as reflectance at different wavelengths for settlement detection.

This approach using sub-meter resolution imagery is not only useful in gen-
erating accurate human settlement maps, but also it allows potential (social and
vulnerability) characterization of population from settlement structures (tents, huts,
buildings) from image texture and spectral features. Rapid ingestion and analysis
of high resolution imagery to enhance quality and timely availability of input
spatial data provides a cost and time effective solution for developing current and
accurate high resolution population data. Such progresses in geospatial science
and technology hold tremendous promise for advancing the state of accuracy
and timely flow of critical geospatial information not only to benefit numerous
sustainable development programs; but also has significant implications for time
critical missions of disaster support.

High-resolution settlement data is foundational information for locating pop-
ulations and activities in an area. One major usage of this data is as input to
ORNL’s LandScan HD population distribution model, which combines the settle-
ment data with population density information to generate population distribution
at an unprecedented 90 m resolution. For many underdeveloped countries, official
censuses never reach remote, difficult to access areas. Moreover, there have not been
reasons to exploit high-resolution satellite imagery for those areas. Consequently,
this capability has enabled us to locate populations in secluded areas of the planet for
the first time in our history. High-resolution settlement and population data are being
used by the global humanitarian community for missions ranging from planning
critical infrastructure and services to the deserving population, responding to the
Ebola crisis in western Africa, eradicating Polio in Nigeria, as well as defining and
mitigating disaster risks.
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Often solutions require advanced algorithms capable of extracting, representing,
modeling, and interpreting scene features that characterize the spatial, structural
and semantic attributes. Furthermore, these solutions should be scalable enabling
analysis of big image datasets; at half-meter pixel resolution the earth’s surface has
roughly 600 Trillion pixels and the requirement to process at this scale at repeated
intervals demands highly scalable solutions. Thus, we developed a GPU-based
computational framework (as illustrated in Fig. 1) designed for identifying critical
infrastructures from large-scale satellite or aerial imagery to assess vulnerable
population. We exploit the parallel processing capability of GPUs to present GPU-
friendly algorithms for robust and efficient detection of settlements from large-scale
high-resolution satellite imagery (Patlolla et al. 2012). Feature descriptor generation
is an expensive (computationally demanding), but a key step in automated scene
analysis. To address the large-scale data processing needs we exploited the parallel
computing architecture and carefully designed our algorithm to scale with hardware
and fully utilize the memory bandwidth (required to transfer the high resolution
image data) efficiently to produce great speedups times for the feature descriptor
computation (as illustrated in Fig. 2).

We could thus achieve GPU-based high speed computation of multiple feature
descriptors—multiscale Histogram of Oriented Gradients (HOG) (Patlolla et al.
2012), Gray Level Co-Occurrence Matrix (GLCM) Contrast, local pixel intensity
statistics, Texture response (local Texton responses to a set of oriented filters
at each pixel) (Patlolla et al. 2015), Dense Scale Invariant Feature Transform
(DSIFT), Vegetation Indices (NDVI), Line Support Regions (extraction of straight
line segments from an image by grouping spatially contiguous pixels with consistent
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Fig. 2 Settlement mapping process

orientations), Band Ratios (a digital image-processing technique that enhances
contrast between features by dividing a measure of reflectance for the pixels in one
image band by the measure of reflectance for the pixels in the other image band)
etc. Once, the features are computed, a linear SVM is used to classify settlement
and non-settlements. The computational process requires dozens of floating point
computations per pixel, which can result in slow runtime even for the fastest of
CPUs. The slow speed of a CPU is a serious hindrance to productivity for time
critical missions. Our GPU-accelerated computing solution provides an order of
magnitude or more in performance by offloading compute-intensive portions of the
application to the GPU, while the remainder of the code still runs on the CPU. The
implementation further scales linearly with the available nodes thus enabling the
processing of large-scale data on high end GPU-based cluster-computers.

With the introduction of very high-resolution satellite imagery, mapping of small
or spectrally indistinct settlements became possible on a global scale. However,
existing methodologies for extracting and characterizing settlements rely on manual
image interpretation or involve computationally intensive object extraction and
characterization algorithms that saturate the computational capabilities of conven-
tional CPU-based options used by commercial remote sensing software packages.
Many of these existing pixel based image analysis techniques used for medium
resolution Landsat imagery (~30 m) or coarser MODIS imagery (250-1000 m)
are not ideal for interpreting satellite imagery with sub-meter spatial resolution.
Advanced modeling of the spatial context is necessary to extract and represent
information from such high-resolution overhead imagery. On a global scale, critical
computational challenges are posed in the processing of petabytes of sub-meter
resolution. For example an image of Kano city in Nigeria at 0.5 m resolution
represents 23 Gigabytes of data covering 13,050 km?. Attempts to accurately
extract settlements using CPU-based commercial remote sensing packages were
unsuccessful. An estimate to manually digitize the settlements for this area was
870 h. Meanwhile, SMTool on a 4 Tesla GPU workstation is able to process this
large dataset in approximately 17 min (as illustrated in Table 1, Figs. 3 and 4).
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Table 1 Performance of

- ) Feature Accuracy (%) | Runtime (s)
various features—processing HOG 935 6
times are based on a 4 C2075 : :
GPU workstation TEXTONS |92.7 4.7
VEGIND 914 1.77
BANDRT | 86.1 1.93
DSIFT 90.8 11.33

TEXTONS

Fig. 3 TEXTONS performance—33 images of 0.5 m spatial resolution, each covering an area of
2.6 km?, collected from various parts of Kandahar, Afghanistan
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Fig. 4 SMTOOL results for Kano, Nigeria—On an average ~1% training samples

The Compute Unified Device Architecture (CUDA) has enabled us to efficiently
utilize NVIDIA TESLA GPUs to develop and utilize (in a practical and efficient
manner) the expensive feature descriptor algorithms that would otherwise be
complex and impractical.

It is quite important to carefully design the computing strategies to fully exploit
GPU’s parallel computational capabilities. For this we divide the high-res imagery
into non-overlapping square pixel-blocks consisting of M x M pixels. To set an
optimal value for M, we experimented with several values ranging from 8 to 64
pixels. For each of the pixel-block we compute feature descriptors at several scales
based on the low-level image features. Parallel processing is key to efficiently
implementing the feature descriptor algorithm, where thousands of threads can run
simultaneously. The K20X Tesla GPU in the GEOCLOUD cluster has 2688 CUDA
cores/GPU at ~3.95 Tera Flops of single precision computing power, which helped
us deliver speedups ranging from 100x to 220x, thus cutting the feature descriptor
computation time from days to mere minutes.

Efficient memory utilization is key for the optimal performance of our algorithm
on the GPU as it involves transfer of large amounts of image raster data to the GPU
and the output settlement layer back to the host. We leveraged the Tesla GPUs PCI-
E 3.0 interface to achieve over 10 GB/s transfers between the host (CPUs) and the
devices (GPUs). An important factor to consider is the data transfer between CPU
and GPU and optimal speedups require reducing the amount of data transferred
between the two architectures. In our implementation the data transfer between CPU
and GPU is performed only at the beginning and the end of the process. First, the
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image is read using GDAL to store the data in the CUDA global memory, which
is 6 GB and provides a 288 GB/s memory—memory bandwidth. Though the data
requests to the global memory has higher latency, CUDA provides a number of
additional methods for accessing memory (i.e. shared, constant memory etc.) that
can remove the majority of data requests to the global memory, thus enabling us
to keep the Compute to Global Memory Access (CGMA) ratio at high values to
achieve fine grained parallelism.

This has been an interdisciplinary effort with team members with academic and
professional training in geography, electrical engineering, computer science and
engineering and expertise in geographical sciences, population and settlement geog-
raphy, spatial modeling, satellite remote sensing, machine learning data analysis and
high performance computing.

Toolbox for Urban Mobility Simulations (TUMS)

TUMS, Toolbox for Urban Mobility Simulations, is a web-based high-resolution
quick response traffic simulation modeling system for urban transportation studies.
TUMS can be used both as a daily commuter traffic simulator or an emergency
evacuation planning tools. There are some unique features in TUMS comparing
with other similar transportation modeling and traffic simulation systems. It uses
high-resolution population distribution and detailed street network, both covering
the entire world. TUMS is aiming to simulate county level traffic flow using
microscopic traffic simulation modeling and it has web applications based on
WebGL. Users can take advantage of client side Geographic Process Unit (GPU)
when it presents on client desktop. The transportation engine of TUMS is based on
an open source package called TRANSIMS (TRansportation ANalysis SIMulation
System, version 5.0) (Smith et al. 1995).

Global Dataset

Two main datasets used in TUMS are a population distribution dataset called
LandScan developed by ORNL (Bhaduri et al. 2002) and a worldwide open source
street level transportation network, called OSM, OpenStreetMap (OpenStreetMap
2016). Both datasets covers the entire planet.

LandScan has two components, LandScanUSA and LandScanGlobal. As the
name indicates, LandScanUSA is the population distribution for USA and Land-
ScanGlobal covers the entire world including USA. Both dataset are updated yearly.
LandScan divides the study area into cells and each cell has a population count.
LandScanUSA has higher resolution cells than LandScanGlobal. LandScanUSA
uses 3 arc second cells while LandScanGlobal uses 30 arc second cells. Roughly,
the 3 arc second cell has the size of 90 m by 90 m and the 30 arc second cell has the
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size of 1 km by 1 km around the equator. The size of cells becomes smaller when
the latitude is higher. In order to make the analysis consistent, TUMS decomposes
LandScanGlobal to 3 arc second cells using a primitive moving average method.
If the study area is within USA then TUMS uses LandScanUSA dataset. If the
study area is outside of USA then TUMS uses the decomposed LandScanGlobal
3 arc second dataset. From now on in this paper, we will use LandScan to represent
both LandScanUSA and decomposed LandScanGlobal with 3 arc second cells.

OSM is updated weekly. The data quality in OSM depends on geographic region.
Europe and North America data has much higher quality than Asia and Africa. Since
OSM keeps evolving, the data quality now has improved tremendous compared
to earlier version. Please do not be conceived by its name, OpenStreetMap, it not
only have street network, it has other features such as land use type, administration
boundary, physical features and lots more. However, TUMS only uses street network
at current stage.

Framework

There are three major components in TUMS framework, a pre-processing com-
ponent, a traffic simulation component, and a web-based visualization component
(Fig. 5). The pre-processing component is responsible for preparing the input data
for the transportation modeling. This first step is to define a study area, which can
be a county (in USA only), a polygon or a circle. The next step is to extract the
population and street network from LandScan and OSM. After integrated these two

Fig. 5
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data together, TUMS creates a routable network with correct network topology and
generates origin-destination (OD) tables for transportation modeling.

The traffic simulation models are based on TRANSIMS framework. TRANSIMS
has more than a dozen executable programs, which are loosely coupled. Each exe-
cutable program can be executed separately if the input data is properly set. Roughly,
these programs can be grouped into five categories, synthetic population generation,
network preparation, origin-destination (OD) table preparation, trip distribution and
assignment, and Microscopic traffic simulation. TUMS takes the advantages of this
flexible framework and integrate its own modules into TRANSIMS framework. For
example, the synthetic population generation modules are replaced by LandScan
population module. TUMS own OD table generation modules using LandScan and
OSM substituted TRANSIMS OD table preparation modules.

Since TRANSIMS does not have a Graphic User Interface (GUI), TUMS devel-
oped two independent visualization tools for different background users (Karthik
2014b). The link based visualization and analysis tools are for planners who are
interest in the measure of efficacy (MOE) for the planning purpose. The vehicle
base animation tools are for traffic engineers who are more interested on operations
such as intersection traffic control. Figures 6 and 7 are the examples for link-based
and vehicle based GUI.

Link Details

Link 1D
Dwection
Congestion
Deetay (min)
Density {cars/km)
Speed (kmhour)
Tirne: {min)

VHT

VT aree1 Ealld

Fig. 6 Link-based visualization tool
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Fig. 7 Vehicle-based visualization tool

OD Tables

By manipulating the OD tables TUMS can simulate both daily commuter traffic flow
or non-notice emergency evacuation simulation. Although LandScan only reports
the total population count for each cell, but internally, LandScan has five layers,
which are worker, residential, school, shopping and non-movement group. With
these layers it is possible to generate the O-D tables for daily commuter traffic flow.
Figure 8 is an example of daily commuter traffic flows for the year of 2015 and
2035.

For non-notice emergency evacuation, TUMS assumes that every evacuee would
like to take a trip to the nearest shelter or exit point (boundary points) to get out of
the evacuation area as quickly as possible. The OD tables for non-noticed emergency
evacuation simulation are generated by finding the nearest shelters for each LPC.

Resolution

Traditional transportation models, both macroscopic and microscopic, use Traffic
Analysis Zone (TAZ) for the OD tables. TAZs are the basic geographic unit
for demographic data and land use type. The size of TAZ varies. Zones are
smaller in urban area with high population density and larger in rural area with
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ey

Fig. 8 Daily traffic flow simulation at Cleveland, TN, on the year 2015 (Left) and 2035 (Right)

lower population density. With the rising of agent-based and driver behaviour
traffic modeling in transportation research, the large area TAZ is not suitable for
microscopic traffic simulations. For example, Alexandria County, VA, has only 62
TAZs. Each TAZ covers quit large area. For microscopic traffic simulation there
is no reason that the TAZs could not be as small as a single building if there is
enough computing resource and the data available. The computing resource is cheap
now, but unfortunately, the global single building population distribution database
is not available yet. So TUMS uses LandScan as an alternative. There are 5657
LandScan Population Cells (LPC) comparing with 62 TAZs in Alexandria, VA. The
LPC resolution is around 100 times higher than using TAZ.

The size of TAZ or LPC is related with the network level of details. A network
with principle and minor arterials does not need high-resolution population dataset.
In traditional traffic modeling the collect or local streets are ignored due to the low
traffic volume. But if the OD zones use single buildings as the trip generation unit,
then the network should include collect and local streets. For non-notice emergency
evacuation simulation, the collect and local streets become very important because
the evacuees who are close to the boundary of evacuation region can get out the
evacuation area very quick by using local streets. If the local streets are excluded
from the network, all these evacuees have to travel to the opposite direction in order
to access the major arterials and then travel to the boundary points. This is unrealistic
and generates artificial congestion on the arterials.

Unified Network and Population Database

There are many transportation modeling systems and traffic simulation tools
available both on open source or in commercial packages, such as TRANSIMS,
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MITSIM, VISSIM, SUMO and MATSIM, just to name a few. All of these models
have similar basic input requirements such as network and population. But each
one of them has its own input and output format. TUMS has developed a uniform
database for the entire world and also has utilities to convert the unified database to
different format for different models. Currently TUMS supports TRANSIMS and
MITSIM. SUMO and MATSIM will be added in the near future.

Big Data

In modern era like todays, Data is generated by internet activity, sensors for
environment, traffic cameras, satellite imagery and is referred to as Big Data.
Processing, analyzing and visualizing this data have its own challenges. The OSM
dataset has 3+ billion point and 300+ million ways (links) in the planet data file
(December 2015 version). Among the 300+ million ways there are 80+ million
street links. The LandScan has 93+ billion cells.

Since all these data are read only, TUMS chooses flat binary files to store the data
for its simplicity and for easy random access. In order to retrieve the data efficiently,
both the network and the population data are decomposed to 1 by 1 degree cells.
The street network is stored in a shapefile format and the population data is store
in a binary grid format. Since ESRI’s binary grid format is a proprietary format,
TUMS has to develop its own binary grid format. In TUMS database the OSM
street network occupies 21 GB and LandScan occupied 4.6 GB disk space.

The vehicle trajectory data is another challenge. Assume that there are 100K
vehicles in a median size county and the simulation time is 24 h for a daily commuter
traffic simulation with 1-s simulation step, the total trajectory for all vehicles is 8+
billion points per scenario. This data is stored in ESRI-like point shapefile. Since
ESRI’s point shapefile has 2 GB file boundary limitation, TUMS developed its own
binary format without the 2 GB boundary limitation. This vehicle trajectory data is
streaming to TUMS web-based application for animation.

Urban Information System (UrbIS)

Leveraging Big Data to Understand Urban Impact
on Environment and Climate

Cities are one of the major contributors to climate change. At the same time
cities themselves are most strongly affected by the changing environmental con-
ditions. Immense complexity of interactions between urban areas, climate, and
natural environments presents scientists with a multitude of challenges. First, urban
environments are characterized by a very large number of variables including
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demographics, energy, quality of the environment and many others. Second, cities
show significant variety and strongly differ in terms of their processes and energy
and material flux. Third, cities themselves have become major defining forces for
their surrounding environments by affecting local topography, air circulation, water-
heat balance and habitats. Resulting human-natural system has a large number of
feedback loops and correlations among its variables.

Understanding of the urban environments can be improved by tapping into vast
information resources that have become available to the researchers thanks to the
Big Data technologies (Chowdhury et al. 2015). Traditional sources of Big Data
like historical databases of Twitter messages, postings in other social networks, and
cell phone locations can provide valuable insights into the functioning of people
in urban environments. However, the majority of the data of interest for urban
researchers exist in the form of an “ecosystem of small data”, as a large number
of disparate datasets created by different communities, government agencies, and
research institutions. Finding such data and then merging them together for the use
in a single analytical workflow has become a major hindrance for such studies. To
address these challenges we at ORNL have embarked on the developing of ORNL
Urban Information System (UrbIS)—a web-based software tool that would allow
urban scientists to perform most of their analytical and data processing tasks in the
cloud within a unified browser-based user interface.

UrbIS goal is to address a number of problems typically faced by the researchers
in this area. After analyzing ORNL experience in a number projects including the
ones described in this chapter we were able to identify multiple bottlenecks that
impede scientists’ productivity. These challenges can be mitigated by developing
software for automating of several commonly performed tasks such as (1) finding
the data necessary to achieve the goals of the study, (2) preparing the data from
external sources for the use in the analytical software, (3) running modeling and
analytical programs on the high-performance computing systems, and (4) retrieving
and understanding the results of the analysis including representation of the results
in visual form as graphs and maps.

Although scientists typically have a good understanding of the kinds of data they
need for their research, finding specific datasets and not missing the relevant ones
may be hard and time consuming. Most of the relevant data resides in the “deep
web”, i.e. not visible or not suitably indexed by general-purpose search engines like
Google or DuckDuckGo. Therefore, such search engines often produce noisy results
that require lots of manual filtering and verification or miss relevant data.

Search through dataset metadata provides a better alternative for finding sci-
entific data. In the recent decade metadata has become a universally used tool
for documenting large amount of data especially produced by the governmental,
international, and other major research organizations. Multiple standardization
efforts have generated several specifications that cover lots of aspects of important
domain-specific knowledge necessary to precisely represents information about the
data. Metadata search capabilities are currently available in many data archives
and repositories such as, for example, NASA’s Data Portal (https://data.nasa.gov/)
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and DataONE Earth Observation Network (https://www.dataone.org/) supported by
National Science Foundation.

Metadata search in most cases is more effectives than the use of general-purpose
search engines because the metadata is structured and curated according to well
defined standards. Users can filter through the data not only by the keywords or
commonly used phrase but also by specific spatial, temporal or attribute information.
For example, it is possible to limit the search by a specific sensor, variable, target
area, time interval, or range of values. Certain results can be excluded from the
search by using negation criteria that is not easily achievable in general-purpose
search engines. However, typical metadata search requires interaction with multiple
metadata search systems and familiarity with a variety of user interfaces and APIs.

After the necessary data have been identified the users have to extract relevant
subsets of data (i.e. clipping a region of interest and/or limiting the data to a specific
time interval) and move the data to their workstations. Sometimes the volume of the
data can be very large like in the case of ensembles of global circulation models and
can reach the volumes on the order of terabytes. Present-day hard drive costs are
low enough not to be a limiting factor for storing data still movement of the large
volumes of data over the network requires lots of time and special software like
Globus Toolkit GridFTP'. The bigger problem is the maintenance of the harvested
data on the workstation or local network storage that requires not only cataloguing
of the data but also checking the dataset integrity, creating backups and retrieving
updates for corrected errors or newer versions of the datasets.

The next preparation step is converting harvested data into the formats that can
be understood by the analytical software. This step includes not only simple format
conversion but also other non-analytical operations. Almost all of the urban data is
spatiotemporal as the overwhelming majority of data records in urban datasets have
some kind of geographic and time reference. Thus there is always a need to maintain
and convert cartographic projection and other spatial referencing information. The
datasets often come in the formats that are not understood by the analytical
software or in-house developed code and scientists are forced to spend their time
on developing format converters or perform lots of manual transformations. In case
of UrbIS we are often faced with the data that comes from different scientific
communities—urban scientists and climate modellers. Most climate and weather
data is stored in NetCDF or HDFS5 files while urban datasets mostly rely on the file
formats of the commercial GIS software. Many of the open-source and commercial
GIS are able to read these formats but the data have to be manually reorganized. The
separate problem is semantics misalignment among the datasets especially when
the datasets originate from different communities. This includes incompatibilities
related to the units of measure, variable names, inconsistent naming of the grids and
spatial regions. Such differences between the datasets are often not reflected in their
metadata.

Thttp://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/.
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Many of the analytical and modeling projects at ORNL including the ones in
this review heavily rely on high-performance computing systems and facilities.
This includes conventional computing clusters, cloud-based systems and leadership
massively parallel facilities like TITAN and Eos”. Developing, porting and using
scientific code and managing applications and data on such systems require special
technical skills and experience that are not commonly available.

Finally, the output of the high-performance models has to be presented in the
form suitable for understanding and presentation. In our research domain this almost
always means visualization in the geographic context with the help of advanced
visualization tools found in the geographic information systems. At this point the
modeling and analytical results should not only be converted into the formats
understandable by GIS but also aligned with other pertinent geographic data.

Even though most of the outlined difficulties are technical in nature, they
impose a significant toll on the scientists’ time and increase overall costs of
research. Moving these burdens from the scientist is one of the main goals of
UrbIS. Earlier ORNL experience with similar systems has demonstrated efficiency
of such approach. In 2010 ORNL has developed iGlobe—a desktop application
for the geographic analysis of climate simulation data that combined server-side
analysis and management of data with geographic visualization in a single workflow
(Chandola et al. 2011). iGlobe is built around NASA WordWind Java® and allows
users to retrieve the data from the data portals, process them on the server, and
visualize analysis results on the desktop. Control of the server-side processing of
the data is performed through desktop GUI using secure shell connection. Results
of the analysis are presented using NASA WorldWind visualization component as
interactive 2D or 3D geographic displays. With the advance of web, cloud and high-
performance computing technologies we are leveraging our iGlobe experience at
the new level of web-centric and cloud-centric applications.

Currently UrbIS is under active development and exists as an early evolving pro-
totype available to ORNL internal users. When completed UrbIS will allow urban
researchers to execute a complete analytical workflow starting with discovering
and obtaining necessary data from diverse data repositories, analyzing them using
high-performance computing capabilities, and then to visualizing and publishing
the results. Researchers will be able to perform all these operations completely in
the cloud and/or on the server through a standardized web interface. When fully
implemented UrbIS will eliminate the need to download and process any input,
intermediate, or output data files on the workstation.

Screenshots of the UrbIS prototype are presented from Figs. 9, 10, 11 and
12. UrbIS workflow starts with a federated metadata search interface (Fig. 9).
This interface provides a user with the search capabilities through several external
metadata search engines and internal ORNL data holdings. For the federated

2https://www.olcf.ornl.gov/titan/.
3http://worldwind.arc.nasa.gov/javal/.
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metadata search engine we are using a customized version of Mercury*—an in-
house ORNL metadata search engine that enables the search over other metadata
repositories and archives like DataONE (https://www.dataone.org/) and ORNL
DAAC (https://daac.ornl.gov/). In addition to the external data repositories UrbIS
also provides its users with several frequently used datasets with common used

“http://mercury.ornl.gov/.
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geographic information. All the datasets and datastores can be searched through
the same interface completely transparent for the user.

After finding the needed data the user defines the region of interest and spatial
resolution of his study area. At the same time in the background the system starts
retrieval and sub-setting of the requested data from the external data stores. After the
data has been placed into UrbIS scratch disk space the user will be notified and the
records about downloaded subsets will appear in the workspace manager interface
(Fig. 10). Here users can check the statistics of the downloaded data and verify
completion of the download and conversion processes. All the retrieved data will
be stored cloud-side and will not be downloaded to the user’s workstation unless
requested. Internally the data will be converted into application-specific representa-
tions optimized for further processing and access through UrbIS web services.

At the next stage of the workflow the user will be able to choose from a library
of the analytical and modeling functionality (Fig. 11). As a part of the initial
UrbIS development we are implementing high-performance clustering algorithms
for building typologies of the cities based on a large number of input parameters.
After specifying input parameters the user will submit a task to one of the high-
performance computers. UrbIS will prepare the data in the form suitable for
the selected processing method and create a batch configuration file containing
commands for the target high-performance platform. The user will be able to
initiate processing on the target system directly from UrblS interface. After the job
completion UrbIS will retrieve the results and convert them into the formats that are
used internally.

The final step of the workflow is the visualization of the results in the geographic
context. For that purpose we are using WebWorldWind (https://webworldwind.
org/)—a modern javascript version of NASA WorldWind that utilizes WebGL. It
can be launched from within popular browsers without the need to download any
plugins or desktop applications. Visualization section of UrbIS (Fig. 12) has user
interface typical for a digital globe like Google Earth or NASA WorldWind. Here
the user can visualize the input and output data in the geographic context. The data
is fed to the visualization component with WMS and WEFS services from the internal
UrblIS storage. Also the user can pull the data from any other data source supported
by the NASA WebWorldWind including default WorldWind layers. The user will
have an ability to switch between 3D and 2D views and choose the background and
portrayal methods most suitable for his visualization purposes.

Current implementation of UrbIS is being developed using nodejs for the
server side components. As a spatial data storage we are using PostgreSQL with
PostGIS extensions. High-performance processing components are implemented as
external modules and they use languages and tools most appropriate for the specific
algorithms and platform. UrbIS should be accessible from any modern browser
with WebGL support enabled (for visualization component). Internally UrblIS relies
on service-oriented architecture with most functionality exposed through RESTful
programming interface.

Currently UrbIS is in the active development and is available for testing to
internal users. Its implementation will enable users to use high-performance and
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cloud-based infrastructure in their research and reduce the time needed for mundane
tasks such data movement and format conversion. Also UrbIS will serve as a testing
ground for new cloud-based technologies to facilitate the use of large geodata in
scientific research within high-performance and cloud-based environment. After
initial release and testing with internal user community we will proceed to imple-
menting other sets of functionalities and extend the library of the high-performance
analytical routines with other methods and models. In the future we plan to integrate
UrbIS infrastructure with systems like Jupyter Notebooks (http://jupyter.org/) so
that users can develop their own code through a web interface and access UrbIS
data using web services.

Conclusions

Efforts to understand and analyze data-enabled science has created a clear need
to unite various Earth Observation High-performance Computing (EO-HPC) sys-
tems, where the best of these various worlds are brought together in one shared
Cyber-Infrastructure (CI) platform. In this chapter, we have discussed such a CI
platform being developed at Oak Ridge National Laboratory using data-driven
GeoComputation, novel analytical algorithms and emerging technologies. Systems
interoperability, scalability and sustainability play an ever-increasing role in data-
driven and informed decision-making process in our platform. We have discussed
architectural and technical challenges in development of our platform, and broad-
ening implications of it as illustrated by our research initiatives for data and science
production. With technological roots in HPC, our platform is optimized for Earth
Observation Big Data used to accelerate the research efforts, and foster knowledge
discovery and dissemination more quickly and efficiently for US federal agencies.
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