Chapter 5
A Neuroevolutionary Approach to Adaptive
Multi-agent Teams

Bobby D. Bryant and Risto Miikkulainen

5.1 Introduction

Multi-agent systems are a commonplace in social, political, and economic enter-
prises. Each of these domains consists of multiple autonomous parties cooperating
or competing at some task. Multi-agent systems are often formalized for entertain-
ment as well, with instances ranging from team sports to computer games. Games
have previously been identified as a possible “killer application” for artificial intelli-
gence [14], and a game involving multiple autonomous agents is a suitable platform
for research into multi-agent systems as well.

The agents that comprise a multi-agent system can be either homogeneous or
heterogeneous. Heterogeneous teams are often used for complex tasks because they
allow agents to be specialized for sub-tasks (e.g. [2, 13, 29]). However, heterogeneous
teams of sub-task specialists are brittle: if one specialist fails then the whole team
may fail at its task. Moreover, when the agents in a team are programmed or trained
to optimize a pre-specified division of labor, the team may perform inefficiently if
the size of the team changes — for example, if more agents are added to speed up the
task — or if the scope of the task changes.

For example, suppose you owned a team of ten reactor cleaning robots, and the
optimal division of labor for the cleaning task required two sprayers, seven scrubbers,
and one pumper (Fig. 5.1). If the individual robots were programmed or trained as sub-
task specialists the team would be brittle and lacking in flexibility. Brittle, because
the failure of a single spraying robot would reduce the entire team to half speed at the
cleaning task, or the loss of the pumper robot would cause the team to fail entirely.
Inflexible, because if a client requested a 20% speed-up for the task you would not be
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Fig. 5.1 Left: A heterogeneous team of cleaning robots is trained or programmed for sub-task
specializations. Such a system is inflexible when the scope of the task changes, and brittle if key
specialists are unavailable. Right: An Adaptive Team of Agents provides every agent with the
capability of performing any of the necessary sub-tasks, and with a control policy that allows
agents to switch between tasks at need. The resulting team is more flexible and less brittle than the
heterogeneous team

able to simply send in 20% more robots; you would have to add [20%1 more robots
for each sub-task specialization, four more robots in all rather than two.

An alternative approach is to use a team of homogeneous agents, each capable
of adopting any role required by the team’s task, and capable of switching roles to
optimize the team’s performance in its current context. We call such a multi-agent
architecture an Adaptive Team of Agents (ATA) [4]. An ATA is a homogeneous
team that self-organizes a division of labor in situ so that it behaves as if it were a
heterogeneous team. It changes the division dynamically as conditions change, and
if composed of autonomous agents it must be able to organize the necessary divisions
of labor without direction from a human operator.

Thus the ATA requires trusted autonomy. Within the team, individual agents must
trust all the others to “do the right thing”. Agents cannot select appropriate sub-tasks
without some sort of assurance — possibly supported by observation — that the other
members of the team are also selecting contextually appropriate sub-tasks. The owner
of the team, whether in the context of robotics, simulation, or games, must also be
able to trust the team as a whole to work out an effective division of labor in order
to get the team’s overall task done thoroughly and efficiently. That is, the team must
pursue its owner’s intent, and either the reality or appearance of intent may need to be
instilled into the individual agents in order to achieve that. An ATA is robust because
there are no critical task specialists that cannot be replaced by other members of the
team; it is flexible because individual agents can switch roles whenever they observe
that a sub-task is not receiving sufficient attention. If necessary, an agent can alternate
between roles continuously in order to ensure that sufficient progress is made on all
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sub-tasks. Thus for many kinds of task an ATA could be successful even if there are
fewer agents than the number of roles demanded by the task.

Such adaptivity is often critical for autonomous agents embedded in games or sim-
ulators. For example, games in the Civilization™ genre usually provide a “settler”
unit type that is capable of founding new cities plus carrying out various construc-
tion tasks. Play of the game requires a division of labor among the settlers, and the
details of the division vary with the number in play and the demands of the grow-
ing civilization — e.g. the choice between founding more cities versus constructing
roads to connect the existing cities. If the settler units were heterogeneous, i.e. each
recruited to perform only one specific task, there would be a great loss of flexibility
and a risk of complete loss of support for a game strategy if all the settlers of a given
type were eliminated. But in fact the game offers homogeneous settlers, and human
players switch them between tasks as needed. For embedded autonomous settlers,
that switching would have to be made by the settler units themselves: an Adaptive
Team of Agents is desirable.

Here we explore the Adaptive Team of Agents experimentally, using genetic algo-
rithms to train artificial neural networks (ANN) as the “brains” for the agents in a
game, and find that it is possible to evolve an ATA with ANN controllers for a simple
but non-trivial strategy game. The game, called Legion II, is described in Sect.5.2,
and the agents’ control architectures are described in Sect.5.3. The evolutionary
mechanism used to train the game agents to behave as an adaptive team, called Neu-
roevolution with Enforced Sub-Populations (ESP), is described in Sect. 5.4. Method-
ological considerations are addressed in Sect. 5.5, and then experiments are reported
in Sect.5.6. Finally, discussion of the experimental results and an examination of
future directions is given in Sect.5.7.

5.2 The Legion I Game

Legion II is a discrete-state strategy game designed as a test bed for studying the
division of labor in multi-agent systems. It requires a group of legions to defend a
province of the Roman Empire against the pillage of a steady influx of barbarians.
The legions are the agents under study; they are trained by the method described in
Sect. 5.4, or by other methods reported elsewhere (e.g. [3, 5, 6]). The barbarians act
according to a preprogrammed policy, to serve as a foil for the legions.

Legion II provides challenges similar to those provided by other games and simula-
tors currently used for computational intelligence approaches to multi-agent learning
research (e.g. [1, 15, 26, 27]), and is expandable to provide more complex learn-
ing challenges as research progresses. In its current incarnation it is incrementally
more complex than a multi-predator/multi-prey game. It is conceptually similar to
the pseudo-Warcraff™ simulator used in [1], differing primarily in its focus on the
predators rather than the prey, and consequently in the details of scoring games.
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The following subsections describe the components, features, and rules of the
Legion II game, including the map, the game agents, and the method of calculating
game scores.

5.2.1 The Map

Legion II is played on a planar map. The map is tiled with hexagonal cells in order
to discretize the location and movement of objects in the game; in gaming jargon
such cells are called hexes (singular hex). Several randomly selected map cells are
distinguished as cities, and the remainder are considered to be farmland (Fig.5.2).
The hex tiling imposes a six-fold radial symmetry on the map grid, defining the
cardinal directions NE, E, SE, SW, W, and NW. This six-fold symmetry, along with
the discretization of location imposed by the tiling, means that an agent’s atomic
moves are restricted to a discrete choice of jumps to one of the six cells adjacent

: :

Fig. 5.2 A large hexagonal playing area is tiled with smaller hexagons in order to discretize the
positions of the game objects. Legions are shown iconically as close pairs of men ranked behind
large rectangular shields, and barbarians as individuals bearing an axe and a smaller round shield.
Each icon represents a large body of men, i.e. a legion or a warband. Cities are shown in white, with
any occupant superimposed. All non-city map cells are farmland, shown with a mottled pattern.
The game is a test bed for multi-agent learning methods, whereby the legions must learn to contest
possession of the playing area with the barbarians. (Animations of the Legion Il game can be viewed
at http://nn.cs.utexas.edu/keyword?ATA..)


http://nn.cs.utexas.edu/keyword?ATA

5 A Neuroevolutionary Approach to Adaptive Multi-agent Teams 91

to the agent’s current location, and that the atomic move is always in one of the six
cardinal directions. This map structure has important consequences for the design of
the sensors and controllers for the agents in the game, which are described in detail
in Sect.5.3.

5.2.2 Units

There are two types of autonomous agents that can be placed on the map in a Legion
Il game: legions and barbarians. In accordance with gaming jargon these mobile
agents are called units (singular unit) when no distinction needs to be made between
the types.

Each unit is considered to be “in” some specific map cell at any time. A unit may
move according to the rules described below, but its moves occur as an atomic jump
from the cell it currently occupies to an adjacent one, not as continuous movement
in Euclidean space.

The current position of each unit is shown by a sprite on the game map. In
accordance with the jargon of the Civilization game genre, the sizes of the units are
ambiguous. Thus the unit type called “a legion” represents a body of legionnaires,
but is shown graphically as only a pair of men behind large rectangular shields.
Similarly, the unit type called “a barbarian” represents a body of barbarians operating
as a warband, but is shown graphically as only a single individual with axe and shield
(Fig.5.2).

The legions start the game already on the map, in randomly selected map cells.
There are no barbarians in play at the start of the game. Instead, barbarians enter at
the rate of one per turn, in a randomly selected unoccupied map cell.

5.2.3 Game Play

Legion II is played in turns. At the beginning of each turn a new barbarian is placed ata
random location on the map. If the randomly generated location is already occupied
by a unit, a new location is generated. This search continues until an unoccupied
location for the new barbarian is found.

Thereafter, each legion is allowed to make a move, and then each barbarian in
play makes a move. A unit’s move can be a jump to one of the six adjacent map
cells, or it can elect to remain stationary for the current turn. When all the units have
made their moves the turn is complete, and a new turn begins with the placement of
another new barbarian. Play continues for a pre-specified number of turns, 200 in all
the experiments reported here.

All the units are autonomous; there is no virtual player that manipulates them
as passive objects. Whenever it is a unit’s turn to move, the game engine calculates
the activation values for that unit’s egocentric sensors, presents them to the unit’s
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controller, and implements the choice of move signaled at the output of the unit’s
controller, as described in Sect. 5.3.

There are some restrictions on whether the move requested by a unit is actually
allowed, and the restrictions vary slightly between the legions and the barbarians.
The general restrictions are that only one unit may occupy any given map cell at a
time, and no unit may ever move off the edge of the playing area defined by the tiling.

If a legion requests a move into an unoccupied map cell, or requests to remain
stationary for the current turn, the request is immediately implemented by the game
engine. If the legion requests moving into a map cell occupied by another legion, or
requests a move off the edge of the map, the game engine leaves the legion stationary
for that turn instead. If the legion requests moving into a map cell occupied by a
barbarian, the game engine immediately removes the barbarian from play and then
moves the legion as requested.

If a barbarian requests a move that is neither off-map nor into an occupied map
cell, the request is immediately implemented by the game engine. If the barbarian
requests a move into a map cell occupied by either a legion or another barbarian,
the game engine leaves it stationary for the current turn. (Notice that this does not
allow a barbarian to eliminate a legion from play the way a legion can eliminate
a barbarian.) If the barbarian requests a move off the edge of the map, the game
engine consults the barbarian’s controller to see what its second choice would have
been. If that second choice is also off-map then the game engine leaves the barbarian
stationary for the current turn; otherwise, the secondary preference is implemented.

Barbarians are given their second choice when they request a move off the map,
because their programming is very simple, and it is not desirable to leave them ‘stuck’
at the edge of the map during a game. Legions do not get the second-chance benefit;
they are expected to learn to request useful moves.

5.2.4 Scoring the Game

The game score is computed as follows. The barbarians accumulate points for any
pillaging they are able to do, and the legions excel by minimizing the amount of
pillage points that the barbarians accumulate. At the end of every game turn, each
barbarian in play receives 100 points for pillage if it is in a city, or only a single point
otherwise. The points are totaled for all the barbarians each turn, and accumulated
over the course of the game. When a barbarian is eliminated no points are forfeited,
but that barbarian cannot contribute any further points to the total thereafter.

This scoring scheme was designed in order to force the legions to learn two distinct
classes of behavior in order to minimize the barbarian’s score. Due to the expensive
point cost for the cities, the legions must keep the barbarians out of them, which
they can easily do by garrisoning them. However, further optimization requires any
legions beyond those needed for garrison duty to actively pursue and destroy the
barbarians in the countryside. If they fail to do so, a large number of barbarians will
accumulate in the countryside, and though each only scores one point of pillage per
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turn, their cumulative aggregate is very damaging to the legions’ goal of minimizing
the barbarian’s score.

In principle the legions might be able to minimize the pillage by neglecting to
garrison the cities and utilizing every legion to try to chase down the barbarians,
but the random placement of the incoming barbarians means that they can appear
behind the legions, near any ungarrisoned cities, and inflict several turns of the very
expensive city pillaging before a legion arrives to clear them out. The barbarian
arrival rate was by design set high enough to ensure that the legions cannot mop
them up fast enough to risk leaving any cities ungarrisoned. Thus the legions must
garrison the cities in order to score well, and any improvement beyond what can be
obtained by garrisoning the cities can only come at the cost of learning a second
mode of behavior, pursuing the barbarians.

For the purposes of reporting game scores the pillage points collected by the
barbarians are normalized to a scale of [0, 100], by calculating the maximum possible
points and scaling the actual points down according to the formula:

Scorereporied = 100 X Points,cwal / Pointspossible (5.1)

The result can be interpreted as a pillage rate, stated as a percentage of the expected
amount of pillaging that would have been done in the absence of any legions to
contest the barbarians’ activities. Notice that from the legions’ point of view, lower
scores are better.

In practice the legions are never able to drive the score to zero. This fact is due
in part to the vagaries of the starting conditions: if the random set-up places all the
legions very distant from a city and a barbarian is placed very near that city on the
first turn, there is nothing the legions can do to beat that barbarian into the city, no
matter how well trained they are. However, a factor that weighs in more heavily
than that is the rapid rate of appearance of the barbarians versus the finite speed of
the legions. Since the legions and barbarians move at the same speed, it is difficult
for the legions to chase down the barbarians that appear at arbitrary distances away.
Moreover, as the legions thin out the barbarians on the map the average distance
between the remaining barbarians increases, and it takes the legions longer to chase
any additional barbarians down. Thus even for well-trained legions the game settles
down into a dynamic equilibrium between the rate of new barbarian arrivals and the
speed of the legions, yielding a steady-state density of barbarians on the map, and
thus a steady-state accumulation of pillage counts after the equilibrium is achieved.

5.3 Agent Control Architectures

The legions and barbarians are controlled by policies that map egocentric sensory
inputs onto a choice of the discrete actions allowed in the game. This section describes
their sensors and controllers. The simpler sensors and controllers used by the barbar-
ians are described first, then the more elaborate system used to control the legions.
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5.3.1 Barbarian Sensors and Controllers

The legions are the only learning agents in the game, so the barbarians can use any
simple pre-programmed logic that poses a suitable threat to the legions’ interests. The
barbarians’ basic design calls for them to be attracted toward cities and repulsed from
legions, with the attraction slightly stronger than the repulsion, so that the barbarians
will take some risks when an opportunity for pillaging a city presents itself. This
behavior is implemented by algebraically combining two “motivation” vectors, one
for the attraction toward cities and one for the repulsion from legions:

%ﬁnal = 'ﬂcities + 0~9«%legions (52)

Each vector consists of six floating point numbers, indicating the strength of the
barbarian’s “desire” to move in each of the six cardinal directions. The 0.9 factor is
what makes the motivation to flee the legions slightly weaker than the motivation
to approach the cities. After the combination, the peak value in the .#j,, vector
indicates which direction the barbarian “most wants” to move. In situations where
a second choice must be considered, the second-highest value in .#y, is used to
select the direction instead.

The values in the two arrays are derived, directly or indirectly, from the activation
values in a simple sensor system. The barbarian’s sensor system consists of two
sensor arrays, one that detects cities and another that detects legions. Each array
divides the world into six 60° non-overlapping egocentric fields of view. The value

sensed for each field is: |

s = Z T (5.3)

where d; is the distance to an object i of the correct type within that field of view.
The distances are measured in the hex-tile equivalent of Manhattan distance, i.e. the
length of the shortest path of map cells from the viewer to the object, not counting
the cell that the viewer itself is in (Fig.5.3).

For simplicity, if an object is exactly on the boundary between two fields of view,
the sensors report it as being in the field to the clockwise of the boundary. Due to the
relatively small map, no limit is placed on the range of the sensors.

Notice that this sensor architecture obscures a great deal of detail about the envi-
ronment. It does not give specific object counts, distances, or directions, but rather
only a general indication of how much opportunity or threat the relevant class of
objects presents in each of the six fields of view.

Once these values have been calculated and loaded into the sensor arrays, the
activations in the array that senses cities can be used directly for the .#yes vector
in Eq.5.2. A#egions can be derived from the values in the array that senses legions by
permuting the values in the array to reverse their directional senses, i.e. the sensor
activation for legions to the west can be used as the motivation value for a move to
the east, and similarly for the other five cardinal directions. After the conversions
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Fig. 5.3 The solid black lines show the boundaries of the six sensory fields of view for one
barbarian near the northwest corner of the map. The boundaries emanate from the center of the map
cell occupied by the barbarian and out through its six corners. The dashed white lines show the
hexagonal Manhattan distances to the three legions in the SE field of view of the sensing barbarian.
These lines are traced from the center to center along a path of map cells, and thus emanate through
the sides of the hexagons rather than through the corners as the field boundaries do

from sensor activations to motivation vectors, .#5,, can be calculated and its peak
value identified to determine the requested direction for the current move.

There is no explicit mechanism to allow a barbarian to request remaining stationary
for the current turn. For simplicity the game engine examines a barbarian’s location
at the start of its move and leaves the barbarian stationary if it is already in a city.
Otherwise the game engine calculates the values to be loaded into the barbarian’s
sensors, performs the numerical manipulations described above, and implements the
resulting move request if it is not prohibited by the rules described in Sect.5.2.3.

The resulting behavior, although simple, has the desired effect in the game. As
suggested by Fig. 5.3, barbarians will stream toward the cities to occupy them, or
congregate around them if the city is already occupied. Other barbarians will flee
any roving legions, sometimes congregating in clusters on the periphery of the map.
The barbarians are quick to exploit any city that the legions leave unguarded. They
do, however, tend to get in each other’s way when a legion approaches a crowd and
they need to flee, resulting in many casualties, but that is perhaps an appropriate
simulation of the behavior of undisciplined barbarians on a pillaging raid.
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5.3.2 Legion Sensors and Controllers

Unlike the barbarians, the legions are required to learn appropriate behavior for their
gameplay. They are therefore provided with a more sophisticated, trainable control
system. The design includes a sensor system that provides more detail about the
game state than the barbarians’ sensors do, plus an artificial neural network “brain”
to map the sensor inputs onto a choice of actions.

5.3.2.1 The Legions’ Sensors

The legions are equipped with sensor systems that are conceptually similar to the bar-
barians’, but enhanced in several ways. Unlike the barbarians, the legions have a sen-
sor array for all three types of object in the game: cities, barbarians, and other legions.
Also unlike the barbarians, each of those three sensor arrays are compound struc-
tures consisting of two six-element sub-arrays plus one additional element (Fig.5.4),
rather than the barbarian’s simple six-element sensor arrays.

An array’s two six-element sub-arrays are similar to the barbarians’ sensor arrays,
except that one only detects objects in adjacent map cells and the other only detects
objects at greater distances. For the former, the game engine sets the array elements
to 1.0 if there is an object of the appropriate type in the adjacent map cell in the
appropriate direction, and to 0.0 otherwise. For the latter, the game engine assigns
values to the elements slightly differently from the way it assigns values to the bar-
barian’s sensors. First, it ignores objects at d = 1, since those are detected by the
short-range array described above. Second, since the distances used in the calcula-
tions for this array are always greater than one, it deducts one from the distances
used in the calculations, in order to increase the signal strength. That is, Eq. 5.3 used

for the barbarians becomes: .

§ = Zﬁ’ (54)

Local Sense Adjacent Sense Distant

; ’NE‘ E ‘SE‘SW‘W‘NW‘ ’NE‘ E ‘SE‘SW‘W‘NW‘

R e Sensor Array - - ------------

Fig. 5.4 The legions have three sensor arrays, one each for cities, barbarians, and other legions.
Each of those three arrays consists of three sub-arrays as shown above. A single-element sub-array
(left) detects objects co-located in the map cell that the legion occupies. Two six-element sub-
arrays detect objects in the six radial fields of view; one only detects adjacent objects, and the other
only detects objects farther away. These 13 elements of each of the three compound arrays are
concatenated to serve as a 39-element input activation for an artificial neural network that controls
the legion’s behavior (Fig.5.5)
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for objects i of the correct type and at a distance greater than one, within that field
of view.

A third difference is that sensed objects near a boundary between two sensor fields
are not arbitrarily assigned to the field to the clockwise of the boundary. Instead,
objects within 10° of the boundary (from the legion’s perspective) have their signal
splitbetween the two fields. As aresult each sensor array is effectively a set of 40° arcs
of unsplit signals alternating with 20° arcs of split signals, though the aggregations
result in an array of only six activation values. As with the barbarians’ sensors, there
is no range limit on this long-range sub-array.

The additional single sensor element in a compound array detects objects in the
legion’s own map cell: if an object of the appropriate type is present the game engine
sets the value of this sensor to 1.0; otherwise it sets it to 0.0. However, a legion
does not detect itself, and since the rules prevent multiple units from occupying the
same map cell, the only time this local detection sensor is activated in practice is
when the legion occupies a city. In principle the detect-local sensor could have been
eliminated from the sensor arrays used to detect legions and barbarians, but identical
arrays were used for all object types in order to simplify the implementation, and to
make allowance for future game modifications that would allow “stacking” multiple
units within a single map cell.

The full architecture of the compound sensors is shown in Fig. 5.4. The two sub-
arrays contain six elements each, corresponding to the six cardinal directions. Thus
together with the additional independent element, each array reports 13 floating point
values >0.0 whenever a sense is collected from the environment. Since there is one
compound sensor for each of the three types of game object, a legion’s egocentric
perception of the game state is represented by 39 floating point numbers.

5.3.2.2 The Legions’ Controller Network

A legion’s behavior is controlled by a feed-forward neural network. The network
maps the legion’s egocentric perception of the game state onto a choice of moves.
Whenever it is a legion’s turn to move, the game engine calculates the sensor values
for the legion’s view of the current game state and presents the resulting 39 floating
point numbers to the input of the controller network. The values are propagated
through the network, and the activation pattern at the network’s output is decoded to
determine the legion’s choice of move for the current turn (Fig.5.5).

The output layer of the networks consist of seven neurons, corresponding to the
seven discrete actions available to the legions. When the input activations have been
propagated through the network the activation pattern at the output layer is interpreted
as an action unit coding, i.e. the action corresponding to the output neuron with the
highest activation level is taken to be the network’s choice of action for the current
turn.

In addition to the sensory inputs, each neuron in the controller networks is fed
by a bias unit with a fixed activation of +1.0 and a trainable weight to propagate
the value into the neuron’s accumulator. For the experiments reported below, the
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Fig. 5.5 During play the values obtained by a legion’s sensors are propagated through an artificial
neural network to create an activation pattern at the network’s output. This pattern is then interpreted
as a choice of one of the discrete actions available to the legion. When properly trained, the network
serves as a “brain” for the legion as an autonomous agent in the game

controller network’s hidden layer consisted of 10 neurons, which was found to be
effective in preliminary survey experiments.

5.3.2.3 Properties of the Legions’ Control Architecture

There are a number of important consequences of the adoption of this sensor/
controller architecture for the legions, which the reader may wish to keep in mind
while reading about the methodologies and experiments:

The sensor readings are egocentric. For a given state of the game, each of the
legions in play will perceive the map differently, depending on their individual
locations on the map.

The sensors provide a lossy view of the map. The legions have complete state
information about their immediate neighborhood, but that is reduced to a fuzzy
“feel” for the presence of more distant objects.

The legions must work with uninterpreted inputs. There is a semantic structure to
the sensor arrays, but that structure is not known to the legions: the sense values
appear as a flat vector of floating point numbers in their controller networks’
input layers. The significance of any individual input or set of inputs, or of any
correlations between inputs, is something the legions must obtain via the learning
process.

There is no explicit representation of goals. None of the network inputs, nor any
other part of the controller logic, provide a legion with any sort of objective.
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Coherent higher-level behavior must be learned as a response to a sequence of
inputs that vary over time.

e The legions do not have memory. The feed-forward controller networks do not
allow for any saved state, so the legions are not able to learn an internal represen-
tation for goals to make up for the lack of externally specified goals. All actions
are immediate reactive responses to the environment.

These various requirements and restrictions conspire to present the legions with a very
difficult challenge if they are to learn to behave intelligently. The intent of the game
designer, and any real or apparent intent on the part of the individual legions, must be
instilled by means of the learning system. However, experience shows that properly
trained artificial neural networks excel at producing the appearance of purposeful
intelligent behavior (e.g. [1, 10, 17, 19, 20, 23]).

5.4 Neuroevolution With Enforced Sub-Populations (ESP)

For many agent control tasks the correct input-output mappings for the agents’ con-
trollers are not known, so it is not possible to program them or train them with
supervised learning methods. However, controllers such as artificial neural networks
can be evolved to perform a task in its actual context, discovering optimal mappings
in the process. The use of a genetic algorithm to train an artificial neural network is
called neuroevolution. Surveys of the field can be found in [24, 28]. An overview of
the use of neuroevolution to learn egocentric input-output mappings for game agents’
controllers can be found in [16].

One of the most empirically effective neuroevolutionary algorithms yet devised
is Neuroevolution with Enforced Sub-Populations (NE-ESP, or usually just ESP) [9,
11]. The basic concept behind ESP is that each genetic representation specifies only
a single neuron rather than an entire network, and a separate breeding population is
maintained for each neuron in the network.

Evaluations cannot be made on a network’s neurons in isolation, so the evalua-
tions in ESP are done by drawing one neuron at random from each sub-population,
assembling them into a complete network, evaluating the network as for any other
neuroevolutionary algorithm, and ascribing that network’s fitness score back to each
of the individual neurons used to create it. When all the neurons in all the popu-
lations have been evaluated, selection and breeding is done independently within
each sub-population. However, the fitness of an individual neuron depends not on its
properties in isolation, but on how well it works together with neurons from the other
populations. Thus the neurons in the sub-populations are subjected to cooperative
coevolution [18, 21], and as evolution progresses they converge as symbiotic species
into functional niches that work together in a network as a good solution to the target
problem.

ESP was originally introduced for training fully recurrent networks as continuous-
state controllers, e.g. for the inverted pendulum problem and the conceptually similar
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application to a finless rocket [12]. Both the application and the details of the ESP
implementation used for Legion II are novel.

In Legion II ESP is used for learning to make a discrete choice among the legions’
possible atomic actions. For the experiments reported here, the controller networks
were non-recurrent feed-forward networks with a single hidden layer, as described
in Sect.5.3.2.2 (Fig.5.5). A distinct sub-population was used for each position for
a neuron in the network, regardless of which layer it is in; the representations in
the populations held only the weights on the input side of the neurons (Fig.5.6).
In principle it is not necessary to provide separate neurons for the output layer; an
architecture more similar to previous uses of ESP would have dispensed with those
neurons and stored both the input and output weights in the representations of the
hidden-layer neurons. That is in fact the mechanism used in the original Legion [
experiments [4]. However, the introduction of new sub-populations for the output
layer contributed to the improved scores in the experiments reported here.

Fitness evaluations were obtained during evolution by playing the current gen-
eration of controllers against randomly generated game setups; the set of possible
game setups is so large that none ever have to be reused. A different sequence of
training games was used for each independent run with a given parameterization in
a given experiment. For fair evaluations within a single run, every neuron was eval-
uated against the same game before moving on to the next game. The methodology
is described in more detail in Sect.5.5.

‘When the ESP mechanism is used, the actual fitness of a network is ascribed to
each neuron used to construct it. As a result, the ascribed fitness is only an estimate of
aneuron’s “true” fitness; the “true” fitness is in fact ill-defined, since the neurons are
only useful when associated with other neurons in the other populations. However, a
reasonable estimate of the fitness of a neuron — given that it will be used in a network
with neurons from the other populations — can be obtained by evaluating the neuron
repeatedly, in networks comprised of independent random selections of neurons.

Thus for the experiments described here each neuron was evaluated on three
different games per generation, and the three resulting fitness ratings were averaged
to estimate the neuron’s fitness. The associations of the neurons into networks were
re-randomized before each of the three games so that the averaged fitness ratings
would reflect the quality of a given neuron per se more than the quality of the other
neurons ithappened to be associated with in the network. Each of the three evaluations
used a different game setup, and all of the neurons were evaluated on the same three
games during the generation.

Since the training game setups differed continually from generation to generation,
learning progressed somewhat noisily: a neuron that performed well on the training
games in one generation might not perform well on the new training games of the
following generation. However, neuroevolution with ESP is robust even when evalu-
ations are somewhat noisy, and the use of three games per generation helped smooth
the noise of the evaluations. The continually changing stream of training games from
generation to generation required candidate solutions to generalize to novel game
setups, or else risk having their constituent neurons be weeded out of the breeding
population; if a network performed poorly on the game setup used during a given
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Fig. 5.6 To apply the ESP
method of neuroevolution for
training the legions’
controllers, a separate
breeding population was
maintained for each of the 17
neurons used in the
controller network
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generation it received a poor fitness score, regardless of how well it had performed
during previous generations.

As described in Sect.5.5.2, an evaluation against the validation set was done at
the end of every generation. For ordinary evolutionary mechanisms the network that
performed best on the current generation’s fitness evaluations would be chosen for the
run against the validation set. However, the notion of “best network in the population”
is ill-defined when the ESP mechanism is used, so for the Legion II experiments a
nominal best network is defined as the network composed by selecting the most fit
neuron from each sub-population. It was that nominal best network that was evaluated
against the validation set at the end of each generation.

Breeding was done by a probabilistic method that strongly favored the most fit
solutions, but also allowed less fit solutions to contribute to the next generation with
low probability. The mechanism was as follows. When all the training evaluations
for a generation were complete, the storage for the representations of the solutions
in each sub-population was sorted from most fit to least fit, so that the most fit
had the lowest index. Then each representation was replaced one at a time, starting
from the highest index (i.e., the least fit neuron in the population). Two parents
were selected with uniform probability over the indices less than or equal to the
index of the representation currently being replaced. L.e., that representation or any
more fit representation could be chosen as a parent. The two selections were made
independently, so that it was possible for the same representation to be used for
both parents; in such cases the child would differ from the parent only by mutations.
(Notice that this mechanism always breeds the most fit neuron with itself at the final
pairing.) Since the less fit representations were progressively eliminated from the
effective breeding pool, the more fit solutions had more opportunities to contribute
to the next population. Preliminary survey experiments showed that this mechanism
produced better results than a simple elitist mechanism.

Once a pair of parents were selected they were bred with either 1-point or 2-
point crossover, with a 50% chance for each. Only one child was produced from
the crossover; the remaining genetic material was discarded. Each weight in the
representation was then subjected to a mutation at a 10% probability, independently
determined. Mutations were implemented as a delta to the current weight chosen from
the exponential distribution (Eq.5.5) with A = 5.0, and inverted to be a negative delta
with a 50% chance.

fx, ) =xe x>0 (5.5)

That choice of A reduced the mean of the distribution, and was chosen on the basis
of preliminary survey experiments. The deltas resulting from this distribution were
small with high probability, but potentially very large with a low probability. That
distribution allowed mutations to support both fine tuning of the weights and jumps
to more distant regions of the solution space.

Training on the Legion Il problem with neuroevolution makes progress asymptot-
ically. For the experiments reported here, evolution was allowed to continue for 5000
generations, well out onto the flat of the learning curve, to ensure that comparisons
and analyses were not made on undertrained solutions.
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5.5 Experimental Methodology

The Legion II experiments followed the familiar methodology of using distinct train-
ing, validation, and test sets. However, procedural questions arise when applying that
methodology to a game such as Legion II. This section explains how those questions
were resolved for the experiments reported below.

5.5.1 Repeatable Gameplay

When training or testing by means of dynamic gameplay rather than static examples,
it is useful to have a definition for the concept of “the same game”, e.g. to make
comparative evaluations of the performance of embedded game agents. However,
games that are genuinely identical with respect to the course of play are, in general,
impossible to generate, if they involve embedded game agents that learn: as the agents
learn, their behavior will change, and the changed behavior will cause the course of
the game to vary from earlier plays. For example, if the legions in Legion II fail to
garrison the cities during the early stages of training, the barbarians will occupy the
cities. But later during training, when the legions have learned to garrison the cities,
the details of the barbarians’ behavior must also change in response — i.e., the city
will not be pillaged as before — even if there has been no change to the starting state
and the barbarians’ control policy.

It is therefore useful to have a pragmatic definition of “the same game” for exper-
imental work. Thus for Legion Il two games are identified as “the same game” if
they use the same starting position for the cities and legions, and the same schedule
for barbarian arrivals. The schedule for arrivals includes both the time and the ran-
domly selected position on the map. For all the games reported here the barbarian
arrivals were fixed at one per turn, so only their placement mattered for identifying
two games as being the same.

However, the randomized placement of the barbarians is not always repeatable:
as described in Sect.5.2.3, if the position selected for placing a new barbarian on
the map is occupied, an alternative randomly selected position is used instead, and
re-tries continue until an empty map cell is found. But as described above, changes
to the legions’ behavior will result in different game states at a given point in time
for various instances of “the same game”, so a barbarian placement during one play
of the game may not be repeatable in another run using a different controller for the
legions. Therefore, for pragmatic reasons, “the same game” is defined for Legion II
to consider only the first try for the positioning of arriving barbarians; the additional
tries triggered by the unavoidable divergences of the game state are not considered
to make two games different.

This concept of “the same game” was used to create sets of games that were used
repeatedly during training and testing, as follows.
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5.5.2 Training

Randomized learning algorithms such as neuroevolution do not always produce their
best solution at the end of a fixed-length run; the random modifications to the rep-
resentations in an evolutionary population can make the solutions worse as well as
better. Therefore it is useful to have a mechanism for returning the best solution
obtained at any time in the course of a run.

The commonly used mechanism is to evaluate candidate solutions periodically
during training, and, if the top performer is better than any previously encountered
during the run, to save that top performer as the potential output of the learning
algorithm. At the end of the run, the most recently saved top performer is returned as
the solution produced by the algorithm. The learning algorithm still runs for some
fixed number of iterations that the experimenter deems sufficient for finding a good
solution, but that solution may be discovered at any time during the run.

The periodic evaluation is performed against a validation set. When generalization
is desired, the validation set must be independent of the training data; otherwise the
algorithm will return a solution that is biased toward good performance on the training
data at the expense of poorer performance on more general data of the same type.
For supervised learning, the validation set normally takes the form of a reserved
subset of the available training examples. However, when annotated examples are
not available, such as when using evolutionary learning to learn a motor control task
or a controller for an embedded game agent, the validation set can be a standardized
set of example problems. The definition of “the same game” in Legion II allows
construction of a distinctive set of games to serve as the validation set for Legion 11
learning tasks, and that is the mechanism used in the experiments reported here.

Therefore stopping was handled in the experiments by running the learning algo-
rithms for a period deemed to be “long enough”, and using the validation set mech-
anism to control which candidate was actually returned as the result of a run. The
validation set for Legion Il was a set of ten games. A set of ten games with indepen-
dently generated starting positions and barbarian placement positions was judged to
be a sufficient evaluation for generalization; larger sets adversely affect the run time
of the evolutionary algorithm. The score for a controller’s validation performance
was defined as the average of the game scores obtained by play against the ten games
of the validation set.

An evaluation was made against the validation set at the end of each generation,
and the nominal best network saved if its validation score was better than at any
previous generation. For a given run of the training program the same validation set
was used at each evaluation period, to ensure consistent evaluations. However, the
validation set was created independently for each run. The idea is that each run should
represent an independent sample of the space of all possible runs, for a given param-
eterization of the learning algorithm. Since the random selection of a validation set is
part of the the “possible world” of the run of a stochastic algorithm, its construction
was allowed to vary from run to run, along with all the other stochastic decisions.
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5.5.3 Testing

Each run of the learning algorithm returned a single neural network as its output.
The networks were saved to files for later testing with a separate program; the test
program spilled various run-time metrics to a file for analysis and plotting with the
R statistical computing environment [22].

Tests of current performance were also conducted during the course of training, for
the production of learning curves. Tests were only run on those generations where the
evaluation on the validation set produced a new top performer, i.e. when measurable
progress had been made. These were “side tests”; the learning algorithms ran the
tests and spilled the results to a file for later analysis, but did not make any training
decisions on the basis of the tests, to avoid biasing the training toward the test games.

Whether during the learning run or afterward, tests were run on a set of games
constructed as the validation set was, but independent of both the validation set and
the training games. As with the validation evaluations, the evaluation score for this
composite test was defined as the average of the scores obtained on the individual
games of the test set.

Unlike the validation set, the same test set was used for every independent run of
every learning algorithm, to ensure that any differences in the test metrics were the
result of differences in the solutions being examined rather than differences in the
difficulty of independently generated test sets. The training-time evaluations on the
test set are not as frequent as the evaluations on the validation set, so a larger test
set could be used without unduly extending the run times of the training algorithms.
Also, it is essential that the test set be an accurate model of the set of possible
games; therefore a set of 31 games was used. (Statisticians deem a minimum of 30
samples necessary for characterizing a distribution when the measurements are not
known a priori to fall into a normal distribution; it sometimes proves useful to use
31 rather than that minimum, so that there will be a clearly defined median for any
measurement, to be used as a principled choice whenever it proves useful to plot or
analyze a single “typical” example.)

5.6 Experiments

ANN controllers for the legions in Legion Il were trained using ESP and the pro-
cedures described above. The homogeneity required by the ATA architecture was
enforced by using the same controller to make all the legions’ decisions during a
game. The game parameters were set to require a division of labor to perform well:
there were more legions than cities, the randomized placement of the barbarians and
the 100:1 ratio of pillage between the cities and countryside made it essential to
garrison the cities, and the large number of barbarians arriving over the course of the
game made it essential to eliminate barbarians in the countryside as well, if pillage
was to be minimized. With one barbarian arriving per turn, the count would ramp up
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from one to 200 over the course of a game in the absence of action by the legions,
providing an average of ~100 pillage points per turn. With three cities each subject to
an additional 100 pillage points per turn, pillaging the countryside can amount to ~1/4
of the worst possible score. Thus the legionary ATA must take actions beyond simply
garrisoning the cities in order to minimize the pillage: a division of labor is required.

The following sections examine the results of the training experiment and the
behavior produced in the legions.

5.6.1 Learning the Division of Labor

Hundreds of runs of neuroevolutionary learning on the Legion II problem, with a
variety of learning parameters and a number of changes to the game rules and network
architecture since the initial results reported in [4], have consistently performed well,
where “well” is defined fuzzily as “learns to bring the pillage rate substantially below
the 25% threshold” obtainable by a policy of static garrisons and no division of labor
to support additional activity by the spare legions. For the experiments reported here,
eleven independent runs of the base learning method with the parameters described
in Sect.5.4 (but independent streams of random numbers) produced a mean test
performance score of 4.316%, with all falling in the range 3.5-6.0%. (Recall that
there is no a priori expectation that a 0% pillage rate could be learned.) The scores on
the games in the test set show that all eleven runs produced controllers that allowed
the legions to reduce pillaging well below the 25% rate obtainable by garrisoning
the cities and taking no further actions against the barbarians.
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Average Test Game Score
(pillage rate)
20
1

T T T T

T
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Fig.5.7 The plot shows progress against the test set for the median performer of the eleven training
runs. At each generation when progress was made on the validation set, the nominal best network
was also evaluated against the test set. The hatch marks at the bottom of the plot identify those
generations. Test scores for those generations (only) are connected with straight lines to improve
visibility. The plot is not strictly monotonic because progress on the validation set does not strictly
imply progress on the test set
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As described in Sect. 5.5.3, performance against the test set was also checked dur-
ing training so that learning progress can be examined. A typical learning curve is
shown in Fig.5.7. The learning curve is familiar from many machine learning appli-
cations (though inverted because lower scores are better), with fast initial learning
tapering off into slower steady progress. Experience shows that learning by neu-
roevolution on the Legion II problem appears to progress asymptotically. There is
no stair-step pattern to suggest that the legions’ two modes of behavior were learned
sequentially; observations confirm that the legions begin chasing barbarians even
before they have learned to garrison all the cities rigorously.

The behavior of a trained controller network can be evaluated qualitatively by
observing real-time animations of game play. In every case that has been observed,
trained legions begin the game with a general rush toward the cities, but within a
few turns negotiate a division of labor so that some of the legions enter the cities
or remain near them as garrisons while the others begin to chase down barbarian
warbands in the countryside. The only time the cities are not garrisoned promptly
is when their positioning allows two of them mask the third from the legions’ low-
resolution sensors. However, even in those cases the third city is garrisoned as soon
as one of the roaming legions pursues a barbarian far enough to one side to have
a clear view of the third city so that it can “notice” that it is ungarrisoned. A feel
for these qualitative context-aware behaviors can be obtained by comparing end-of-
game screenshots taken early and late during a training run, as shown in Fig.5.8.
An animation of the trained legions’ behavior can be found at http://nn.cs.utexas.edu/
keyword?ATA.

The legions’ division of labor can can also be examined by the use of run-time
metrics. The test program was instrumented to record, after each legion’s move, how

Fig. 5.8 Two end-of-game screenshots show the legions’ performance before and after training.
Left: Before training the legions move haphazardly, drift to an edge of the map, or sit idle throughout
the game, thereby failing to garrison the cities and allowing large concentrations of barbarians to
accumulate in the countryside. Right: After training the legions have learned to split their behavior
so that three defend the three cities while the other two move to destroy most of the barbarians
pillaging the countryside. The desired adaptive behavior has been induced in the team
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Fig. 5.9 The plot shows the distance from each legion to its nearest city over the course of a single
game. The five legions start at random distances from the cities, but once some legion has had time
to reach each of the three cities the team settles into an organizational split of three garrisons and
two rovers. Note that the garrisons’ average distance from their respective cities is not 0.0, because
whenever there is only a single adjacent warband it is reasonably safe to exit the city long enough
to eliminate it. The legions sometimes swap roles when a rover approaches a garrisoned city, e.g.
Legions #3 and #4 just before turn 25. (The numbering of the legions is arbitrary; they are identical
except for the happenstance of their starting positions. The lines have been smoothed by plotting
the average of the values measured over the previous ten turns.)

far away it was from the nearest city. The result for allowing the median performer
among the eleven trained networks to play the first game in the test set is shown in
Fig.5.9. The plot clearly shows that after a brief period of re-deploying from their
random starting positions three of the legions remain very near the cities at all times
while two others rove freely. The rovers do approach the cities occasionally, since
that is where the barbarians primarily gather, but for most of the game they remain
some distance away.

When a rover does approach a city there is sometimes a role swap with the current
garrison, but the 3:2 split is maintained even after such swaps. However, the legions
show surprisingly persistent long-term behavior for memoryless agents: the plot
shows that Legion #1 acts as a rover for almost 3/4 of the game, and Legion #3, after
starting as a garrison and then swapping roles with a rover, spends the final 7/8 of
the game in that new role.

5.6.2 Run-Time Readaptation

The training games were parameterized to require the legions to organize a division
of labor, and they successfully learned to do that. However, the motivation for the
ATA multi-agent architecture in Sect.5.1 calls for teams that can reorganize when-
ever a change in circumstances requires it. For example, if the pumper robot in the
motivating example breaks down, one of the other robots should take over the task
so that the team will not fail entirely. The legions in the Legion Il game should also
be able to reorganize at need.
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Fig. 5.10 In asecond test, play follows the pattern of the previous test until turn 100, when a fourth
city is added to the map. The team is forced to re-organize its division of labor so that there are now
four garrisons and only a single rover. The role swaps continue, but they always leave four legions
hovering near the cities. The typically lower average distance from the rover to its nearest city after
the city is added is an artifact of the increased density of cities on the map. Legion #2 erroneously
abandons its city near the end of the game; see the text for the explanation

That necessary ability was examined by modifying the test program to support
the addition or removal of a city at the mid-point of the test games. When a city is
added, the legions should reorganize into a team of four garrisons and one rover, or
when a city is removed they should reorganize into a team of two garrisons and three
rovers.

The result of adding a city is shown in Fig.5.10. The plot again shows the
median-performing controller’s behavior on the first game in the test set. Since the
legions’ behavior is deterministic and the game’s stochastic decisions are repeated,
as described in Sect.5.5.1, the game follows its original course exactly, up until the
city is added at the mid-point of the game. Thereafter the team can no longer afford
to have two rovers, and the plot shows the resulting reorganization. There are still
role swaps in the second half of the game, but the swaps now always maintain four
garrisons and a single rover.

The average distance from the rover to the cities is lower in the second half of the
game. That is primarily an artifact of having more cities on the small map: regions
that were once distant from all the cities no longer are, so even without any change
in behavior the rover is expected to be nearer some city than before, on average. A
second cause is an indirect result of the change in the team’s organization. With only
one rover in the field, the legions are not able to eliminate the barbarians as quickly
as before, so during the second half of the game the concentration of barbarians on
the map builds up to a higher level than previously. Since they tend to crowd around
the cities and the roving legions tend to chase down the barbarians wherever they
mass, the roving legion now has more reason to operate close to the cities.

The plot shows Legion #2 vacating the city it was garrisoning right at the end of
the game. That is also an artifact of the increased density of the barbarians on the
map. In ordinary play the trained legions are able to maintain a dynamic equilibrium
between the rate of influx of the barbarians and the rate they are eliminated; the
denser the barbarians are on the map, the easier it is for the rovers to catch some
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Fig. 5.11 In a third test, the mid-game reorganization experiment is repeated, except this time a
city is removed from the map. That city had been garrisoned by Legion #4, which now finds itself
far from the nearest city, and immediately adopts the role of a rover. (The steep ramp-up of its
nearest-city distance on the plot is an artifact of the smoothing; the change is actually instantaneous
when the city is suddenly removed from under the legion.) There is a role swap just before turn
150, but the team consistently keeps two legions very near the two remaining cities, with the other
three roving at various distances

of them. However, when the add-city test causes one of the rovers to swap roles to
garrison duty, that equilibrium can no longer be maintained by the single remaining
rover, and the number of barbarians in play starts ramping up after the city has been
added. Eventually their number oversaturates the legions’ sensors — they have not
seen such densities since early during training — and the legions begin to behave
erratically. However, until their sensory input diverges quite far from what they were
trained for, the legions are seen to exhibit the desired behavior.

The result of removing a city at the mid-point of a game is shown in Fig.5.11.
The play proceeds as before, until the city is removed at turn 100. At that point the
legion formerly garrisoning that city finds itself far away from any, but it adopts
the roving behavior rather than sitting idle or trying to crowd into one of the other
cities, and it maintains that behavior for the remainder of the game. There is a role
swap between two of the other legions later, but the team is always left with two
legions hovering very near the cities on garrison duty, while the other three range
over various distances in pursuit of the barbarians.

5.7 Discussion

The experiments show that the Adaptive Team of Agents is a feasible architecture for
multi-agent systems, and that ATAs can be created by neuroevolutionary methods.
The legions learned the desired variety of behavior, and the ability to organize a divi-
sion of labor by individually adopting an appropriate choice of behaviors. They also
learned to swap roles without disrupting the required organization of the team, both
in the ordinary course of events and in response to a change in the scope of their task.
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Such capabilities are essential for the agents embedded in many types of game or
simulator. Games often provide multiple agents of some generic type — e.g. the settler
type in the Civilization game — which must as individuals pursue differing activities
that contribute to the success of the team rather than the individual. And those agents
must be adaptive in their choice of activities, taking account of the game state,
including the choices being made by their peers. Yet the scripted behavior of agents
in commercial and open source games commonly fail at that requirement, making
decisions that appear to take little account of context. For example, in strategy games,
even when the agents are not autonomous and a higher-level Al is able to manipulate
them according to some plan, individual agents are frequently observed to make
piecemeal attacks that are suicidal due to a lack of supporting actions by their peers.
To a human observer, such agents simply do not seem very intelligent. Appropriate
computational intelligence methods should be able to take game intelligence beyond
the brittleness, inflexibility, and narrowness of scripted activity, and for many games
or simulators the context-awareness and adaptivity of the agents in an ATA will be a
necessary part of any successful solution.

In the field of evolutionary robotics, Floreano et al. also examined homogeneous
teams controlled by ANNs evolved by team selection, in a study of hypotheses for
explaining biological altruism [8]. Altruism does not play an explicit role in Legion II,
but their study found that a homogeneous team evolved by team selection performed
better than three other architectures examined, producing robust altruistic behavior in
the process. Altruism, when appropriate, is an important facet of trusted autonomy
in multi-agent environments, and can contribute to the appearance of intelligent
behavior as well.

Itis interesting to note that the necessary adaptivity for our ATA was obtained using
a simple feed-forward network for the legions’ controllers. We know that artificial
neural networks are powerful computing devices (see e.g. [7, 25]), and that genetic
algorithms are able to train them to sophisticated behaviors (e.g. [1, 3, 15, 26, 27,
29]). To a first approximation it may be concluded that the Legion II controllers have
been trained to partition the game’s state space, as seen from an egocentric point
of view, into two classes, and to choose a behavior on the basis of which class the
current state observation falls in to. However, what they actually choose is one of
seven atomic moves, none of which can be uniquely associated with either of the
two behavior classes.

For an agent to pursue a coherent higher-level behavior across many game turns —
i.e., to give an appearance of intent-driven behavior — would seem to require access
to some internal state, i.e. an ability to “remember” what it is doing. Conjecturally,
the Legion II agents have learned a workaround whereby they effectively store their
internal state in the external environment. L.e., in addition to whatever else they learn
during training, they learn a mapping from their egocentric view of the environment
to a virtual representation of whatever internal state information is necessary for
“remembering” what they are doing. The flow of information is in fact recurrent:
the fact that the agents move within their environment causes a transformation of
their next view of the environment. In an otherwise static environment those trans-
formations would be deterministic; the presence of other agents in the Legion II
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environment makes them somewhat noisy. However, the potential noisiness in the
state transitions may be greatly reduced if the agents also learn an implicit model
of the other agents’ behaviors. If they can predict how those other agents will act,
they can learn to predict what effect their choice of actions will have on their next
snapshot view of their world with high accuracy. Thus it is possible, in principle,
for the pairing of a sufficiently powerful computational device with a sufficiently
powerful learning mechanism to learn to use an egocentric view of the external state
as if it were an internal state, for systems such as the Legion II game. Future work
must pursue this concept to determine what the limits of such a mechanism are. Does
a feed-forward network embedded in an environment that it can manipulate become
as powerful as a Turing machine?

The ad hoc use of plots of an ad hoc metric for detecting the legions’ division
of labor in Sect. 5.6 also reveals a need for developing methods of behavior anal-
ysis. When studying agents in visible environments such as games and simulators,
behavior is paramount [3]. Meaningful behavioral metrics are essential, and it would
be useful to have methods that are abstract enough to be portable across application
domains, and sensitive enough to detect similarities or differences in behavior when
a domain involves more subtlety than a switch between two discrete behaviors. Work
in this area is already underway, and will be a major component of the study of visibly
intelligent behavior in the future.

The Legion II ATA experiments also revealed a special challenge for the applica-
tion of computational intelligence methods to agent behavior problems. The goal of a
simulation as understood by a machine learning algorithm — e.g. minimizing pillage
in the Legion II game — may be satisfied by some abstract optimization, with little
or no regard for the appearance of details of the learned behavior. For example, the
legions in the Legion Il ATA experiment learned to switch between appropriate roles
on the basis of context, but some of the details of their behavior are not satisfactory to
an observer. The garrisons’ learned behavior often produced “mindless” oscillations
in and out of their cities when there were no barbarians nearby to threaten pillage,
and such behavior would likely be the subject of ridicule if seen in the behavior of the
agents in a commercial game. In principle such details of behavior can be addressed
by careful specification of the goals of the training regimen, such as an evolutionary
reward function that penalizes undesirable behavior, but for applications as complex
as a commercial game it may be as difficult to specify an appropriate reward function
as it has proven to be to write a script that covers all situations adequately. There-
fore work is underway on suppressing such oddities of behavior and inducing other
desirable traits that will make agents look intelligent to observers, rather than merely
acting out some abstractly optimal solution to the problem they have been trained
for. (See [3] for an extensive preliminary treatment.)
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5.8 Conclusions

The Adaptive Team of Agents is a viable architecture for systems based on the methods
of computational intelligence, and has immediate applications in domains such as
games and simulators, where autonomous agents must show flexible diversity of
behavior at both the individual and team level. Such flexibility, supported by fulfilled
trust among the members of a team, is a critical component of trusted autonomy in
multi-agent systems, and is a key aspect of the sort of visibly intelligent behavior
that viewers expect from agents that model real or imagined creatures or groups
in some simulated world. Neuroevolution in particular can create such flexibility,
along with other desired characteristics of visibly intelligent behavior. More powerful
neuroevolutionary methods continue to be developed, and it can be expected that
further work in applying them to the rich challenges of modern videogames will
produce results of both practical and scientific merit.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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