Chapter 15
Intrinsic Motivation for Truly
Autonomous Agents

Ron Sun

15.1 Introduction

In order to deal with complexity, uncertainty, and unpredictability, which are
inevitable in many real-world tasks and environments, agents need to be intrin-
sically motivated. Intrinsically motivated agents are those that have human-like
(or animal-like) internal motivational processes, with internally generated, self-
determined needs and preferences, which may or may not be influenced externally.
It is the ability and the inclination of an agent (e.g., a human or a robot) to act
autonomously, at its own discretion [6, 48]. For true autonomy necessary for dealing
with highly complex, uncertain, or unpredictable environments, intrinsic motivation
would be a highly desirable, or even necessary, part of being autonomous agents
functioning in such environments. In highly complex, uncertain, or unpredictable
environments, specific motivations and preferences cannot be easily pre-specified
for a system from the outside, and thus intrinsic motivation is important for the sake
of autonomy and for coping with such environments [18, 59].

In past work on intelligent agents, including past work on learning, planning,
and problem solving for such agents, the need for intrinsic motivation has been
down-played (although not completely ignored; more on this later). Thus, by now,
the shortcomings of existent autonomous agent models and systems are quite evi-
dent, for example, with regard to their acceptance and their deployment in complex,
uncertain, or unpredictable environments. Clearly, we need to seriously rethink
some of these old approaches based on old (and often outdated) assumptions and
methodologies, and move forward to the development of new, different, and better
approaches, models, and theories, especially those that involve human-like intrinsic
motivation.

Having intrinsic motivation is also important to achieving trust of autonomous
agents and systems (such as autonomous robots) by humans (and by other autonomous
agents and systems). In fundamentally unpredictable environments, a key aspect that
one can be certain of is stable internal needs and preferences—that is, intrinsic moti-
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vation. Thus, in order to have trust and confidence in someone else, one has to have
an understanding of what motivates the other [47, 48].

We may term human-like intrinsic motivation and autonomous choice of action
(in accordance with intrinsic motivation) “free will”. Self-determined intrinsic moti-
vation (or “free will”’) in humans includes not only power, achievement, and other
individualistic tendencies, but also adherence to social norms, affiliation with other
individuals, and other tendencies related to social interactions and interdependencies
([48]; see details later). These motives are the results of evolution over a long period
of human prehistory in the context of the struggles to survive within social groups.
Real trust is trust among such “free willed” individuals. Limited, simpler forms of
“trust” that one typically places on currently available machines such as self-driving
automobiles or robotic vacuum cleaners (as they stand currently) cannot be construed
as real trust (or full trust) and, I believe, is far from sufficient for the future. See, for
example, Lee and See [23] or Abbass et al. [1] for characterization of such limited
forms of trust. The question is: How do we move beyond that?

To achieve real trust, I believe that we need to delve into natural human tenden-
cies to trust other individuals with intrinsic motivations that are similar to ours and
similarly “free willed”. Humans do have such tendencies, necessitated by their col-
lective need for survival, evolved during their collective struggles to survive for tens
of thousands of years. Such trust may start from predictability of behavior, as a result
of similarly endowed (innate or acquired) motives. Understanding others’ motivation
leads to predictability of their behavior, which in turn leads to more complex and
deeper forms of trust (e.g., involving affective or emotional processes). Only in this
way, through understanding and exploiting such natural human tendencies, may we
achieve truly autonomous agents, robots, and machines that may be given our real
and full trust and that may also achieve real mutual trust amongst themselves.

Taking all of these issues into consideration, it is evident that we need to develop
a deeper perspective on future autonomous systems, which should include intrinsic
motivation in particular.

In the remainder of this chapter, first, background of some past work on human
motivation is reviewed, as well as past work on computational cognitive architec-
tures in relation to motivation. Then, a particular cognitive architecture (namely, the
Clarion cognitive architecture) that is integrative and comprehensive and includes a
more complete motivational subsystem is detailed, especially the interaction between
its motivation and cognition [50]. Some examples of simulations using this cogni-
tive architecture are described, which show briefly how this cognitive architecture
integrates cognition and motivation and enables agents to function autonomously
and appropriately. Some concluding remarks end this chapter.
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15.2 Background

15.2.1 Previous Work on Intrinsic Human Motivation

It has been argued that, currently, many kinds of intelligent artifacts—autonomous
agents, systems, and robots—are not truly autonomous, capable of dealing with
complex, uncertain, and unpredictable environments independently, that is, truly
autonomously. For one thing, they do not seem to possess independent, intrinsic
motivations, needs, and preferences by themselves [48]. Notably, in highly com-
plex, uncertain, or unpredictable environments, specific motivations and preferences
cannot be easily pre-programmed; intrinsic motivation is therefore important to
achieving autonomy and consequently crucial to successful coping in such envi-
ronments [18, 59]. We need to make an effort to redress this current state of affairs.

Furthermore, we also need to address social interaction of and with autonomous
agents, systems, and robots. For example, in social transactions, how and when
one can place trust in such a system is a major issue, as mentioned earlier [24,
36, 39]. For humans, to truly trust and have confidence in someone else, one has
to have an understanding of what motivates the other [47]. Having stable intrinsic
motivation, as humans usually do, helps in this regard. For another example, social
impasses may often result from incompatible motivations of multiple people (or
agents); understanding each other’s motivations may go a long way in helping to
resolve such impasses [47].

Work on intrinsic human motivations has had a long history. Some particularly
relevant work will be briefly discussed here [29, 34], in relation to our own theory
of human motivation as embodied in the Clarion cognitive architecture mentioned
earlier [46, 48, 50]. Understanding and replicating the human motivational subsystem
can be highly beneficial to building autonomous intelligent agents and systems,
because of its power, flexibility, and adaptability [48].

First of all, very early on, Murray [29] proposed a pertinent set of basic needs
(i.e., primary drives in our terminology, as used in Clarion). Murray’s proposal [29]
included the need for conservance, the need for order, the need for retention, the need
for acquisition, the need for inviolacy, and so on (note that these needs are included
as or covered by primary drives in Clarion, as will be detailed later). Some other
needs identified by Murray, such as contrarience, aggression, abasement, rejection,
succorance, exposition, construction, and play, may not be fundamental needs (or
primary drives) in our view—they are likely the results of more fundamental needs
(i.e., primary drives) or their combinations. Murray’s proposal also included some
low-level (physiological, or viscerogenic in Murray’s term) needs (which may be
attributed to some combinations of low-level primary drives in Clarion).

More recently, Reiss [34] proposed another set of basic needs (i.e., primary drives),
which was highly similar to Murray’s, but with some differences. For example, as
proposed by Reiss [34], there are the need for saving, the need for order, the need for
family, the need for vengeance, the need for “idealism”, the need for status, the need
for acceptance, as well as the need for eating, the need for tranquility, the need for
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physical exercises, the need for romance, and so on. (Again, these needs are included
as or covered by primary drives in Clarion as will be detailed later.)

As alluded to above, in Sun [48, 50], a detailed model of human motivation (as
embodied in Clarion) was presented. The Clarion cognitive architecture incorporates
multiple, interacting subsystems. In particular, within the motivational subsystem,
there are implicit drives and explicit goals (with goals being primarily determined
based on drives). While some drives, denoting essential needs and desires, are pri-
mary and built-in, some other drives may be acquired and secondary. The primary
drives include: Affiliation & Belongingness, Dominance & Power, Recognition &
Achievement, Autonomy, Deference, Similance, Fairness, Honor, Nurturance, Con-
servation, Curiosity, as well as some low-level primary drives [48]. With its built-
in mechanisms and processes, especially the motivational mechanisms, Clarion is
able to capture, account for, and explain many psychological data and phenomena
related to human motivation. There have been various efforts at verifying those drives
through experiments and data analysis [34, 48]. See further discussions of Clarion
below, and also see Sun [46, 50].

Relatedly, Schwartz’s [40] 10 universal values, although addressing a different
aspect of human behavior (i.e., human “values”), bear some resemblance to the
essential needs (i.e., primary drives) identified above [48]. Moreover, each of these
values can be derived from some primary drive or some combination of these primary
drives [48].

McDougall [27] proposed a framework that was concerned with “instincts”.
Instincts, in our framework, refer to (more or less) evolutionarily hard-wired (i.e.,
innate) behavior patterns or routines that can be relatively easily triggered by per-
tinent stimuli in pertinent situations. As discussed earlier, basic needs (or primary
drives as termed in Clarion) are essential driving forces of behaviors. Instincts are
different from basic needs, because one does not have to follow instincts when there
is no pertinent stimulus, and even when pertinent stimuli are present, one may be
able to refrain from following instincts (at least more easily than from basic needs or
primary drives). In other words, they are pre-set routines: while they are relatively
easily triggered, they are not inevitable. McDougall listed the following instincts:
imitation, emulation or rivalry, pugnacity/anger/resentment, sympathy, hunting, fear,
appropriation/acquisitiveness, constructiveness, play, curiosity, sociability and shy-
ness, secretiveness, cleanliness, modesty and shame, love, jealousy, parental love,
..., and so on (see also [19]). As evident from the list above, many of these instincts
are results of primary drives or basic needs (such as “curiosity” and “parental love”),
or are derived, by some means, from primary drives or basic needs (such as “play”
and “constructiveness”). Some other instincts are not because they do not represent
basic needs (e.g., “hunting” or “jealousy”). (See more discussions of primary drives
within Clarion later.)

There have also been some less psychologically validated models of motivation.
Such models include Doerner’s model and Sloman’s model. In Sloman’s motivational
model [67], goals (“motives”) are generated from a suite of modules (“generactiva-
tors”), each of which expresses a single “concern” (such as caring for dependents or
removing damaged dependents). Each of these modules may search through a data-
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base of beliefs; if it finds a match, a declarative representation of a goal (a “motive”) is
generated. On that basis, the resource management system takes goal representations
and generates intentions for action. Although the model bears some resemblance to
Clarion, the model has not been used to capture or explain psychological data in
any detail. In addition, computationally speaking, searching through databases is
cumbersome and may not be cognitively realistic.

Doerner [15] (see also Bach [5]) described the PSI theory, which included internal
deficits, displeasure signals (due to deficits), negative reinforcement (from displea-
sure signals), urges, goals, action learning through random exploration (based on
reinforcement), and so on. At an abstract level, the model is similar to Clarion to
some extent [48, 50], but it appears less psychologically grounded or validated. In
addition, its computational mechanisms appear less well developed algorithmically.

15.2.2 Previous Work on Cognitive Architectures

It has been suggested [30] that cognitive theories (including computational cognitive
models) should be developed that satisfy multiple criteria, in order to avoid theoretical
myopia. There have been steady developments of generic computational cognitive
models, that is, cognitive architectures, for the past three decades since that seminal
suggestion.

Early cognitive architectures often took the form of production systems and were
(more or less) concerned with various psychological phenomena [20]. However, other
forms of cognitive architectures have also been developed over the years — they may
be in the form of a connectionist model, a constraint satisfaction network, a hybrid
system of different models, and so on. Some of them may be more concerned with
applications to building artificial systems than capturing and explaining empirical
psychological phenomena.

Computational cognitive architectures provide the best hope for integrated sys-
tems that incorporate not just cognitive capabilities, but also motivation, emotion, per-
sonality, and many other capacities and capabilities needed for an autonomous agent.
In particular, computational cognitive architectures based firmly on psychological
data and findings and thus well-grounded empirically can be especially illuminating—
they provide a glimpse into how human minds work, for example, in terms of the
interaction between cognition and motivation, as well as their interaction with the
environments (simple or complex). The human mind provides the best example of
a truly autonomous intelligent system, and thus can lead to better understanding
of intelligence and autonomy. Such cognitive architectures, like humans on which
they are based, are capable of being truly autonomous, because they include a wide
range of cognitive, motivational, and other capabilities and these capabilities func-
tion together to cope with different tasks and environments. Let us look into three
examples, in chronological order.



278 R. Sun

Soar, the first proposed cognitive architecture, has been developed over the past
thirty years, based essentially on a production system model. It has mostly been used
for the purpose of building application systems [21, 30, 35]. In Soar, based on the
framework of a state space and operators for searching the state space, decisions are
made by different productions proposing different operators, when there is a goal
on a goal stack. When a sequence of productions leads to achieving a goal, chunk-
ing occurs, which creates a single production that summarizes the process (using
explanation-based learning). However, it lacks sophisticated motivational structures
and processes. In addition, a large amount of initial (a priori) knowledge about states
and operators is required for Soar to work.

Another series of cognitive architectures were also proposed fairly early on: in par-
ticular, ACT* and ACT-R [3]. ACT* is made up of declarative knowledge (captured
in a semantic network) and procedural knowledge (captured in a production system).
Procedural knowledge (in productions) is acquired through “proceduralization” of
declarative knowledge, modified through use by generalization and discrimination
(i.e., specialization), and have strengths associated with them (which are used for
firing). ACT-R is a descendant of ACT*, in which procedural learning is limited
to production formation through mimicking and production firing is based on log
odds of success. There have been some later additions to ACT-R, including visual
and motor modules, but there have not been any sufficiently complex motivational
structures.

Clarion has been a comprehensive cognitive architecture [45, 46, 50]. The Clarion
cognitive architecture, as mentioned earlier, consists of multiple, interacting subsys-
tems. It is also distinguished from other existing cognitive architectures by its focus
on the separation and the interaction of implicit and explicit knowledge and processes
(in these different subsystems, respectively). More importantly, in relation to motiva-
tional issues, compared with other cognitive architectures, Clarion is distinguished
by the fact that it contains built-in motivational constructs and built-in metacogni-
tive constructs. These features are not commonly found in other existing cognitive
architectures. Nevertheless, these features are crucial to the cognitive architecture,
as they capture important elements in the interaction between an agent and its phys-
ical and social world [50]. With these mechanisms, especially the motivational and
metacognitive mechanisms, Clarion attempts to explain their functioning in concrete
computational terms.

15.3 A Cognitive Architecture with Intrinsic Motivation

15.3.1 Overview of Clarion

Clarion provides structural and algorithmic specifications of a wide range of generic
psychological processes. In particular, Clarion accounts for basic human motives,
which provide the underlying basis for behavior. This emphasis on human moti-



15 Intrinsic Motivation for Truly Autonomous Agents 279

vation facilitates the integration of general cognitive capacities with considerations
of motivation (as well as personality, emotion, culture, sociality, and so on) in a
comprehensive and unified theory/model.

Only a sketch of Clarion can be presented below; the vast majority of technical
details are omitted due to the page limit. See Fig. 15.1 for the overall structure of
Clarion.

As shown by the figure, Clarion consists of a number of subsystems: the action-
centered subsystem (denoted as the ACS), the non-action-centered subsystem (de-
noted as the NACS), the motivational subsystem (the MS), and the metacognitive
subsystem (the MCS). The role of the action-centered subsystem is to control actions
(regardless of whether they are for external physical movements or for internal mental
operations), utilizing and maintaining procedural knowledge. The role of the non-
action-centered subsystem is to maintain and utilize declarative knowledge. The role
of the motivational subsystem is to provide underlying motivations for perception,
action, and cognition (in terms of providing impetus and feedback). The role of the
metacognitive subsystem is to monitor, direct, and modify the operations of the other
subsystems dynamically.

Each of these interacting subsystems consists of two “levels” of representa-
tions (i.e., a dual-representational structure, as theoretically posited in [45]). Gen-
erally speaking, in each subsystem, the “top level” encodes explicit knowledge'

Sensory .
2 ACS NACS Action
w / Top Level Top Level
ACS NACS
Bottom Level Bottom Level
MS MCS
Top Level Top Level
MS MCS
Bottom Level Bottom Level

Fig. 15.1 The Clarion cognitive architecture. The subsystems of Clarion are shown. The major
information flows are shown with arrows. ACS stands for the action-centered subsystem. NACS
stands for the non-action-centered subsystem. MS stands for the motivational subsystem. MCS
stands for the metacognitive subsystem

TRoughly speaking, explicit knowledge is directly consciously accessible (i.e., conscious or poten-
tially conscious), while implicit knowledge is consciously inaccessible directly. Explicit processes
involve explicit knowledge, while implicit processes involve implicit knowledge. The distinction
has been based on voluminous empirical findings in many domains, but involves some nuances and
some controversies. See [45, 50] for details.
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(using symbolic/localist representations) and the “bottom level” encodes implicit
knowledge (using distributed representations [32, 37]). The two levels interact,
for example, by cooperating in action decision making, through integration of the
action recommendations from the two levels of the ACS respectively, as well as by
cooperating in learning through a “bottom-up” and a “top-down” learning process
[45, 55].

Existing theories tend to confuse implicit and explicit processes; hence the “per-
plexing complexity” [43]. In contrast, Clarion generally separates and integrates
implicit and explicit processes in each of its subsystems. With such a framework,
Clarion can provide better explanations of empirical findings in a wide range of
domains (for details, see [17, 45, 55]).

15.3.2 The Action-Centered Subsystem

The ACS captures the process of human action decision making as follows: Observing
the current (observable) state of the world (including one’s own motivational state),
the two levels within the ACS (implicit or explicit) make their separate action deci-
sions in accordance with their respective procedural knowledge (implicit or explicit),
and their outcomes are “integrated”. Thus, a final selection of an action is made and
the action is then performed. The action changes the world in some way. Comparing
the changed state of the world with the previous state, the person learns. The cycle
then repeats itself.

In this subsystem, the bottom level consists of “action neural networks” encod-
ing implicit knowledge (involving distributed representations [37]), and the top level
consists of “action rules” encoding explicit knowledge (using symbolic/localist rep-
resentations).

Atthe bottom level of the ACS, using an action neural network, actions are selected
based on their Q values. At each step, given state x, the Q values of all the actions
in that state (i.e., Q(x, a) for all a’s) are computed in parallel. Then the Q values
are used to decide stochastically on an action to be performed, through a Boltzmann
distribution of Q values:

O(x,a)
3

e
plalx) = ——y
e T

where p(a|x) is the probability of selecting action a, T (temperature) controls the
degree of randomness of action decision making, and i ranges over all possible
actions. (This is known as Luce’s choice axiom [61].)

For capturing learning of implicit knowledge at the bottom level (i.e., the Q
values), the Q-learning algorithm [61], a reinforcement learning algorithm, may
be applied. With this algorithm, Q values are gradually tuned through successive
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updating of a neural network, which enables reactive sequential behavior to emerge
through trial-and-error interaction with the world (for details, see [45, 61]).

For capturing learning of explicit knowledge at the top level (i.e., action rules),
a variety of algorithms may be applied, including the Rule-Extraction-Refinement
(RER) algorithm [11] for a “bottom-up” learning process that relies on implicit
knowledge from the bottom level to learn explicit knowledge at the top level [45].
In the reverse direction, “top-down” learning can also occur.

For stochastic selection of the outcomes of the two levels, at each step, each
level (or a component within) is selected with a certain probability. There exists
some psychological evidence for such intermittent use of rules [45]. The selection
probabilities may be variable, determined by the metacognitive subsystem (by its
processing mode module; more later; [50]).

15.3.3 The Non-Action-Centered Subsystem

The NACS is for dealing with declarative knowledge (which is not action-centered).
It stores such knowledge in a dual representational form (the same as in the ACS):
that is, in the form of explicit “associative rules” (at the top level), and in the form of
implicit “associative memory networks” (at the bottom level). Its operation is under
the control of the ACS and in the service of the ACS.

First, at the bottom level of the NACS, associative memory networks encode
implicit declarative knowledge. Associations are formed by mapping an input pat-
tern to an output pattern (e.g., using Backpropagation networks or Hopfield net-
works [37]).

Second, at the top level of the NACS, explicit declarative knowledge is stored.
As in the ACS, each “chunk” node (denoting a concept) at the top level is linked
to its corresponding microfeature nodes present at the bottom level. Additionally, in
the top level, links between chunk nodes encode explicit associative rules. Explicit
associative rules may be learned in a variety of ways [50].

As in the ACS, top-down or bottom-up learning may take place in the NACS,
either to extract explicit knowledge at the top level from the implicit knowledge at
the bottom level, or to assimilate the explicit knowledge of the top level into the
implicit knowledge at the bottom level.

With the interaction of the two levels, the NACS carries out rule-based, similarity-
based, and constraint-satisfaction-based reasoning (details can be found in [17, 50]).
Their interaction enables the NACS to capture much of human reasoning [50].

15.3.4 The Motivational Subsystem

The MS is a critical part of the cognitive architecture. It is concerned with why
an individual does what he/she does. The importance of the MS to the ACS lies in
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Goal Action Goals Goal

Low-Level Drives

Sensory Input Drive Strengths

High-Level Drives

Fig. 15.2 The basic structure of the motivational subsystem

the fact that it provides the context in which goals and reinforcements of the ACS
are determined. It thereby influences the working of the ACS (and by extension, the
working of the NACS).

A dual motivational representation is in place in the MS. The explicit goals at the
top level of the MS (such as “find food”), which are essential to the working of the
ACS, may be generated based on implicit drives at the bottom level of the MS (e.g.,
“hunger”). See Fig. 15.2. For justifications, see [48].

At the bottom level of the MS, primary drives are those motives essential to an
individual and most likely built-in (hard-wired) to a significant extent to begin with
(i.e., they are “intrinsic”’). Low-level primary drives (concerning mostly physiologi-
cal needs) include: food, water, reproduction, and so on. Beyond low-level primary
drives, there are also high-level primary drives: for example, achievement and recog-
nition, affiliation and belongingness, dominance and power, fairness, autonomy, and
so on (see [29, 34, 48, 58, 62]).2 These primary drives have been justified in prior
writings (as cited above).’ See Table 15.1 for their specifications. On the basis of
primary drives, secondary (derived) drives may be acquired.

ZNote that a generalized notion of “drive” is adopted in Clarion. As discussed in [48], it is a
generalized notion that transcends controversies surrounding the stricter notions of drive [18].
3Briefly, this set of hypothesized primary drives bears close relationships to Murray’s needs [29],
Reiss’s motives [34], Schwartz’s universal values [40], and so on. The prior justifications of these
frameworks may be applied, to a significant extent, to this set of drives as well (see [25, 29, 34,
48]).
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Table 15.1 Descriptions of the primary drives

Drives Specifications

Food The drive to consume nourishment

Water The drive to consume liquid

Sleep The drive to rest

Reproduction The drive to mate

Avoiding Danger The drive to avoid situations that have the potential to be harmful
Avoiding  Unpleasant The drive to avoid situations that are physically (or emotionally)
Stimuli uncomfortable or negative in nature

Affiliation & belongingness

Dominance & power
Recognition & achievement
Autonomy

Deference

Similance

Fairness

Honor
Nurturance

Conservation

Curiosity

The drive to associate with other individuals and to be part of social
groups

The drive to have power over other individuals

The drive to excel and be viewed as competent

The drive to resist control or influence by others

The drive to willingly follow or serve a person of a higher status

The drive to identify with other individuals, to imitate others, and
to go along with their actions

The drive to ensure that one treats others fairly and is treated fairly
by others

The drive to follow social norms and codes and to avoid blames

The drive to care for, or attend to the needs of, others who are in
need

The drive to conserve, to preserve, to organize, or to structure (e.g.,
one’s environment)

The drive to explore, to discover, and to gain new knowledge

Table 15.2 Approach versus

avoidance primary drives

Approach drives Avoidance drives Both

Food Sleep Affiliation & belongingness
Water Avoiding danger Similance

Reproduction Avoiding Unpleasant Stimuli | Deference

Nurturance Honor Autonomy

Curiosity Conservation Fairness

Dominance & Power
Recognition & Achievement

Some of these primary drives are approach-oriented, while others are avoidance-
oriented. This distinction has been argued by many (e.g., [12, 16, 43]). The approach
system is sensitive to cues signaling rewards, and results in active approach. The
avoidance system is sensitive to cues of punishment, and results in avoidance, char-
acterized by anxiety or fear. See Table 15.2 for this division of drives.

The processing of these drives within the bottom level of the MS involves a number
of modules [50]. In particular, the core drive module determines drive strengths (using
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neural networks) based roughly on:
dsg = gaing X stimulusy x deficity; + baseline;

where ds; is the strength of drive d, gain, is the gain for drive d, stimulus, is a
value representing how pertinent the current situation is to drive d, deficit, indicates
the perceived deficit in relation to drive d (which represents an individual’s internal
inclination toward activating drive d), and baseline, is the baseline strength of drive
d. The justifications for this may be found in the literature [50, 58, 60].

Motivational adaptation (learning) is also possible and has been tackled [50].
In addition, new drives (termed “derived drives”) may be acquired. They may be
gradually acquired through some kind of “conditioning”, or may be externally set
through externally provided instructions, on the basis of primary drives.

15.3.5 The Metacognitive Subsystem

Metacognition refers to active monitoring and consequent regulation and orchestra-
tion of one’s own psychological processes [26, 33]. In Clarion, the MCS is closely
tied to the MS. The MCS monitors, controls, and regulates other processes [42].
Control and regulation may be in the forms of setting goals (which are then used
by the ACS) on the basis of drives, generating reinforcement signals for the ACS
for learning (on the basis of drives and goals), interrupting and changing ongoing
processes in the ACS and the NACS, setting essential parameters of the ACS and the
NACS, and so on.

Structurally, this MCS may be divided into a number of functional modules,
including:

e the goal module,

the reinforcement module,

the processing mode module.

the input filtering module,

the output filtering module,

the parameter setting module (for setting learning rates, temperatures, etc.),

and so on. See Fig. 15.3.

For instance, the goal module selects goals to pursue (by the ACS). In order
to select a new goal, it first determines goal strengths, based on information from
the MS (e.g., the drive strengths) and the current sensory input. Then, a new goal
is stochastically selected on the basis of the goal strengths (e.g., using a Boltzmann
distribution). For arguments in support of goal setting on the basis of implicit motives
(i.e., drives), see, for example, Tolman [59] and Deci [13]. In the simplest case, the
following calculation is performed:
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Goal module

Reinforcement module

Processing mode module

|: > | Input/output filtering modules | >

Reasoning/learning selection modules

Parameter setting modules

Monitoring buffer

Fig. 15.3 The main modules within the metacognitive subsystem

88y = E relevancey s X dsg
d

where gs, is the strength of goal g, relevance, s, is a measure of how relevant
drive d is to goal g with regard to current situation s (which represents the support
that drive d provides to goal g), and ds;; is the strength of drive d (from the MS). Once
calculated, the goal strengths are turned into a Boltzmann distribution (as discussed
earlier) and the new goal is chosen stochastically from that distribution.

For another instance, the processing mode module determines the probability of
each component (a level or a component within) for the integration of outcomes from
the two levels of the ACS (see the discussion of the ACS earlier). These probabilities
may be determined through the notion of “probability matching”: the probability
of selecting a component is determined based on the relative success ratio of that
component (see [45, 50] for details). However, these probabilities may be modulated
multiplicatively by another parameter: the strength of avoidance-oriented primary
drives (which corresponds to “anxiety” [65, 66]; see more details below).

15.4 Some Examples of Simulations

Clarion, as a framework, has been justified and validated extensively on the basis of
psychological data and their simulations; see, for example, Sun [45, 50] for sum-
maries of such justifications and validations. In particular, Clarion has been success-
ful in simulating, accounting for, and explaining a wide variety of psychological
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data. For example, a number of well-known skill learning tasks have been captured,
simulated, and explained using Clarion that span the spectrum ranging from simple
reactive skills to complex cognitive skills. Simulations have also been done with rea-
soning tasks, metacognitive tasks, and motivational tasks, as well as social interaction
tasks, all of which are important to autonomous intelligent agents. While accounting
for various psychological data, Clarion provides explanations that shed new light on
relevant phenomena, especially on the basis of motivation.

Let us look into an example of social simulation involving agents with intrin-
sic motivation (as originally described in [51]). A significant shortcoming of many
computational social simulations is that they assume very rudimentary cogni-
tion/psychology on the part of agents. Although agents are often characterized as
being “cognitive”, there has been relatively scarce effort that carefully captures
human psychology in detailed, process-based, and quantitative ways. Models of
agents have frequently been custom-tailored to the task at hand, often amounting to
a set of highly domain-specific rules. Although such an approach may be adequate
for achieving some limited objectives of some specific simulations, it falls short
intellectually [53, 54]: It not only limits the realism of social simulations, but also
precludes the possibility of fully tackling the question of the micro-macro link [2,
38, 44] in terms of psychological-social interaction, for example, how the social
emerges from the psychological [44, 47, 51].

Thus, let us first look into an existing social simulation as an illustration. In the
work of Cecconi and Parisi [10], social groups (tribes) were simulated. In these
groups, to survive and to reproduce, an agent must possess resources. A group in
which each agent uses only its own resources is said to adopt an individual sur-
vival strategy. However, in some other groups, resources may be transferred among
agents—such a group is said to adopt a social survival strategy. For instance, the
“central store” (CS) is a mechanism to which all the individuals in a group transfer
(part of) their resources. The resources collected by the CS can be redistributed to
the members of the group in some fashion [10].

In Cecconi and Parisi [10], a number of simulations were conducted comparing
groups adopting individual strategies with groups adopting CS strategies. Agents
survived and reproduced differentially based on the quantity of food that they were
able to consume. This task has the potential for exploring a wide range of issues,
ranging from individual behaviors to social institutions, and from individual learning
to evolution.

However, in that work, there was very little in the way of psychological processes.
Such work needs a better understanding, and better models, of the individual mind,
because only on the basis of that understanding, better understanding of aggregate
processes can be developed. Accurate, detailed cognitive/psychological models may
provide better grounding for understanding multi-agent social phenomena, by incor-
porating realistic constraints, capabilities, and tendencies of individual agents. This
point was argued in Sun [44]. In Axelrod [4], it was shown that even adding a cog-
nitive factor as simple as memory of past several events into an agent model can
completely alter the dynamics of social interaction (e.g., in the iterated prisoner’s
dilemma).
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Thus, we conducted simulations based on the Clarion cognitive architecture. In
our simulation, the world was made up of a 200 x 200 grid. Each of these 40,000
locations might contain (at most) one food item. At the beginning and every 40
cycles, the grid was replenished: Randomly selected locations were restocked with
food items (until the grid had 2400 food items). A more benign condition, in which
3600 locations contained one food item each, and a harsher condition, in which 1200
locations contained one food item each, were also tested. A food item contained 50
energy units.

Each agent began with 60 units of energy, and consumed one unit of energy per
cycle. Each agent lived for a maximum of 350 cycles, but might die early due to
lack of food. There were initially 120 agents to begin with, and the number of agents
fluctuated due to birth and death, within the bound of a maximum of 120 agents.

At each moment, each agent was in a particular location on the grid. It faced
a certain direction (north, south, east, or west). Each received inputs regarding the
location of the nearest food. Each agent could generate an action output: either (1)
turn 90 degrees right, (2) turn 90 degrees left, (3) move forward, (4) pick up food
and contribute a portion, (5) pick up food and keep all of it, or (6) reproduce.

As in the previous simulations, procreation was asexual; procreation occurred if
an agent had reached 120 energy units or more, and there were fewer than the maxi-
mum number of agents in the world. The parent handed out 60 energy units to the
child upon its birth. The child inherited its parent’s internal makeup, although when
a child was spawned, there was a 10% chance of minor mutation.

When a central store was involved, an agent was required to contribute 20 energy
units to the central store when it picked up a food item (50 energy units). At each
cycle, agents with 10 or less energy might receive 5 energy units each from the
central store; up to a maximum of 10% of the agent population might get energy
from the central store at each cycle. Each agent, when picking up a piece of food,
decided whether to contribute to the central store or not. There were three variations
on cheater detection and punishment, ranging from full detection and full punishment
to no detection and no punishment.

Each agent had three intrinsic drives: food, reproduction, and honor. They com-
peted to influence behavior (action) through determining the current goal (e.g., to
pursue food or reproduction, or to contribute or not to the CS). The internal rein-
forcements for their actions were determined based on their drives and goals, as well
as the state of the world.

The results of the simulation demonstrated effects of motivational factors (which
were not investigated in the previous simulations). As predicted, motivational factors
had a significant effect on the outcome of the simulation. In this regard, “gains” was a
variable created for the sole purpose of analysis; it consolidated the three drive gain
parameters (for food, reproduction, and honor, respectively) into one. There were
eight values, ranging from “All 0.5 to “All 1.0”; for example, “Honor 0.5” meant
that the gain parameter of the Honor drive was 0.5 and all the other drive gains were
1.0 (see Fig. 15.4 for the complete list).

Examining the results in Fig. 15.4, there was a significant effect of “gains” on
lifespan. Generally speaking, more emphasis on food (a higher drive gain for food) led
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to better performance (e.g., “Food 1.0” or “Reproduction 0.5”). Reduced emphasis

on food generally led to worse performance (e.g. “Food 0.5” or “Honor 1.0”).

There was also a significant interaction between “gains” and environment on
lifespan, as shown in Fig. 15.5. An interpretation of this result was this: In a more
benign environment, less focus on honor (e.g., “Honor 0.5”) helped survival, but in
a harsh environment, drive focuses did not make much difference because one had
to focus only on food in order to survive.
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Other related simulations of motivation or motivation-cognition interaction may
be found in Wilson et al. [65, 66], especially in relation to effects of anxiety [7, 8,
22]. A model of personality was also developed on the basis of motivation within
Clarion; see, for example, Sun and Wilson [56] (see also [14, 28, 31, 41]). Further,
a model of moral judgment was developed on the basis of motivation; see [9, 49]. A
model of emotion was also developed on the basis of motivation within Clarion; see
Sun et al. [57] (see also [52, 63, 64]).

15.5 Concluding Remarks

The Clarion project addresses essential human-like motivational processes, mecha-
nisms, structures, and representations necessary for a comprehensive cognitive archi-
tecture. The need for implicit drive representations, as well as explicit goal repre-
sentations, has been hypothesized. Drive representations consist of primary drives
(both low-level and high-level primary drives), as well as derived (secondary) drives.
On the basis of drives, explicit goals may be generated on the fly during an agent’s
interaction with various situations, which in turn guide action selection.

The afore-discussed motivational representations and their resulting dynamics
help to make a computational cognitive architecture more complete and functioning
in a more psychologically realistic way. I believe that this constitutes a requisite step
forward in making computational cognitive architectures more realistic models of the
human mind taking into considerations all of its complexity and intricacy, especially
in terms of its complex motivational dynamics. It is highly relevant to building
truly autonomous and trust-worthy computational agents capable of functioning in
complex, uncertain, and unpredictable environments. Note that what I emphasize
here is human-like full autonomy and human-like trust.

Significant future challenges in furthering this line of work exist, including, for
example, applying this framework to the building of intelligent application systems
that can display intelligent behavior with more robustness, flexibility, and versa-
tility. Another significant challenge is to further validate, through empirical work
(especially psychological empirical work), this framework and its implications for
understanding human motivation and trust (in addition to building intelligent agents).
Many more experiments, simulations, and tests will be needed and shall be pursued
in the future.
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