
NVIDIA Jetson Platform Characterization

Hassan Halawa, Hazem A. Abdelhafez(B), Andrew Boktor, and Matei Ripeanu

The University of British Columbia, Vancouver, Canada
{hhalawa,hazem,boktor,matei}@ece.ubc.ca

Abstract. This study characterizes the NVIDIA Jetson TK1 and TX1
Platforms, both built on a NVIDIA Tegra System on Chip and combin-
ing a quad-core ARM CPU and an NVIDIA GPU. Their heterogeneous
nature, as well as their wide operating frequency range, make it hard
for application developers to reason about performance and determine
which optimizations are worth pursuing. This paper attempts to inform
developers’ choices by characterizing the platforms’ performance using
Roofline models obtained through an empirical measurement-based app-
roach as well as through a case study of a heterogeneous application
(matrix multiplication). Our results highlight a difference of more than
an order of magnitude in compute performance between the CPU and
GPU on both platforms. Given that the CPU and GPU share the same
memory bus, their Roofline models’ balance points are also more than
an order of magnitude apart. We also explore the impact of frequency
scaling: build CPU and GPU Roofline profiles and characterize both plat-
forms’ balance point variation, power consumption, and performance per
watt as frequency is scaled.

The characterization we provide can be used in two main ways. First,
given an application, it can inform the choice and number of processing
elements to use (i.e., CPU/GPU and number of cores) as well as the
optimizations likely to lead to high performance gains. Secondly, this
characterization indicates that developers can use frequency scaling to
tune the Jetson Platform to suit the requirements of their applications.
Third, given a required power/performance budget, application develop-
ers can identify the appropriate parameters to use to tune the Jetson
platforms to their specific workload requirements. We expect that this
optimization approach can lead to overall gains in performance and/or
power efficiency without requiring application changes.

1 Introduction

Optimizing software based on the underlying platform is non-trivial. This is due
to complex interactions between the application code, the compiler, and the
underlying architecture. Typically it is difficult to reason about the achievable
application performance and decide on the best potential optimizations to apply.
The problem becomes much harder for heterogeneous systems consisting of mul-
tiple processing elements of different types each with unique properties that
make them suitable for different kinds of computing patterns and optimizations.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 92–105, 2017.
DOI: 10.1007/978-3-319-64203-1 7



NVIDIA Jetson Platform Characterization 93

Thus, figuring out how best to distribute work over the different processing ele-
ments, what the best optimizations are, and how to manage the communication
overhead due to data transfer between the processors, represent key challenges
for the development of efficient heterogeneous applications.

NVIDIA introduced their own embedded heterogeneous systems in the form
of the Jetson TK1 (in 2014) and, recently, the TX1 (in 2015) Platforms. Two
characteristics make those systems stand out compared to most commodity het-
erogeneous architectures. First, their integrated nature: the various computing
elements share the same memory bus; and second the wide range (one order
of magnitude) of frequency scaling. These characteristics, as well as their low
power consumption, makes them a great choice for today’s embedded applica-
tions and outline a possible future path for tomorrow’s high-performance plat-
forms. However, their performance characteristics are still not well understood
and optimizing applications to make full use of their heterogeneous capabilities
is non-trivial.

One method to characterize the performance of a platform is through a
bound-and-bottleneck analysis. Such an analysis aims to provide simple and
insightful performance bounds on applications. An example of such an approach
is the Roofline model [10] which ties together peak computation capability (e.g.,
floating-point compute rate) and the memory bandwidth of a platform with the
observed application performance. The Roofline model provides a visual guide-
line which can help explain the observed application performance, relate it to the
peak performance obtainable, help determine whether an application is compute-
or memory-bound, and guide the reasoning of which/whether further investment
in performance optimization is worthwhile (Sect. 5).

This paper presents a performance characterization of the NVIDIA Jetson
TK1 and TX1 based on the Roofline model. We use an empirical measurement-
based approach1 (Sect. 2) with the aim of achieving a more reliable characteriza-
tion as opposed to merely relying on back-of-the-envelope calculations based on
theoretical peak performance. Moreover, due to the complexity of the underly-
ing hardware, the theoretical peak may not even be achievable in practice (e.g.,
due to power caps, as we demonstrate using our empirical Roofline profiles).
Additionally, given the wide operating frequency range offered, we investigate
and characterize the impact of frequency scaling on floating-point performance,
power consumption, balance point, and performance per watt (Sect. 3). Finally
we present our experience with tuning a matrix multiplication kernel, a crucial
component of many scientific and HPC applications, for both platforms. Our
aim is to provide application developers with the necessary data to allow them
to tune the Jetson Platforms to suit the requirements of their applications. Such
an optimization approach could lead to increases in performance and/or energy
efficiency without requiring any application changes as we discuss in Sect. 6.

1 Our benchmarks are available online at: https://bitbucket.org/nsl europar17/
benchmarks.

https://bitbucket.org/nsl_europar17/benchmarks
https://bitbucket.org/nsl_europar17/benchmarks


94 H. Halawa et al.

Table 1. Jetson TK1 and TX1 platform specifications as reported by the running OS
and collected from relevant documentation such as [4,5]

TK1 platform TX1 platform

CPU 4+1-core 32-bit ARM
Cortex-A15

4+4-core 64-bit
ARM Cortex-A57

Architecture ARMv7-A ARMv8-A

L1/L2 cache 32 KB/512 KB 32 KB/2 MB

Main core frequency range 204 MHz → 2.3205 GHz 102 MHz → 1.734 GHz

Power-saving core frequency range 51 MHz → 1.092 GHz N/A

Peak theoretical FLOPS 74.26 GFLOPS 55.48 GFLOPS

GPU Kepler (192 CUDA
Cores)

Maxwell (256
CUDA Cores)

L2 Cache 128 KB 256 KB

Frequency range 72 MHz → 852 MHz 76.8 MHz → 998.4 MHz

Peak theoretical FLOPS 327 GFLOP/s 511 GFLOP/s

DRAM 2 GB DDR3L RAM
(933 MHz, 2 Channels)

4 GB LPDDR4
RAM (1.6 GHz, 2
Channels)

Data bus width 64 bit 64 bit

Peak theoretical bandwidth 14.93 GB/s 25.6 GB/s

2 Methodology

Table 1 presents in detail the TK1 and TX1 specifications. To construct the
empirical Roofline profiles we developed two approaches: the first, similar to
that proposed in [7], relies on hardware counters (available for the CPUs only),
while the second obtains the same level of information for the GPUs by using
microbenchmarking techniques similar to those used by Wong et al. [11]. We
rely on an empirical measurement-based approach as opposed to one just based
on peak performance calculations for two main reasons. First, the presented
empirical results arguably provide a more realistic, and reliable characteriza-
tion. Secondly, the theoretical peaks may not even be achievable in practice due
to various complexities in the underlying hardware and power caps. We demon-
strate this disparity between the two approaches as part of our evaluation in
Sect. 3.

2.1 CPU Micro-Benchmarks

The ARM Cortex A15 and A57 both support various types of floating-point
operations including fused multiply-add (FMA) and SIMD operations. Typical
scalar floating-point operations are handled by the ARM core’s Vector Floating-
Point (VFP) unit whereas vector floating-point operations (SIMD) are handled



NVIDIA Jetson Platform Characterization 95

by the ARM core’s NEON 128 bit SIMD engine. The VFP and NEON units
share the same floating-point registers.

We designed a micro-benchmark in assembly that can operate with a user-
defined variable operational intensity (i.e., a variable ratio between floating-
point and memory operations). This micro-benchmark mixes SIMD double-word
store instructions (using an unrolled loop of store instructions operating on 2
single-precision floating-point operands) as well as SIMD floating-point opera-
tions (using the NEON SIMD unit to compute an FMA of 4 single-precision
floating-point operands). By varying the ratio between the store instructions
and the SIMD floating-point instructions, we vary the operational intensity of
the micro-benchmark to generate the Roofline profiles.

The Cortex-A15 and Cortex-A57 include a Performance Monitor Unit (PMU)
that provides access to six hardware counters. We used the counters to estimate:
the number of Floating-Point Instructions, the number of Vector (SIMD) Instruc-
tions, and the number of Loads and Stores. We then used this to derive the rate
of Floating-Point Operations (FLOPS) as well as the memory bandwidth.

2.2 GPU Micro-Benchmarks

To obtain the Roofline profile for the GPU, where no hardware counters are
available, we developed a benchmark with variable compute intensity (from 0.125
FLOPs/Byte to 1024 FLOPs/Byte). The benchmark loads 3 values from mem-
ory, performs a variable number of FMA operations on them, then stores the
results. We disassembled the binary and verified that the benchmark contains
exactly the intended number of memory and FMA operations.

We built two additional benchmarks: a memory bandwidth benchmark and a
FLOPS benchmark. The memory bandwidth benchmark performs a vector add
operation and is completely memory-bound. We use this benchmark to compute
the memory bandwidth for the GPU and compare it to a similar benchmark on
the CPU since memory is shared. The FLOPS benchmark is a high compute
intensity benchmark, performing around a hundred thousand FMA instructions
for each 4 float values loaded from memory. We use it to estimate the max-
imum achievable FLOPS. The results of those two benchmarks validate our
variable intensity benchmark which approaches those asymptotes but does not
cross them.

2.3 Other Methodology Notes

Scaling. The Jetson platforms offer a wide range of configuration options that
include: the number of operational CPU cores, the CPU cores’ operating fre-
quency, as well as the number of application threads to execute. Each configu-
ration point changes the performance characteristics in terms of single-precision
floating-point performance, memory bandwidth, and power consumption.

Power Consumption. We use a Watts Up? PRO Power Meter [2] connected
via USB to the Jetson development boards. This allows us to collect power



96 H. Halawa et al.

consumption statistics (at 1 Hz) during our benchmarks. As a baseline for the
subsequent power consumption measurements, we measured the idle power con-
sumption with the default dynamic frequency scaling and power-saving profiles.
The idle power draw was ≈3.1 W for TK1 and ≈3.8 W for TX1.

3 Platform Characterization

3.1 CPU Characterization

Roofline Profiles. Figure 1 shows the theoretical peak as well as the measured
Roofline profiles for both platforms (at peak frequency and with the number
of application threads equal to the number of cores). For the TK1, the maxi-
mum single-precision FLOPS rate achieved was 73.02 GFLOPS. This represents
≈98.3% of the theoretical peak and defines the upper limit for a compute-bound
application. The maximum observed memory bandwidth was 13.72 GByte/Sec
which represents ≈91.9% of the theoretical peak and defines the upper bound
for memory-bound applications. The intersection of the two bounds defines the
balance point (i.e., the point where an application spends the same amount of
time fetching data from memory and computing on it) at 5.32 FLOPS/Byte. For
the TX1, the maximum FLOPS rate achieved was 54.31 GFLOPS (≈97.8% of
the theoretical peak), the maximum observed memory bandwidth was 20.2 GB/s
(≈78.9% of the theoretical peak), and the balance point is at 2.68 FLOPS/Byte.

Figure 1 highlights that, on the one hand, the measured peak TX1 FLOPS
rate is lower than that of the TK1 (by ≈25.6%). This can be attributed to
its lower maximum frequency while using the same 128-bit wide SIMD engine.
On the other hand, the measured peak TX1 memory bandwidth is higher than
that for the TK1 (by ≈47.2%). This difference is caused by the higher DRAM
frequency for the TX1 (1.6 GHz) compared to the TK1 (933 MHz) given that
both utilize dual channel DRAM with the same 64-bit wide data bus. These
differences cause the balance point to shift from 5.32 FLOPS/Byte for the TK1
to 2.68 FLOPS/Byte for the TX1. Thus, the TX1 CPU is more suitable for
memory-bound applications (given its higher memory bandwidth and lower bal-
ance point).

The Impact of Frequency Scaling on Power Consumption and Roofline
Profiles. We investigated the performance characteristics of both platforms for
all CPU frequency scaling configurations. Due to space constraints we present
only a subset of the results for the TK1 (Fig. 2). There are two important obser-
vations: firstly, frequency scaling has a larger impact on the FLOPS rate achieved
than on memory bandwidth, and, secondly, the platform has a large dynamic
power range (3.2x from 3.4 W to 10.8W). Using the power-saving core (labelled
0c in the figure) increases the power range to 3.6x. It can also be observed
that the power-saving core does not offer a good power/performance trade-off:
when running the TK1’s power-saving core at 204 MHz compared to all 4 high-
performance cores at the same frequency, a power-saving of ≈11.7% is achieved
but at the cost of a ≈78.4% decrease in performance.



NVIDIA Jetson Platform Characterization 97

Fig. 1. CPU Roofline profiles:
theoretical peak and measured
CPU performance for the TK1
(blue) and TX1 (red). (Color
figure online)

Fig. 2. TK1 Roofline profiles for the power-saving
core (labelled 0c) and all normal cores (labelled
4c). We also vary the number of threads (labels 1t
vs. 4t). Each line label includes measured power
consumption.

The Impact of Frequency Scaling on the Balance Point. For each fre-
quency, we compute the balance point. Surprisingly, in Fig. 3, we observe that
the TK1 can be configured to cover a wider range of balance points, a potentially
useful feature when attempting to match hardware capabilities to the application
demand as we discuss in Sect. 6.

The Impact of Frequency Scaling on Power-Normalized Computa-
tional Rate (FLOPS/Watt). Figure 4 examines the power consumption (left
y-axis) and performance per watt (right y-axis) for all possible CPU frequencies
for a compute intensive application. It can be seen that the TK1 typically con-
sumes less power across the entire frequency range compared to the TX1. This,
in addition to its higher floating-point performance, results in a higher energy
efficiency (performance per watt) across the entire frequency range.

Fig. 3. The impact of frequency scaling on
the balance point (4 cores, 4 threads) for
TK1 (blue) and TX1 (red). (Color figure
online)

Fig. 4. Power and performance per
Watt while scaling CPU frequency (4
cores, 4 threads) for TK1 (blue) and
TX1 (red). (Color figure online)



98 H. Halawa et al.

Fig. 5. TX1 Maxwell GPU Roofline: the-
oretical (solid line) and achieved (dots).
(Color figure online)

Fig. 6. GPU power and performance
per watt for a compute-bound bench-
mark.

3.2 GPU Characterization

Roofline Profiles. Figure 5 shows the Roofline profiles constructed for the TX1
GPU (TK1 profiles are similar, not shown here to conserve space). We find
that, in some cases, the theoretical peak is unattainable even with highly tuned
benchmarks. We therefore use our benchmarks to estimate the Roofline bounds
(solid lines in the figures). The Kepler GPU on the TK1 is able to achieve up to
218 GFLOP/s while the Maxwell GPU on the TX1 achieves 465 GFLOP/s. The
memory bandwidth is at 12 GB/s and 17.3 GB/s respectively (similar to the
CPU results). For better readability, we only show a subset of the frequencies.

The Impact of Frequency Scaling: Power-Normalized Computational
Rate (FLOPS/Watt). NVIDIA focused on power efficiency when designing
the TX1’s Maxwell GPU. Our results confirm this: TX1 provides 3x higher
performance per watt compared to TK1 (Fig. 6). Note the impressive 6x (TK1)
and 20x (TX1) higher FLOPS/Watt for GPUs compared to CPUs.

The Impact of Frequency Scaling on the GPU Balance Point, Peak
FLOPS Rate, and Peak Bandwidth. We observe similar behaviors on both
platforms in Fig. 7: at low GPU frequencies, both memory and compute band-
width increase linearly as the frequency is scaled. The memory bandwidth at

Fig. 7. The impact of frequency scaling on the TK1 (left) and TX1 (right) balance
point (left y-axis), peak bandwidth (left y-axis), and peak FLOPS rate (right y-axis).
Note the different scales on the y-axes.



NVIDIA Jetson Platform Characterization 99

low frequencies is bottlenecked by the ability of the processor to issue instruc-
tions fast enough to saturate the memory bus. After ≈300–400 MHz, the peak
FLOPS rate continues to increase linearly with frequency, however, the memory
bandwidth stops increasing linearly and becomes constant. As such, the bal-
ance point is constant for the lower frequencies while for higher frequencies the
balance point increases linearly as the frequency is scaled.

It is worth noting that the platforms offer a different range for the balance
point: on the TK1, the GPU balance point ranges between 6 and 18 FLOPs/Byte
while on the TX1 it ranges from 11 to 27. This is largely due to the superior
performance of the Maxwell architecture. In contrast with the CPU results, the
TK1’s Kepler GPU can be better tuned for applications with lower intensity
while the TX1’s Maxwell GPU can be better tuned for applications with higher
intensity. However, due to the TX1’s higher memory bandwidth and higher com-
pute rate we find that its GPU provides equal or better performance regardless
of the application’s arithmetic intensity. In other words, the TX1’s GPU pro-
vides better performance than that on the TK1 for all intensities, despite the
fact that it is operating sub-optimally at the lower ones.

4 Case Study: Matrix Multiplication

To study the effect of frequency scaling on performance/energy beyond micro-
benchmarks, we developed a tuned matrix multiplication kernel that can be run
on the CPU only, the GPU only, or be partitioned on the heterogeneous platform.
We chose matrix multiplication as it is an operation that is essential in many
scientific and HPC applications.

Our CPU implementation is based on the OpenBLAS matrix multiplication
single precision subroutine (SGEMM). For OpenBLAS, we enable optimization
flags for the ARMV8 architecture to support the advanced features present in the
processor. This enables the use of NEON SIMD instructions for performing vec-
tor floating point operations. The library also implements matrix tiling (block-
ing) optimized for the multi-level caches of each processor and loop unrolling.
For the NVIDIA GPUs we use the cuBLAS [6] library, a BLAS implementation
optimized for NVIDIA GPUs. Our developed heterogeneous matrix multiplica-
tion kernel can partition the matrices between the CPU and the GPU to take
advantage of the optimizations by OpenBLAS and cuBLAS.

Collecting Results: In each run we measure the performance in terms of
FLOPS and power consumed. The number of floating point operations in a
matrix multiplication routine is independent of the underlying hardware or the
processor used. Assuming square matrices of size n× n, then matrix multiplica-
tion generates 2 × n3 FLOPS. We measure the running time which we then use
to obtain the computation rate (GFLOPS).

Configurations: We used different matrix sizes to cover the fit-in-cache and
non-fit in cache cases, this shows the effect of matrix tiling (blocking) on perfor-
mance. In the heterogeneous case, for space limitations, we selected the lowest



100 H. Halawa et al.

and highest frequencies for each of the CPU and GPU. Moreover, we fixed the
matrix size to 4096 and limited the cpuColumns to be a value out of (16, 128,
512) columns. From our experience, increasing the cpuColumns to more than 512
degrades the performance as the computation is heavily unbalanced between the
CPU and the GPU.

CPU/GPU Only Experiments: Figures 8 and 9 present the energy efficiency
(GFLOPS/Watt) while scaling frequency. The figures show a sample of the
results that covers fit-in-cache (matrix sizes 32 and 64) and non-fit in cache
(matrix sizes 128, 512 and 4096) cases. We note that efficiency saturates (or
even decreases) above 1428 MHz for the CPU and 691 MHz for the GPU: scaling
up frequency, while improving runtime, leads to higher power consumption and
thus lower energy efficiency.

Heterogeneous (CPU and GPU): The CUDA toolkit v8.0, deployed on the
TX1, offers multiple software-level mechanisms to use the shared global physical
memory between the CPU and the GPU such as the Unified Memory Archi-
tecture (UMA). Using UMA allows us to allocate and initialize the matrix on
the shared memory with no need for explicit memory transfers. At first glance,
one would think that with UMA and shared memory, an efficient heterogeneous
matrix multiplication can be easily implemented. However, NVIDIA’s documen-
tation [1, J2.2] states that for GPUs with compute capability less than 6.x (the
TX1’s is 5.3), it is not possible for the CPU and GPU to access (read or write)
a memory location allocated using UMA simultaneously.2

After evaluating the alternatives, we settled on the following solution: to
compute A × B = C, we split matrices B and C by columns. We specify the
number of columns that the CPU will process as cpuColumns and the rest is
processed on the GPU. The allocation is performed using UMA to avoid copying

Fig. 8. CPU power efficiency values for dif-
ferent matrix sizes

Fig. 9. GPU power efficiency for differ-
ent matrix sizes

2 We tried several alternative techniques such as using mprotect() which changes mem-
ory access permissions on a specific memory range. The NVIDIA driver locks the
memory accessed by the GPU kernels until they complete. Therefore, it is not possi-
ble to have a shared matrix object accessed at the same time by the CPU and GPU
even when we use UMA, even if all accesses are read-only.



NVIDIA Jetson Platform Characterization 101

Fig. 10. Run-time configurations effect on performance and power consumption

the results back from the GPU. With this approach, we eliminated any write
conflict between the GPU and the CPU on the shared memory, at the cost
of wasting memory by duplicating matrix A (imposed by the limited compute
capability).

Figure 10, plots a chart that highlights the value of the configurable frequency
scaling of the TX1. The figure highlights the multiple criteria that can be used to
select a configuration (CPU/GPU frequencies, cpuColumns values). For exam-
ple, in situations where capping power is the limiting factor one can determine
the best frequency configuration that meets the power cap. Alternatively, in
situations where meeting a runtime constraint is important, one can select the
most energy efficient configuration that meets the imposed runtime deadline. It
is worth noting that that the observed operational space varies over a wide range
along the performance and power dimensions (over one order of magnitude on
performance and 4x on power).

5 Related Work

The Roofline Model [10], is a visual model that makes it easier to reason
about bounds to attainable performance. It combines the operational intensity
(FLOPS per Byte), floating-point performance (FLOPS) and memory band-
width (Bytes per Second) together into a two-dimensional plot that outlines the
performance bounds of the platform (defined by a Roofline profile which acts as
an envelope). Moreover, such a bound-and-bottleneck characterization approach
provides insights into the primary factors affecting the performance of individ-
ual applications based on their position on the plot with respect to the Roofline



102 H. Halawa et al.

profile (e.g., whether they are compute-bound or memory-bound depending on
their operational intensities) and thus allows application developers to prioritize
which optimizations to pursue to improve performance.

Roofline Model Uses. Ofenbeck et al. [7] take a practical approach to apply-
ing the Roofline model. They use measured data based on benchmarks to reason
about the performance in a way similar to the methodology we employ to gener-
ate our CPU Roofline. However, this study focuses on an Intel architecture with
access to fine-grained event counters through the Performance Monitoring Unit.
Wong et al. [11] use a carefully crafted set of benchmarks to discover the microar-
chitecture of GPUs. Their approach is to craft microbenchmarks that amplify
the different microarchitecture parameters and make them visible at runtime
to uncover detailed information about GPU internals. We use similar bench-
mark design to compute the GPU Roofline. Lo et al. [3] developed the Empirical
Roofline Tool and use it to empirically construct Roofline models for a variety of
accelerated architectures (including multicore, manycore, and GPU-accelerated
architectures). The toolkit makes use of instrumented microbenchmarks imple-
mented in MPI, OpenMP, and CUDA. Our methodology is similar to that used
in the Empirical Roofline Tool to construct the GPU Roofline, however, we rely
on hardware performance counters to generate the CPU Roofline.

NVIDIA Jetson Platform Characterization. Although there are many
applications that use the unique capabilities of the studied platforms (partic-
ularly TK1 such as [8,9]), to the best of our knowledge, we are the first to
carry out a complete characterization. In [8], the authors employ an application:
a distributed MPI-based neural network simulation, to compare a distributed
embedded platform (based on several interconnected TK1s) with a server plat-
form (based on an Intel quad-core dual socket system). The authors show that
the distributed embedded platform’s instantaneous power consumption is 14.4x
lower despite the server platform being 3.3x faster (in terms of execution time).
Another study [9] evaluates the TK1 in an HPC context as a cloud offload unit
for a discrete Tesla K40 GPU. The study shows that such a cluster approach
offers superior power efficiency compared to using a separate discreet GPU, while
offering substantially better performance than using the TK1 by itself.

6 Summary and Discussion

We characterized the performance of the NVIDIA Jetson TK1 and TX1 Plat-
forms by presenting Roofline profiles for both the CPU and the GPU on each
platform. When comparing the CPU vs. GPU performance, our Roofline profiles
showed a difference of more than an order of magnitude on compute performance
suggesting that the GPU on the Jetson Platforms is preferable for compute inten-
sive applications. Since the CPU and GPU share the same memory bandwidth,
the balance points are also more than an order of magnitude apart. Addition-
ally, we explored the impact of frequency scaling on floating-point performance,
balance point, power consumption, and efficiency (GFLOPS/watt).



NVIDIA Jetson Platform Characterization 103

The data provided by this study offers application developers a starting point
when tuning the platforms to their applications’ requirements (by choosing the
optimal operational frequency on the CPU/GPU) and indicates that net gains
in performance and/or power efficiency without any modifications to the appli-
cations can be obtained.

We discuss below the key implications of our observations for application
developers and device manufacturers.

6.1 Implications for Application Developers

Modular Application Design and the Division of Work. The asymmetric nature
of the CPU and GPU can be harnessed by application developers during runtime
for optimum performance and energy efficient computing. Highly parallelizable
portions of the application are more suited for deployment on the GPU with
its larger number of SIMD units while the less parallelizable parts (or those
requiring a more complex processor pipeline) can be executed on the CPU. As
such, developers should design their applications in a modular way so as to allow
for the efficient distribution of work across the available asymmetric cores.

A Free Lunch? Reducing Power Consumption without Performance Degradation.
If an application’s computational intensity is below the platform’s balance point,
then the application could potentially be able to save energy without sacrificing
performance by scaling the frequency down until the balance point is equal to its
required intensity. This works only down to the point where the system becomes
bottle-necked on the memory bandwidth. Beyond this point, further reduction
of frequency will result in performance degradation.

Tuning the Platform, an Alternative Method to Optimize Application Perfor-
mance. Typically application developers apply various optimizations to their
code in order to try to attain the maximum performance possible on the target
platform. We propose that application developers can alternatively tune the plat-
form to the operational intensity of the developed application in order to achieve
optimum compute performance and/or power-saving. One way to do this is for
application developers to statically determine the appropriate frequency scaling
for their applications and then set the CPU/GPU to this frequency at runtime.
Our analysis suggests that application developers can tune the Jetson Platforms
to the applications’ requirements to achieve net gains in application performance
and/or energy efficiency without the need to modify the application itself.

Full System Power. In addition to the other benefits provided by the shared
memory architecture on the Jetson platform, we find that the emphasis on low
full system power has important implications. The platform was designed for
embedded applications, thus, emphasis was placed on optimizing its idle power
as well as the power consumed by supporting components. At idle, we find that
both platforms consume less than 3W. This is negligible when compared to
traditional machines that host a CPU and/or a GPU. As a result, under load,



104 H. Halawa et al.

close to all of the power consumed goes to the active components (CPU, GPU
and DRAM), and makes the full system’s power efficiency much better compared
to other platforms.

6.2 Implications for Device Manufacturers

Simplify Application Development. In order to increase the adoption of heteroge-
neous compute platforms, device manufacturers should focus on simplifying the
application development process as well as the tools available to developers. The
promise of such platforms is higher performance and better energy efficiency but,
in our experience, this potential is not currently attainable without significant
effort by application developers.

This is currently a major drawback of the NVIDIA Jetson platform. In order
to provide implementations optimized for the CPU and the GPU, application
developers need to rewrite their applications specifically for each processor. For
the CPU, almost any general purpose programming language can be utilized but
typically a low-level programming language such as C or Assembly is used to
extract the maximum performance possible. While for the GPU, CUDA must be
used in order to make full use of the features and libraries provided by NVIDIA.
There is little reuse of application code between optimized CPU and GPU imple-
mentations with this development approach. The significant development effort
and costs involved represent a high barrier to entry.

Better Dynamic Frequency Scaling. In theory, manufacturers could potentially
instrument the hardware to dynamically estimate the running application’s
arithmetic intensity. Based on the computed intensity, the device can apply
dynamic frequency scaling to reduce the consumed power even under 100% uti-
lization. A good guess for the frequency that would work best can be based on
trying to match the hardware balance point with the application’s intensity. Fol-
lowing such an approach could potentially lead to reduced power consumption
as well as increased performance per watt without any changes to the running
applications.

Memory Bandwidth at Lower Frequencies. Based on our findings, the memory
bandwidth becomes a performance bottleneck at lower operating frequencies.
Device manufacturers can try to avoid this bottleneck by designing the hardware
to support the full memory bandwidth even at the lowest frequencies. This would
allow a wider range of achievable balance points and, in turn, lead to larger
power-savings for applications with low computational intensity.

References

1. NVIDIA CUDA toolkit v8.0: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#um-unified-memory-programming-hd.
Accessed 16 Feb 2017

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd


NVIDIA Jetson Platform Characterization 105

2. Watts-up: https://www.wattsupmeters.com/. Accessed 23 Aug 2016
3. Lo, Y.J., Williams, S., Van Straalen, B., Ligocki, T.J., Cordery, M.J., Wright,

N.J., Hall, M.W., Oliker, L.: Roofline model toolkit: a practical tool for architec-
tural and program analysis. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.)
PMBS 2014. LNCS, vol. 8966, pp. 129–148. Springer, Cham (2015). doi:10.1007/
978-3-319-17248-4 7

4. NVIDIA: Technical brief NVIDIA Jetson TK1 development kit: bringing GPU-
accelerated computing to embedded systems. Technical report, April 2014

5. NVIDIA: Tegra X1: NVIDIA’s new mobile superchip. Technical report, January
2015

6. NVIDIA: CUBLAS library. Technical report, September 2016
7. Ofenbeck, G., et al.: Applying the Roofline model. In: ISPASS 2014, pp. 76–85,

March 2014
8. Paolucci, P.S., et al.: Power, energy and speed of embedded and server multi-cores

applied to distributed simulation of spiking neural networks: ARM in NVIDIA
Tegra vs Intel Xeon quad-cores. CoRR abs/1505.03015 (2015)

9. Ukidave, Y., et al.: Performance of the NVIDIA Jetson TK1 in HPC. In: 2015
IEEE International Conference on Cluster Computing (CLUSTER), pp. 533–534,
September 2015

10. Williams, S., et al.: Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 52(4), 65–76 (2009)

11. Wong, H., et al.: Demystifying GPU microarchitecture through microbenchmark-
ing. In: ISPASS 2010, pp. 235–246. IEEE (2010)

https://www.wattsupmeters.com/
http://dx.doi.org/10.1007/978-3-319-17248-4_7
http://dx.doi.org/10.1007/978-3-319-17248-4_7

	NVIDIA Jetson Platform Characterization
	1 Introduction
	2 Methodology
	2.1 CPU Micro-Benchmarks
	2.2 GPU Micro-Benchmarks
	2.3 Other Methodology Notes

	3 Platform Characterization
	3.1 CPU Characterization
	3.2 GPU Characterization

	4 Case Study: Matrix Multiplication
	5 Related Work
	6 Summary and Discussion
	6.1 Implications for Application Developers
	6.2 Implications for Device Manufacturers

	References




