
PASCAL: A Parallel Algorithmic SCALable
Framework for N -body Problems

Laleh Aghababaie Beni(B) and Aparna Chandramowlishwaran

University of California Irvine, Irvine, USA
{laghabab,amowli}@uci.edu

Abstract. We propose PASCAL, a parallel unified algorithmic frame-
work for generalized N-body problems. PASCAL utilizes tree data
structures and user-controlled pruning or approximations to reduce the
asymptotic runtime complexity from being linear in the number of data
points to be logarithmic. In PASCAL, the domain scientists express
their N -body problem in terms of application-specific operations, and
PASCAL generates the pruning and approximation conditions automat-
ically from this high-level specification. In order to evaluate PASCAL,
we generate solutions for six problems: k-nearest neighbors, range search,
Euclidean minimum spanning tree, kernel density estimation, expecta-
tion maximization (EM), and Hausdorff distance chosen from various
domains.

We show that applying domain-specific optimizations and paralleliza-
tions to the algorithms generated by PASCAL achieves 10× to 230×
speedup compared to state-of-the-art libraries on a dual-socket Intel
Xeon processor with 16 cores on real world datasets. We also obtain
a novel out-of-the-box asymptotically optimal algorithm for Hausdorff
distance calculation and an improved algorithm for EM. This shows the
impact and potential of PASCAL in rapidly extending to a larger class
of problems that are yet to be explored.

Keywords: N-body problems · kd-trees · Multi-core parallelization

1 Introduction and Motivation

N -body problems are those in which an update to a single element in the system
depends on every other element. The general form applies a set of operators
{op1, ..., opm} to m datasets using a kernel function, K, as follows.

op1, ..., opm Compute K(x1, ..., xm) (1)

where x1 ∈ D1,..., xm ∈ Dm and D1...Dm are the m datasets. The naive com-
putation of these problems is asymptotically O(Nm) which is expensive.

N-body problems are ubiquitous, with applications in various domains rang-
ing from scientific computing simulations to machine learning [8,9,16]. N -body
methods were identified as one of the original seven dwarfs or motifs [2] and
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 482–496, 2017.
DOI: 10.1007/978-3-319-64203-1 35

PASCAL: A Parallel Algorithmic SCALable Framework 483

are believed to be important in the next decade. In fact, the well-known Fast
Multipole Method (FMM) made the list for the top 10 algorithms having the
greatest influence on the development of science and engineering in the 20th
century [7]. According to data mining researchers, EM is one of the top ten
algorithms having the most impact on data mining research [17].

However, a big gap exists between the algorithm one designs on paper and
the code that runs efficiently on a billion-core system. It is time-consuming to
write fast, parallel, and scalable code for an N-body problem on any architec-
ture. On the other hand, the sheer scale and growth of modern scientific datasets
necessitate exploiting the power of both asymptotically fast parallel algorithms
and approximation algorithms where we can potentially trade-off accuracy for
performance [11]. The goal of PASCAL is to automate the generation of asymp-
totically optimal N -body algorithms using the definition of the problem provided
by domain scientists. This is especially useful in rapidly growing fields such as
machine learning and data mining where new models are created at a much
faster rate than optimal algorithms and implementations for the models.

Contributions and Findings. First, this paper strives to combine two areas
that traditionally have not combined forces, namely high-performance comput-
ing and machine learning. We apply the knowledge and expertise gained from
optimizing and tuning scientific N-body computations to N-body problems from
other domains. We make the following contributions.

1. We design an algorithmic framework for N-body problems called PASCAL to
automatically generate prune and approximate conditions from a high-level
user specification. PASCAL can generate O(N log N) and O(N) algorithms if
the operators, and kernel function in Eq. 1 satisfy the decomposability prop-
erty over subsets, and monotonically decrease with distance respectively. PAS-
CAL is also the first to generalize beyond two operators by the design of a
Nested Prune generator (Sect. 4).

2. We apply domain-specific optimizations and parallelize the algorithms gener-
ated by PASCAL. An asymptotically optimal algorithm generated by PAS-
CAL combined with optimizations and parallelization results in 10–230×
speedup compared to state-of-the-art libraries and software such as Weka,
Scikit-learn, MLPACK, and MATLAB (Sects. 5 and 7).

3. PASCAL is able to generate an approximation condition for the log-likelihood
step of EM which results in an improved EM algorithm for Gaussian Mix-
ture Models. This algorithm is 7–16× faster compared to the best competing
implementation. PASCAL also generates a nested prune condition for Haus-
dorff distance resulting in a new O(N) algorithm. To the best of our knowl-
edge, this is the first dual-tree algorithm for Hausdorff distance (Sect. 4).

As a result, this paper lays a solid foundation for future scalable implementa-
tions of N -body problems on emerging systems. PASCAL enables us to rapidly
obtain both an optimal algorithm and its parallel implementation for new and
existing N -body problems.

484 L. Aghababaie Beni and A. Chandramowlishwaran

2 Related Work

N-body Algorithms in Physical Simulations. The most popular and widely
used fast algorithms for classical N -body problems are the Barnes-Hut [3] and
the Fast Multipole Method (FMM) [9]. They use trees to approximate distance
computations and achieve sub O(N2) asymptotic runtime. There has been sig-
nificant work on parallelizing tree codes [12].

PASCAL differs from the preceding work in many ways. First, PASCAL
supports algorithms and operations beyond what is usually considered in clas-
sical physics. This makes PASCAL more general. Second, we consider high-
dimensional trees (e.g. kd-trees, ball-trees, cover trees) which are required to
handle high-dimensional datasets. Third, our approach is more portable and
easily extensible compared to previous approaches which focus on optimizing a
specific algorithm for a specific architecture.

N-body Algorithms in Machine Learning. While parallel N -body algo-
rithms in physics have received significant attention, the same is not true for
machine learning (ML). There are a number of freely accessible ML libraries,
however, each of them lacks in one or both of the two ways, (a) efficient optimal
algorithms and (b) parallelism and scalability on modern machines. For instance,
MLPACK [6] which is a state-of-the-art C++ ML library offers a limited set of
fast algorithms but is not parallel, or distributed. Other popular libraries empha-
size ease of use but scale poorly such as Weka toolkit [10]. Even others implement
fast algorithms but in languages such as Python resulting in poor performance
such as Scitkit-learn [15].

Luckily, there is a theory on generalized N -body algorithms [5,8] which is
similar in spirit to long studied physics algorithms such as FMM that run in
linear time. This theory is a stepping stone to our work but it is limited in two
ways – (a) the pruning and approximation conditions are designed manually for
every problem, and (b) the theory is limited to problems with only 2 operators.
Although this is a useful first step, this approach is not scalable. In this paper,
we address the above limitations by proposing an algorithm to automate the
design of pruning and approximation conditions for two or more operators.

3 N -body Problems

This section provides an overview of N -body problems, and their main structure.
Later, in Sect. 4, we will see how they fit in the PASCAL framework.

Given a system of N reference points (Nr) and N query points (Nq), an
update to a single element depends on every other element in the system. The
most familiar example arises in physical simulations and has the following form.

∀q,
∑

r

K(xq, xr) · s(xr) , (2)

where s(xr) is the density of the reference point and K(xq, xr) is an interaction
kernel that specifies the physics of the problem. For instance, Laplace kernel is
defined as, K(xq, xr) = 1

||xq−xr|| which models gravitational interactions.

PASCAL: A Parallel Algorithmic SCALable Framework 485

This style of N -body problem arises in other significant domains and the
common theme that brings these problems under a single umbrella is the insight
that their inner-loop computations are analogous and naively require O(

N2
)

operations for the all-pairs computation. Below, we present six examples.

(a) k-Nearest Neighbor (k-NN) Search. One of the most ubiquitous N -
body problems in ML is k-NN search which is defined as, ∀q, arg mink

r ||xq −xr||
where, for each query point xq we want to find its k nearest neighbors, i.e. the
k reference points xr whose distance to xq is minimal. Comparing this to our
familiar physical summation (Eq. 2), we see that the kernel function in this case
is the Euclidean distance function and the operator sum has been replaced by
another operator, arg min. The inputs for PASCAL in this case are the operators
set, {∀, arg min} and the kernel function, ||xq − xr||.
(b) Range Search (RS). A related problem is range search, where the kernel
function is a delta function. We want to find all the reference points that fall
within a range (hmin, hmax) of a query point, xq defined as ∀q,

⋃
argr I(hmin ≤

||xq − xr|| ≤ hmax) where I(hmin ≤ ||xq − xr|| ≤ hmax) is a delta function.

(c) Kernel Density Estimation (KDE). Another example of sum-based
accumulations from statistics is KDE, which is a widely used method for non-
parametric density estimation. The goal is to estimate the probability density at
each xq, using a kernel function Kσ. It is defined as ∀q, 1

|Nr|
∑

r Kσ

(||xq−xr||
σ

)

where Kσ is a zero-centered probability density function (e.g. Gaussian) and σ
is the bandwidth of the kernel. When the distance between two points ||xq −xr||
is very large, the contribution of the kernel function to the probability density
at xq is small. Therefore, we can approximate the kernel sum at the expense of
reduced precision to achieve a faster algorithm similar to Barnes-Hut and FMM.

(d) Minimum Spanning Tree (MST). This is one of the oldest problems in
computational geometry. Given a set of points S ∈ R

d, the goal is to find the
lowest weight spanning tree in the complete graph G, where the edge weights are
given by the Euclidean distance between two points. We consider the iterative
Boruvka’s algorithm for MST [14]. Borukva’s MST is an iterative algorithm
that connects each component to its nearest vertex until only one component,
the MST, remains. The computational bottleneck in MST is finding the nearest
neighbor component which is identical to example (a). Computing all neighbor
pairs efficiently will result in an efficient Boruvka’s algorithm.

(e) Expectation Maximization (EM). EM is a popular algorithm used in
mixture models. Here, we consider problems where EM is used to learn the para-
meters of a multivariate Gaussian Mixture Model (GMM). Consider a dataset
D = {x1, x2, .., xN}, where xi ∈ R

d generated independently from an underlying
distribution p(x). If p(x) is a Gaussian distribution, we can define a GMM as,

p(x|θ) =
K∑

k=1

πkf(x|μk, Σk), f(xi|θk) =
1√

2π|Σk|e
− 1

2 (xi−μk)
T Σ−1

k (xi−μk)

486 L. Aghababaie Beni and A. Chandramowlishwaran

where K is the number of Gaussian mixture components, and θk = {μk, Σk} are
the parameters of Gaussian component, k, with mean vector μk and covariance
matrix Σk. πk are the mixing weights (

∑K
k=1 πk = 1). EM starts with an initial

estimate of θ (generated randomly, or using k-means), and iteratively updates θ
until convergence (i.e. log-likelihood change is less than a threshold) as follows.

1. E-step: Compute the responsibility, rnk = πkf(xn|μk,Σk)∑K
j=1 πjf(xn|μj ,Σj)

(weight factor

of data point n for cluster k).
2. M-step: Re-estimate θ using the responsibilities measured in the E-step.
3. Compute the log-likelihood, l(θ) =

∑N
n=1 log

∑K
k=1 πkf(xn|μk, Σk) for con-

vergence check.

E-step and log-likelihood computation are the two N -body problems in EM.

(f) Hausdorff Distance. The last example is Hausdorff distance calculation
which has applications in computer vision. The Hausdorff distance between two
subsets is computed as, maxq, minr||xq − xr|| where ||xq − xr|| is the Euclidean
distance which is the kernel function and the set of operators is {max, min}.

4 PASCAL Framework

Leveraging the commonalities between N-body problems gives rise to the PAS-
CAL framework shown in Fig. 1, which consists of space partitioning trees, a
prune/approximate condition generator, and a tree-traversal scheme. We then
apply domain specific transformations and parallelize the algorithms generated
by PASCAL to produce an efficient code for comparison against other state-of-
the-art libraries and software. The blue shaded boxes in the figure represent the
contributions which we will discuss in detail in the rest of this paper.

Space-Partitioning Trees. A powerful class of space-partitioning tree-based
algorithms exist that can reduce the complexity of N-body problems from O(

N2
)

to O(N log N) or even O(N) [3,9]. These algorithms use techniques such as
approximation and pruning to estimate or discard regions of the space.

An example we consider is kd-trees which are used in data analytics and
mining [4]. These are high-dimensional binary trees which maintain a bounding

Fig. 1. Block diagram outlining the overall approach. The dotted box represents the
PASCAL framework and the blue shaded boxes are the contributions. (Color figure
online)

PASCAL: A Parallel Algorithmic SCALable Framework 487

box for all the points in each node. Children are formed by recursively sub-
dividing the parent’s bounding box along the median of its largest dimension.
We stop partitioning when each node contains no more than l points (l > 0).
The bounding box information allows us to efficiently compute the minimum and
maximum node-to-point or node-to-node distances during evaluation without
accessing the actual points in each node, which is critical for performance.

Tree Traversals. Algorithm 1 describes multi-tree traversal given two inputs,
a set of nodes and a rule set. The rule set consists of the following 3 functions.

Algorithm 1. MultiTreeTraversal
Input: Nodes set {N1, N2, ..., Nm} ≈ N all, rule set R.
1: if R.Prune/Approximate(N1, N2, ..., Nm) then
2: return R.ComputeApprox(N1, N2,..., Nm)

3: if (∀Ni ∈ N all is leaf) then
4: R.BaseCase(N1, N2,..., Nm)
5: else
6: for all Ni ∈ N all do
7: if Ni is leaf then N split

i = Ni

8: else N split
i = {Ni.right, Ni.left}

9: PowerSet-Tuples = {(N ′
1, ..., N ′

m)|N ′
i ∈ N split

i }
10: for all (N ′′

1 , ..., N ′′
m) ∈ PowerSet-Tuples do

11: MultiTreeTraversal((N ′′
1 , ..., N ′′

m))

BaseCase implements the
direct point-to-point com-
putation. For instance, for
k-NN, this is equivalent
to computing the distance
between all the points in
the reference node to every
point in the query node.

Prune or Approximate
checks to see if the com-
putation for that set of
nodes can be approximated
or pruned based on the con-
dition generated by Algo-
rithm2. In some cases, the
algorithm prunes entire sub-trees, so the nodes and their descendants will not
be visited.

ComputeApprox replaces the computation with the center contribution of
each node multiplied by the density of that node which is equivalent to the
number of data points in that node. This is only for approximation problems.

While the operations above are not completely orthogonal, they are conve-
nient and powerful to express the range of N -body algorithms. Not only does
this representation abstract the actual computation from the traversal, it also
abstracts the tree type which gives us the freedom to plug and play with different
trees. Moreover, we are able to express both pruning and approximation algo-
rithms in the same framework which enables us to translate our optimizations
and parallelization to a much larger class of algorithms.

Prune/Approximate Condition Generator. In order to generate a prune
or approximate condition, we first classify N -body problems into 3 categories
namely, (a) approximation, (b) single pruning, and (c) nested pruning. Approx-
imation problems are those in which the contribution by a subset of the data to
the solution can be approximated by a smaller subset. Two examples are KDE
and EM. Pruning problems are those in which a part of the data and associ-
ated computation are discarded. The main distinction between single and nested
pruning is that former has only one pruning opportunity (e.g. k-NN) while the
latter has more than one opportunity for pruning (e.g. Hausdorff distance).

488 L. Aghababaie Beni and A. Chandramowlishwaran

Algorithm 2 generates one of three conditions and distinguishes the cate-
gory of problems by maintaining a queue of possible prune opportunities called
PrunePipeline (Line 1). We iterate through the operators’ set, OP and kernel
function, K and check if there is any pruning opportunity. If so, we push the
reverse of OP and/or K into the PrunePipeline (Lines 2–6). The reverse
function is defined for operators and kernel function, and defines the reverse of
their functionality. For example, the reverse of ||xq −xr|| < h is ||xq −xr|| > h,
and the reverse of min operator is the relational operator greater than (>).

Algorithm 2. Prune/Approximate Condition Gen-
erator
Input: Node set {N1, N2, ..., Nm} ≈ N all, kernel func-

tion K, operators set OP , threshold σ.
Output: The prune/approximate condition
1: queue<Function> PrunePipeline
2: for all (opi ∈ OP) do
3: if (opi.isComparative()) then
4: PrunePipeline.push(reverse(opi))

5: if K.isComparative() then
6: PrunePipeline.push(reverse(K))

7: // Approximation categorya

8: if (PrunePipline.size == 0) then
9: Kmin ← min{K(N1, N2, ..., Nm)}

10: Kmax ← max{K(N1, N2, ..., Nm)}
11: (N c

1 , N c
2 , ..., N c

m) ← tuple of node centers
12: Kcenter ← K(N c

1 , N c
2 , ..., N c

m)
13: return Kmax − Kmin < σ × Kcenter

14: // Single prune category
15: if (PrunePipline.size == 1) then
16: τ ← threshold by K or a boundary default
17: N border

m ← {(b1, .., bd), bi ∈ {bi,min, bi,max}d
i=1}

18: op⊕ ← PrunePipeline.pop()
19: return op⊕(τ, K(x1, ..., xm))
20: {∀xi ∈ Ni(i = 1, ..., m − 1), ∀xm ∈ N border

m }
21: // Nested Prune category
22: if (PrunePipline.size > 1) then
23: return NestedPrune(PrunePipeline)

a min, max, and center computations are meta-data
generated during tree construction.

The problem falls under
approximation if the size
of PrunePipeline is zero
(Lines 8–13). For approxi-
mating the contribution of
a node, we check if the
minimum and maximum
contribution of that node
are very close (i.e.less
than a threshold). If so,
we know that all the
data points in that node
have a similar contribu-
tion and therefore, PAS-
CAL uses the center to
approximate the computa-
tion of that node. Note
that (N c

1 ,N c
2 , ...,N c

m) defi-
ned in line 11, represents
the centers of nodes Ni ∈
(N1,N2, ...,Nm) and this
is pre-computed as meta-
data information during
tree construction.

The problem falls under
the single prune cate-
gory if the size of Prune
Pipeline is one (Lines
15–19). First, we define a
threshold for pruning. To
do so, we randomly choose

points in each set and compute a temporary value using the kernel function. We
define N border

r as the set of border data points which have either maximum or
minimum values in each dimension. Line 18 pops the prune operator and Line
19 generates the prune condition by applying the operator on the tuple of points
from the nodes in N1, ...,Nm1 , and border points of Nm.

PASCAL: A Parallel Algorithmic SCALable Framework 489

Note that in Algorithm 2, the notation op⊕ is similar to non-member function
operators in C++ language. For instance, op≤(xr, xq) is equal to xr ≤ xq.

When the size of the PrunePipeline is greater than one, the problem belongs
to the nested prune category and the nested prune Algorithm3 is called in line
22. In Line 2, for each node, we calculate the border data points using the
maximum and minimum values of data points in each dimension as defined in
{bmin, bmax}d

i=1. Line 3 pops the prune operator from the PrunePipeline. Ini-
tially, a temporary threshold τ is defined for each prune operator. Subsequently,
τ is refined as the computation progresses. Line 5 returns the nested prune condi-
tion that we generate. For generating this condition, first, we apply the innermost
operator to the border points in the innermost dataset. The result of this is used
to call the next innermost operator, and so on. We will continue this process
from the innermost operator to the outermost operator in the PrunePipeline
and apply each operator on the corresponding node borders with the computed
thresholds. Each prune operator corresponds to one level in the multi-tree. Note
that single prune can be considered as a special case of nested prune with a
nesting level of one.

Algorithm 3. NestedPrune(PrunePipeline)
Input: Node set N1...Nm, kernel function K.
Output: The nested pruning condition
1: for all Nj ∈ N1...Nm do
2: N border

j ← {(b1, b2, ..., bd),
bi ∈ {bi,min, bi,max}d

i=1} for Nj

3: op⊕j ← PrunePipeline.pop()
4: τj ← K(x′

1, ..., x
′
m) or defined by K

5: return op⊕1(τ1, K(x1, ..., xm)|op⊕2(τ2, ...
|op⊕m(τm, K(x1, ..., xm)...)

s.t.{∀x1 ∈ N border
1 , ..., ∀xm ∈ N border

m }

Case Studies. In this section,
we show how N -body algo-
rithms are generated using
PASCAL. Specifically, we con-
sider the six N -body prob-
lems discussed in Sect. 3 as case
studies. The choice of these six
problems is because they cover
(a) approximation, single prun-
ing, and nested pruning prob-
lems, (b) both direct and iter-
ative algorithms, and (c) prob-
lems from multiple domains.

In all the problems, the BaseCase is the direct point-to-point computation
at the leaf nodes. So, we will focus specifically on how the prune/approximate
condition is generated since this is the most challenging step.

(a) k-NN Search. k-NN has only one pruning opportunity, arg min, so it
is classified as a single prune problem by PASCAL. PASCAL generates the
prune condition using Algorithm2. The prune operator that is pushed into
PrunePipeline is arg min and the reverse is ≥. The reverse of arg min
is similar to the reverse of min since they both compute the minimum. The
difference is the return value, the latter returns the value of minimum while the
former returns the argument of it. The threshold τ is initialized at the begin-
ning with a temporary computation of the kernel (or a default value such as the
maximum value of double precision) and is updated through the algorithm.

PASCAL evaluates K for each reference point in N border
r with respect to the

query point xq. Then, it checks to see if it is greater than or equal to τ . So, the
prune condition is op⊕(τ,K(xq, xr)) =⇒ K(xq, xr) ≥ τ, ∀xr ∈ N border

r .

490 L. Aghababaie Beni and A. Chandramowlishwaran

(b) Range Search (RS). Range search has only one pruning opportunity via its
kernel function, I(hmin ≤ ||xq−xr|| ≤ hmax). The reverse of this kernel function
that is saved in PrunePipeline is hmin > ||xq − xr|| or ||xq − xr|| > hmax)
which is used as op⊕ to generate the prune condition (op⊕1 is >, op⊕2 is <).
The two thresholds, τ1 and τ2 are defined by the kernel function as hmax and
hmin. We evaluate the kernel function on the points in N border

r for each xq as δ,
K(xq, xr) = δ. Then, the prune condition is defined as follows.

op⊕1(τ1,K(xq, xr)) or op⊕2(τ2,K(xq, xr)) =⇒ δ > τ1|δ < τ2,∀xr ∈ N border
r

(c) Kernel Density Estimation (KDE). This is an approximation problem
since there is no pruning opportunity by the definition of the problem, and
the PrunePipeline queue is empty. ComputeApprox will return the probability
density at the center of the node, Kcenter, multiplied by the number of data points
in that node. In this problem, τ is a default constant that can be overridden by
the user to adjust the overall accuracy. PASCAL uses Algorithm 2 to generate
the approximation condition, (Kmax − Kmin) < τ × Kcenter.

(d) Minimum Spanning Tree (MST). MST is an iterative algorithm and in
each iteration, it uses the same operations as k-NN search. So PASCAL generates
exactly the same prune condition and rule set as k-NN.

(e) Expectation Maximization (EM). EM is an approximation problem.
EM has three steps namely, E-step, M-step, and Log-likelihood where 99% of
the time is spent in E-step and Log-likelihood. Moore [13] proposed a powerful
space-partitioning tree-based algorithm to reduce the complexity of E-step from
O(KN) to O(K log N), where N is the number of data points and K is the
number of clusters. We extend Moore’s idea and propose a fast algorithm for
estimating both the E-step and log-likelihood computation in O(K log N).

The first N -body computation in EM is the E-step. In the E-step, if the differ-
ence between the maximum and the minimum responsibility of the points i from
cluster j, rij , is less than a threshold, we can approximate the influence of these
data points. This is because all the data points in that node will approximately
have a similar responsibility to the cluster. PASCAL generates the approxima-
tion condition (rmax

ij − rmin
ij) < σ × rcenterij , i = 1, ..,K where, σ is the threshold

parameter, rcenteri is the responsibility of the center data points in the node from
cluster i, rmin

i and rmax
i are the minimum and maximum responsibilities between

all the data point from cluster i.
ComputeApprox will return the value of responsibility at the center of the

node multiplied by the number of data points in that node. Note that in this
algorithm, the distance we compute is the Mahalanobis distance which is defined
as (x − μ)T Σ−1(x − μ) for a Gaussian with θ = (μ,Σ).

The second N -body computation in EM is the log-likelihood computation.
In order to calculate the log-likelihood, we traverse the same tree as in the E-
step. The computation pattern is similar in style to E-step albeit with a different
approximation condition generated by PASCAL presented below. To the best of
our knowledge, this is the first O(K log N) algorithm for computing log-likelihood.

PASCAL: A Parallel Algorithmic SCALable Framework 491

log
K∑

i=1

πif(xmax|θi) − log
K∑

i=1

πif(xmin|θi) < σ| log(
K∑

i=1

πif(xcenter|θi))|

(f) Hausdorff Distance. One of the N -body problems with more than one
pruning opportunity is Hausdorff distance. In this problem, the kernel function
is the Euclidean distance with the operators set {max, min} both of which provide
pruning opportunities. PASCAL generates the prune condition using the nested
prune algorithm, Algorithm3.

First, PASCAL constructs dual-trees and applies each of its operators on one
of the levels of the tree. The PrunePipeline queue consists of the reverse of
max and min which are ≤ and ≥. Therefore, op⊕1 is ≤ and op⊕2 is ≥. To form the
prune condition, PASCAL creates two nested loops. The inner loop runs over
the borders of the inner tree (for example, reference dataset) applying the inner
operator which is ≥. The outer loop covers the borders of the second tree (for
example, the query dataset), applying the ≤ operator.

Note that by the definition of the N -body problem, each operator that is
applied to a dataset is regarded as the operator that is applied to the tree built
for that dataset. We define two thresholds, τ1 and τ2 and the nested prune
condition generated is shown below.

op⊕1(τ1,K(xq, xr)|op⊕2(τ2,K(xq, xr))) =⇒ τ1 ≥ (K(xq, xr)|τ2 ≤ K(xq, xr)),

s.t. ∀xq ∈ N border
q ,∀xr ∈ N border

r

5 Domain-Specific Optimizations and Parallelization

In order to achieve an optimized code, we first apply numerous optimizations
to both the tree construction and the computational core of the evaluation.
Then, we parallelize the tree traversal defined by Algorithm1, and finally tune
empirically for the associated tuning parameters (e.g. leaf size).

Incremental Bounding Box Calculation. During tree construction described
in Sect. 4, we associate each node with its bounding box data. This is critical for
efficient evaluation during traversal. For instance, during range search, we check
if the reference node is within a specified range of the query node and if not, the
entire node is pruned. This check requires computing the minimum and max-
imum node-to-point and node-to-node distances. Pre-computing the bounding
box information significantly reduces the time to compute these distances since
we do not have to access the actual data points each time.

For kd-trees, this is essentially computing the hyper-rectangle boundary
information in each dimension. At the start of the computation, the root bound-
ing box is computed from all the N points. During partitioning, we only incre-
mentally update the bounding box of the dimension that is being split at each
node based on the splitting value. This results in a complexity of O(Nd).

492 L. Aghababaie Beni and A. Chandramowlishwaran

Optimal Metric Calculation. The evaluation can be performed using a vari-

ety of distance metrics. We consider Euclidean:
√∑d

i=1(xi − yi)2, Manhattan:
∑d

i=1 |xi−yi|, Chebyshev: maxd
i=1 |xi−yi|, and Mahalanobis: (−→x −−→μ)T Σ−1(−→x −−→μ) (μ and Σ are distribution’s parameters) metrics for real-valued vector spaces.

Outlined below are two techniques to efficiently compute these metrics which
are repeatedly used in all phases of the algorithm. Additionally, we ensure that
the compiler generates vectorized code for the metric calculation.

1. Each metric defines both a distance and a reduced distance, which is often
faster to compute and is used whenever possible. For example, in the case of
Euclidean distance, the reduced distance is squared Euclidean distance. This
eliminates the expensive sqrt instruction which has long latencies.

2. Partial distance between two d-dimensional points x and y is defined as the
distance computed on a subset of the d dimensions. For example, when search-
ing for k-nearest neighbors, we compute the distance between two points and
insert the reference point into our neighbor list only if the computed distance
is smaller than the kth largest distance in our sorted list. When d is large
as in the case for some of our datasets, this optimization offers additional
savings in processing time where we can terminate the computation earlier if
the computed partial distance exceeds our threshold.

Incremental Distance Calculation. This idea was introduced by Arya and
Mount [1] where the node-to-point distance at each node during single-tree tra-
versal is incrementally computed from the parent’s distance in constant time
independent of dimension. For datasets with large d, this has the potential for
significant savings in computation at the cost of minimal additional storage of
distance information. We support this optimization and note that it is possible
to extend this idea for computing node-to-node distances as well in multi-trees.

Parallelization and Tuning. After applying serial optimizations, we paral-
lelize the multi-tree traversal using Cilk. Since there are dependencies across
the recursion, we exploit a combination of data and task parallelism. At first, we
spawn Cilk tasks recursively until all the threads are saturated, at which point we
switch to data parallelism. Since the tree traversal is abstracted from the actual
computation, parallelizing the tree traversal leads to parallel implementations of
all six algorithms. Moreover, for any new algorithm expressed in PASCAL, we
can obtain parallel multi-tree implementations at no additional cost. This greatly
accelerates the ability to scale new problems in rapidly growing domains.

Algorithmically, the tree is parameterized by the maximum number of points
per leaf node, l. As l increases, the cost of tree construction decreases at the
expense of increased cost in performing the BaseCase. On the other hand, small
l results in a large number of nodes and an increase in the cost of tree traversal.
We exhaustively tune l for all implementations.

PASCAL: A Parallel Algorithmic SCALable Framework 493

6 Experimental Setup

Libraries. We compare PASCAL’s performance against state-of-the-art soft-
ware namely, WEKA [10], Scitkit-learn [15], MLPACK [6], and MATLAB.

Table 1. Description
of the datasets. N : num-
ber of points, d: dimen-
sionality.

Dataset N d

Yahoo! 41904293 11
IHEPC 2075259 9
HIGGS 11000000 28
Census 2458285 68
KDD 4898431 42

Architecture and Compilers. We evaluate our
implementations on a dual-socket Intel Xeon E5-2630
v3 processor (Haswell-EP). Each socket has 8 cores, for
a total of 16 cores (32 threads with hyper-threading)
and a theoretical double precision peak performance
of 614.4 GFlop/s. We use Intel C++ compiler (icpc
version 15.0.2) with C++11 feature support. We use
Python v2.7.6 for scikit-learn and Java v1.8.0 for Weka.

Benchmarks. We present results on five real-world
datasets characterized in Table 1. These include Yahoo!
front page module user click log dataset, v1.0 (Yahoo!),
Higgs boson’s signals and background process dataset
(HIGGS), Individual Household Electric Power Consumption dataset (IHEPC),
US Census data from 1990 (Census), and KDD Cup 1999 dataset (KDD) from
the UCI ML repository.

7 Results and Discussion

The combined benefits of asymptotically optimal algorithms, optimizations, and
parallelization are substantial. In this section, we first compare our performance
against state-of-the-art ML libraries and software. Then, we break down the per-
formance gain step by step and finally, evaluate the scalability of our algorithms.

Performance Summary. Figure 2 presents the performance of k-NN and EM.
The choice of these two algorithms is because they are the only ones supported
by all competing libraries and therefore make good candidates for a compre-
hensive comparison. Moreover, the choice of these two algorithms albeit space
constraints is because k-NN is a direct pruning algorithm while EM is an iterative
approximation algorithm that represents two ends of the spectrum.

Across the board, our implementation shows significantly better performance
compared to Scikit-learn, MLPACK, MATLAB, and Weka.

Performance Breakdown. To gain a better understanding of the factors con-
tributing to the performance improvement, we break down the speedups in
Table 2. Specifically, it helps distinguish the improvements that are purely algo-
rithmic (tree algorithm) from improvements via optimization and paralleliza-
tion. For example, for the Yahoo! dataset, we observe a 3.1× speedup from an
asymptotically faster algorithm, 12.1× due to optimizations on top of the tree
algorithm, and 173.1× with parallelization for k-NN. The breakdown for EM are
1.6×, 3.2×, and 53.7× respectively for the same dataset.

494 L. Aghababaie Beni and A. Chandramowlishwaran

63

5.36.3Base6.2

143

3.58.9Base7.5

231

2.1
23.1

Base14.5

98

212.3Base4.7

160

Base13.324.5
0

50

100

150

200

250

Yahoo! HIGGS Census KDD IHEPC

S
pe

ed
up

MATLAB WEKA MLPACK Scikit PASCAL

201

5.2
22.3

Base
18.4

142

Base7.91.63.9

104

1.46.1Base3.4

123

1.315.4Base7.7

98

1.56.1Base4.1
0

50

100

150

200

250

Yahoo! HIGGS Census KDD IHEPC

S
pe

ed
up

Fig. 2. Speedup summary of single-tree EM (top) and dual-tree k-NN for k = 3 (bot-
tom). The slowest library is used as the baseline for comparison.

Table 2. Speedup breakdown. Alg stands for algorithmic improvement, +Opt refers
to optimization on top of Alg, and +Par is parallelization on top of Opt.

KNN EM KDE HD RS EMST

Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par

Yahoo! 3.1 12.1 173.1 1.6 3.2 53.7 2.1 9.1 92.1 2.5 11.5 161.1 2.2 9.1 126.8 2.9 11.9 166.7

HIGGS 2.1 7.3 108.1 1.5 6.8 117.6 1.7 4.7 50.1 1.9 6.1 89.6 1.9 6.3 86.5 2.0 6.9 102.8

Census 1.4 6.5 90.8 1.3 11.2 190.0 1.4 8.1 75.6 1.3 10.2 141.8 1.3 10.4 144.9 1.4 10.9 151.6

KDD 1.6 6.8 100.7 1.4 4.1 70.9 1.5 3.1 33.5 1.4 3.8 54.4 1.4 5.1 70.5 1.5 3.8 55.5

IHEPC 3.0 4.3 61.5 1.5 7.6 127.6 2.0 5.4 53.6 2.5 6.8 101.3 2.1 6.3 94.1 2.9 7.1 107.1

We observe that each dataset benefits differently from algorithmic changes,
optimizations, and parallelization based on the number of data points, dimen-
sionality, and distribution of the points.

Scalability. Figure 3 shows the scalability of the six algorithms namely, (i) k-
NN with k = 3, (ii) RS with range between 0 and 2, (iii) KDE for Gaussian
kernel, K with bandwidth, σ = 0.1 and relative error tolerance set to 0.1, (iv)
EM with error tolerance of 0.1, (v) MST, and (vi) Hausdorff distance.

We observe good scaling on all six algorithms. Note that 32 threads is with
hyper-threading enabled where we assign 2 threads per core. In all cases, hyper-
threading further improves the performance resulting in 14×, 16×, 13×, 14×,
10×, and 14× speedup for Yahoo! over the serial optimized code for k-NN, EM,
RS, MST, KDE, and Hausdorff distance respectively.

0

5

10

15

2 4 8 16 32

S
pe

ed
up

EM
EMST
HD
KDE
KNN
RS

Yahoo!

2 4 8 16 32

KDD

2 4 8 16 32

HIGGS

2 4 8 16 32

IHEPC

2 4 8 16 32

Census

Fig. 3. Multicore scalability using Cilk. X-axis is the number of threads.

Scalability Difference in Multi-trees. Tree algorithms are irregular. The
dynamic nature of pruning/approximation of sub-trees during tree-traversal

PASCAL: A Parallel Algorithmic SCALable Framework 495

makes these problems challenging to parallelize. This load-balancing problem
is further exacerbated in dual-tree traversal. As a result, we observe that EM
which uses single-tree traversal with one tree (we use a single-tree over a dual-
tree traversal for EM because of the small number of clusters) shows better
scalability compared to the other five algorithms which use dual-tree traversals.

We currently defer to Cilk to manage scheduling of tasks using its work-
stealing scheduler. In future work, we will explore a locality aware work-stealing
scheduler for better load balance which is critical especially on NUMA machines.

In summary, these results show the potential of our approach to achieve
orders of magnitude improvement in performance through the use of tree data
structures, optimizations, and parallelization.

8 Conclusions

In this paper, we proposed PASCAL, a parallel unified algorithmic framework
for N -body problems. PASCAL generates prune and approximation conditions
automatically from the high-level specification of the problem, which is one the
most challenging components in the design of these algorithms. We evaluated
PASCAL with six N -body problems from different domains and observe 10–230×
speedup compared to state-of-the-art libraries/software. The broader impact is
to enable scientific discovery not only for N -body problems in scientific com-
puting and machine learning but also to a number of related problems in other
unexplored domains that can be expressed in the same style of execution to
obtain an out-of-the-box parallel optimized implementation.

Acknowledgments. This work was supported in part by the National Science Foun-
dation (NSF) under award number 1533917.

References

1. Arya, S., Mount, D.M.: Algorithms for fast vector quantization. In: Proceeding of
DCC 1993: Data Compression Conference, pp. 381–390. IEEE Press (1993)

2. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from Berkeley. Technical report,
UCB/EECS-2006-183, University of California, Berkeley (2006)

3. Barnes, J., Hut, P.: A hierarchical O(n log n) force-calculation algorithm. Nature
324, 446–449 (1986)

4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM (CACM) 18(9), 509–517 (1975)

5. Curtin, R., March, W., Ram, P., Anderson, D., Gray, A., Isbell, C.: Tree-
independent dual-tree algorithms. In: Proceedings of the 30th International Con-
ference on Machine Learning (ICML 2013), vol. 28, pp. 1435–1443, May 2013

6. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray,
A.G.: MLPACK: a scalable C++ machine learning library. J. Mach. Learn. Res.
14, 801–805 (2013)

496 L. Aghababaie Beni and A. Chandramowlishwaran

7. Dongarra, J., Sullivan, F.: Guest editors introduction to the top 10 algorithms.
Comput. Sci. Eng. 2(1), 22–23 (2000)

8. Gray, A.G., Moore, A.W.: N-body problems in statistical learning. In: Proceeding
of NIPS, vol. 4, pp. 521–527 (2000)

9. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73, 325–348 (1987)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

11. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J.
Parallel Distrib. Comput. 74(7), 2561–2573 (2014)

12. Lashuk, I., Chandramowlishwaran, A., Langston, H., Nguyen, T.A., Sampath, R.,
Shringarpure, A., Vuduc, R., Ying, L., Zorin, D., Biros, G.: A massively parallel
adaptive fast multipole method on heterogeneous architectures. Commun. ACM
(CACM) 55(5), 101–109 (2012)

13. Moore, A.W.: Very fast EM-based mixture model clustering using multiresolution
KD-trees. In: Advances in Neural Information Processing Systems, pp. 543–549
(1999)

14. Nešetřil, J., Nešetřilová, H.: The origins of minimal spanning tree algorithms-
Boruvka and Jarńık. In: Documenta Mathematica, pp. 127–141 (2012)

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

16. Salmon, J.K., Warren, M.S.: Fast parallel tree codes for gravitational and fluid
dynamical n-body problems. Int. J. High Perform. Comput. Appl. 8(2), 129–142
(1994)

17. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan,
G.J., Ng, A., Liu, B., Philip, S.Y., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg,
D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

	PASCAL: A Parallel Algorithmic SCALable Framework for N-body Problems
	1 Introduction and Motivation
	2 Related Work
	3 N-body Problems
	4 PASCAL Framework
	5 Domain-Specific Optimizations and Parallelization
	6 Experimental Setup
	7 Results and Discussion
	8 Conclusions
	References

