
A Consensus-Based Fault-Tolerant Event Logger
for High Performance Applications

Edson Tavares de Camargo1,2(B), Elias P. Duarte Jr.2, and Fernando Pedone3

1 Department of Informatics, Federal University of Paraná (UFPR), Curitiba, Brazil
2 Federal Technology University of Paraná (UTFPR), Toledo, Brazil

edson@utfpr.edu.br, elias@inf.ufpr.br
3 University of Lugano (USI), Lugano, Switzerland

fernando.pedone@usi.ch

Abstract. Most message logging protocols rely on a centralized event
logger to store information (i.e., the determinants) to allow the recovery
of an application process. This centralized approach, besides suffering
from the single point of failure problem, represents a bottleneck for the
efficiency of message logging protocols. In this work, we present a fault-
tolerant distributed event logger based on consensus that outperforms
the centralized approach. We implemented the event logger of MPI deter-
minants using the Paxos algorithm. Our event logger inherits the Paxos
properties: safety is guaranteed even if the system is asynchronous and
liveness is guaranteed despite processes failures. Experimental results are
reported for the performance of the distributed event logger based both
on classic Paxos and parallel Paxos applied to AMG (Algebraic Multi-
Grid) and NAS Parallel Benchmark applications.

1 Introduction

Most traditional strategies to deal with failures in HPC systems are based on
rollback-recovery mechanisms [3,6,16]. These strategies allow applications to
recover from failures without losing previously computed results. Message log-
ging is a class of rollback-recovery technique that unlike coordinated checkpoint
strategies does not require all processes to coordinate to save their state during
normal execution and to restart after a single process failure.

Message logging relies on the piecewise deterministic assumption. This
assumption states that all nondeterministic events that a process executes can
be identified and the information necessary to replay each event during recovery
can be logged in tuples called determinants [7]. By replaying the determinants
in their exact original order, a process can deterministically recreate its pre-
failure state. Most message logging protocols suppose that reception events (i.e.,
message receiving events) are the only possible nondeterministic events in the
execution [3]. Consequently, a crucial task in message logging is to reliably save
and restore the determinants without penalizing the performance.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 415–427, 2017.
DOI: 10.1007/978-3-319-64203-1 30

416 E.T. de Camargo et al.

The component responsible for reliably logging determinants is the event
logger. The event logger receives the determinants from the application processes,
stores them locally, and notifies the application processes. Previous works based
on message logging typically assume that the event logger is a centralized entity
(e.g., [1,4,17]), and thus it cannot tolerate failures. Indeed, the failure of the
event logger would bring the execution to a halt as application processes would
no longer be able to save the determinants.

The main goal of this paper is to propose a fault-tolerant event logger that
has performance comparable to or better than a centralized event logger. In
particular, our replicated event logger does not require extra system resources
(i.e., physical nodes) in comparison with a centralized event logger and can
tolerate a configurable number of failures. When configured to tolerate a single
failure, our consensus-based event logger needs the same number of messages and
communication steps (i.e., network delays) to log a determinant as a centralized
event logger. We also show in the paper that the myth that fault tolerance
introduces overheads is not completely unfounded since the indiscriminate use
of existing fault-tolerance techniques can indeed lead to expensive solutions.

We implemented two fault-tolerant event loggers based on the Paxos algo-
rithm [11]. One is based on classic Paxos and the other on a configuration we
call parallel Paxos. We conducted a number of experiments comparing them to
a centralized event logger. We evaluated the performance of our event logger
implementations using the LU and MG kernels from the NAS Parallel Bench-
marck (NAS-PB) and the Algebric MultiGrid (AMG) application. Our results
show that the replicated event logger based on parallel Paxos consistently out-
performs a centralized event logger while providing configurable fault tolerance.

The rest of the paper is organized as follows. Section 2 briefly overviews
rollback-recovery, including message logging, and the event logger. Section 3
reviews the Paxos algorithm and presents our consensus-based event loggers.
Section 4 presents our implementations of the event logger and experimental
results and Sect. 5 concludes the paper.

2 Log-Based Rollback Recovery

Rollback-recovery techniques are often used to provide fault tolerance to HPC
applications so that they can restart from a previously saved state [3,6].
Rollback-recovery assumes a distributed system that is a collection of appli-
cation processes that communicate through a network and have access to stable
storage that survives failures [7]. Processes save recovery information periodi-
cally on stable storage during their failure-free execution. After the occurrence
of a failure, the process that failed uses the recovery information to restart its
computation from a past state. The recovery information includes at least the
state of the participating processes, called checkpoints. Some protocols may also
include the logging of nondeterministic events, encoded in tuples called determi-
nants.

A Consensus-Based Fault-Tolerant Event Logger 417

Log-based approaches, or simply “message logging”, use both checkpoints
and logging of nondeterministic events to avoid the drawbacks of both uncoordi-
nated and coordinated checkpointing [14]. Message logging protocols assume the
application is piece-wise deterministic [10]. This assumption asserts that all non-
deterministic events executed by a process can be identified and the information
necessary to replay each event during recovery can be logged in determinants.
An event corresponds to a computational or communication step of a process.
Most message logging protocols assume that message reception is the only non-
deterministic event.

Depending on how determinants are logged, message logging protocols can be
pessimistic, optimistic or causal [7]. In pessimistic logging, a process first stores
the determinant of a nondeterministic event (e.g., in remote storage) before deliv-
ering the message. Despite the fact that pessimistic logging simplifies recovery
and garbage collection, it presents an overhead on failure-free scenarios: the
application has to wait for the determinant to be stored in order to proceed. In
optimistic logging, processes log determinants asynchronously, thereby reducing
the overhead. However, optimistic protocols allow orphan processes to be created
due to failures and lead to more expensive recovery.

Usually, in message logging approaches the determinant of every received
message is logged. However, it is possible to reduce the overall number of logged
messages by identifying which events are deterministic and which are nondeter-
ministic [2]. An event is deterministic when from the current state there is only
one possible outcome state for the event. If an event can result in several dif-
ferent states, then it is nondeterministic. Message receptions with an explicitly
identified sender are deterministic events and do not need to be logged; if the
source is left unspecified then message receptions are nondeterministic. Message
receptions with an explicitly identified sender are deterministic events and do not
need to be logged; if the source is left unspecified then message receptions are
nondeterministic. For example, a nondeterministic event occurs in MPI when
the receiving process uses the tag MPI ANY SOURCE in MPI Recv. As stated in
[5], several MPI applications contain only deterministic communication events.
However, many important MPI applications are nondeterministic, including all
master-slave applications. Furthermore, programmers usually include nondeter-
ministic communication events in the code to improve performance.

2.1 The Event Logger

The event logger plays an important role in message-logging protocols [1]. It
receives the determinants from the application processes, stores them locally, and
notifies the application processes after determinants are stored. The performance
of the event logger has a major impact on the efficiency of message-logging
protocols as showed in [1,17,18], and many protocols implement the event logger
as a centralized (i.e., non-replicated) component [1,3].

To the best of our knowledge, the only existing distributed event logger is
proposed in [18] for O2P [17]. That protocol offers a distributed way to save
determinants. Despite being related to our work, the entire solution fails if an

418 E.T. de Camargo et al.

acknowledgement is not received by the sender; i.e., the fault tolerance of the
solution is not guaranteed. Our proposed event logger based on consensus is
both distributed and fault-tolerant. The Paxos protocol ensures progress with a
majority of non-faulty processes and safety even if the system is asynchronous.

3 Consensus and Message Logging

Consensus is a fundamental abstraction in fault-tolerant distributed computing.
In this section, we review the consensus problem, present Paxos, one of the
most prominent consensus algorithms, and discuss how to efficiently implement
a fault-tolerant event logger with Paxos.

3.1 Consensus and State Machine Replication

Consensus can be used to build a highly available event logging service using the
state machine replication approach [19]. State machine replication regulates how
commands must be propagated to and executed by the replicas in order for the
service to be consistent. In our particular case, the commands are requests to
save a determinant, propagated to and executed by replicas of the event logger.
Command propagation has two requirements: (i) every non-faulty replica must
receive every command and (ii) no two replicas can disagree on the order of
received and executed commands. If command execution is deterministic, then
replicas will reach the same state and produce the same output upon executing
the same sequence of commands.

Intuitively, consensus captures the command propagation requirements of
state machine replication. More precisely, consensus is defined by three abstract
properties: (a) If a replica decides on a value, then the value was proposed by
some process (validity). (b) No two replicas decide differently (agreement). (c) If
a non-faulty process proposes a value, then eventually all non-faulty replicas
decide some value (termination). From the requirements of state machine repli-
cation and the guarantees provided by consensus, it should be clear that state
machine replication can be implemented as a series of consensus instances, where
the i-th consensus instance decides on the i-th command (or batch of commands)
to be executed by the replicas [11].

State machine replication and consensus provide a principled approach to
ensuring that replicas are consistent despite failures. This approach should not be
overlooked since ad hoc solutions to replication must face subtle impossibilities
in the design of distributed systems subject to process failures [8].

3.2 The Paxos Protocol

Paxos is a fault-tolerant consensus algorithm designed for state machine repli-
cation [12]. Paxos has important characteristics: it is safe under asynchronous
assumptions, live under weak synchronous assumptions, ensures progress with a
majority of non-faulty processes, and assumes a crash-recovery failure model.

A Consensus-Based Fault-Tolerant Event Logger 419

P0

P1

R0
(coord)

R1

R2

Centralized Replicated with
Classic Paxos

Replicated with
Parallel Paxos

m1 m2 m1 m2 m1 m2

only needed if R0 or R1 fail

P0

P1

R0

P0
R0

(coord)

R2

R3

P1
R1

(coord)
command

accept

accept

Px : application process x
Rx : replica x

Fig. 1. Three implementations of an event logger. The centralized approach has a single
event logger (R0) and thus cannot tolerate any failures. The Paxos-based approaches
can tolerate one failure (i.e., f = 1). Paxos coordinators already executed the first phase
of the protocol and can proceed with the second phase upon receiving a command.

Paxos distinguishes the following roles that a process can play: proposers,
acceptors and learners. Proposers propose a value, acceptors choose a value, and
learners learn the decided value. A single process can assume any of those roles,
and multiple roles simultaneously. Paxos is resilience-optimum [13]: to tolerate
f failures it requires 2f + 1 acceptors—that is, to ensure progress, a quorum of
f + 1 acceptors must be non-faulty.

An instance of Paxos proceeds in two phases: during the first phase, a pro-
poser selects a unique round number and sends a prepare request to a quorum
of acceptors. Upon receiving a prepare request with a round number bigger
than any round the acceptor previously received, the acceptor responds to the
proposer promising that it will reject any future requests with smaller round
numbers. If the acceptor already accepted a command for the current instance
(explained next), it will return this command to the proposer, together with the
round number received when the command was accepted. When the proposer
receives answers from a quorum of acceptors, it proceeds to the second phase.

In the second phase, the proposer selects a command according to the fol-
lowing rule. If no acceptor in the quorum of responses accepted a command,
the proposer can select a new command for the instance; however, if any of the
acceptors returned a command in the first phase, the proposer chooses the com-
mand with the highest round number. The proposer then sends an accept request
with the round number used in the first phase and the command chosen to a
quorum of acceptors. When receiving such a request, the acceptors acknowledge
it by sending a message to the coordinator and learners, unless the acceptors
have already acknowledged another request with a higher round number. When
a quorum of acceptors accepts a command consensus is reached.

If multiple proposers simultaneously execute the procedure above for the
same instance, then no proposer may be able to execute the two phases of the
protocol and reach consensus. To avoid scenarios in which proposers compete
indefinitely, a coordinator process can be chosen. In this case, proposers submit
commands to the coordinator, which executes the first and second phases of
the protocol. If the coordinator fails, another process takes over its role. Paxos
ensures consistency despite concurrent coordinators and termination in the pres-
ence of a single coordinator.

420 E.T. de Camargo et al.

A coordinator can optimize performance by executing the first phase of the
protocol for a batch of instances before it receives any commands [11]. This
is possible because the coordinator only sends commands in the second phase
of the protocol. With this optimization, a command can be chosen in three
communication steps: the message from the proposer to the coordinator, the
accept request from the coordinator to the acceptors, and the response to this
request from the acceptors to the coordinator and learners.

3.3 Consensus-Based Message Logging

We now propose two protocols based on Paxos to render the event logger fault-
tolerant: Classic Paxos and Parallel Paxos. Similarly to a centralized event log-
ger, our protocols log nondeterministic events only; the message payload is saved
by the sender- [9]. A determinant contains the sender of a message, the message
identifier, and the message receiving order. Periodically, each process performs
a checkpoint in order to save its state.

Our first protocol, Classic Paxos, is based on classic state machine replication.
Application processes are proposers and the event logger replicas are acceptors
and learners. Every application process submits commands to the coordinator,
a process among the acceptors, to log determinants. The coordinator receives
commands, executes Paxos to log the commands in a quorum of replicas, and
sends replies to the application process (see Fig. 1). In “good executions” (i.e., in
the absence of process failures) a determinant is logged after four communication
steps and 2f + 2 point-to-point message exchanges. By contrast, a centralized
event logger can log events after two communication steps and two message
exchanges.

In our second protocol, Parallel Paxos, we assign a separate sequence of Paxos
executions to each application process. This means that each process has its set
of replicas, which allows important optimizations. First, since each process has
its own sequence of Paxos executions, the process does not compete with other
processes in executions of Paxos and therefore, there is no need for a coordinator;
in good executions, the process is the only proposer in its sequence of Paxos.
Second, by using different sets of replicas, performance is no longer capped by
what the coordinator and the acceptors can handle. Third, we can now co-locate
the application process and the acceptor-coordinator in the same process. In
good runs, this scheme can log a determinant after two communication steps
and 2f messages.

An event logger implemented with Parallel Paxos presents the same number
of communication steps as a centralized event logger, while tolerating a config-
urable number of failures and scaling performance. When configured to tolerate
one failure (f = 1), it exchanges the same number of messages per logging opera-
tion as the centralized logger. Moreover, to save resources, “free acceptors” (i.e.,
acceptors not collocated with application processes) can be placed in the same
physical node. For example, a single node can host all free acceptors, i.e. Parallel
Paxos can use the same amount of nodes required by a centralized strategy.

A Consensus-Based Fault-Tolerant Event Logger 421

Upon recovering from a failure, an application process must retrieve all its
logged determinants. With the centralized approach, the application process con-
tacts the event logger. With the replicated approaches, this is done by contacting
a quorum of acceptors.

4 Evaluation

In this section we describe an implementation of the proposed consensus-based
event logger and present experimental results, including a comparison with the
traditional centralized alternative. Results are presented for the execution of
three MPI applications: AMG 2013 (Algebraic Multigrid Solver) of the Lawrence
Livermore National Laboratory, LU (Lower-Upper Gauss-Seidel solver) and MG
(Multi-Grid on a sequence of meshes). Both LU and MG are on the NAS parallel
benchmarks version 3.2. The applications were executed through Open MPI ver-
sion 1.10. The experiments were conducted on a dedicated cluster that consists
of 40 nodes each with two Intel(R) Quad-Core Xeon L5420 2.5 GHz processors
and 8 Gbytes of RAM interconnected on a Gigabit Ethernet network.

We intercept MPI primitives using the MPI standard profiling interface
(PMPI) [15]. If the interceptor detects a nondeterministic event, as defined in
[2], it builds a determinant related to the event and makes a submission to the
event logger. We implemented three event loggers: a traditional centralized log-
ger, a distributed replicated logger based on Classic Paxos, and the distributed
replicated logger based on Parallel Paxos (all described in Sect. 3.3). The Parallel
Paxos event logger can be configured to log messages synchronously or asynchro-
nously. In the synchronous mode, after submitting a determinant, an application
process waits for an acknowledgement from the event logger before submitting
the next determinant; in asynchronous mode the application process can submit
multiple determinants before it receives acknowledgments from the event log-
ger. Unless stated otherwise, our experiments use the synchronous mode. The
interceptor and event loggers were implemented in C using the libevent version
2.022. We used the Paxos library libpaxos version 3.

The centralized event logger is hosted on a dedicated node. In Classic Paxos,
a coordinator was deployed on a dedicated node while three acceptors (i.e.,
f = 1) were deployed each on a single node. There were also three learners,
each one colocated with an acceptor. The learners are responsible for replying
to the MPI processes as soon as a determinant is stored. In Parallel Paxos,
each sequence of Paxos executions uses three acceptors (i.e., f = 1), each one
deployed on a dedicated node. In Parallel Paxos each MPI process is both a
proposer and a learner. Acceptors can be configured to store commands (i.e.,
determinants) on disk or in memory. In all experiments, the centralized event
logger and the acceptors log values in main memory. We justify this choice by the
fact that persistent memory technologies such as non-volatile RAM (NVRAM)
and battery-backed memory are increasingly popular.

422 E.T. de Camargo et al.

4.1 The Event Logger

To evaluate the performance of the event logger alone, we built a simple MPI
application where a process only submits a new determinant to the logger after it
receives a response acknowledging that the previously submitted determinant has
been logged. Since application processes do not communicate among themselves
in these experiments, determinants are fixed-content 50-byte messages.

 0

 100

 200

 300

 400

 0 20 40 60 80 100 120 140Th
ro

ug
hp

ut
 (d

et
/m

se
c)

MPI processes

Centralized
Classic Paxos
Parallel Paxos

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

 0

 2

 4

 6

 0 20 40 60 80 100 120 140

La
te

nc
y

(m
se

c)

MPI processes

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

 0 5 10 15 20

Fig. 2. Throughput and latency for the three event logger approaches.

Figure 2 shows the throughput in logged determinants per millisecond
(det/msec) and latency (in msec) when we increased the number of MPI
processes up to 128. The centralized event logger reaches the maximum through-
put of about 83 det/msec with 16 processes. Classic Paxos reaches a maximum
throughput of 28 det/msec with a latency of 4.6 msec with 128 MPI processes.
Parallel Paxos never saturates in these experiments: throughput increases pro-
portionally to the number of processes and the latency remains approximately
constant, below 4 msec. With 128 processes, Parallel Paxos has 5 times the
throughput of the centralized scheme and 13 times the throughput of Classic
Paxos, with much lower latency.

4.2 AMG

AMG is a parallel algebraic multigrid solver for linear systems which can be
classified as a nondeterministic application that employs “any-source” receptions
and nondeterministic deliveries. All calls to Iprobe use the any source tag and
only one call to Recv, among many, uses the any source tag. AMG also has calls
to the Test and Testall primitives. Although during the execution there was
a large number of Iprobe, Test and Testall invocations, a determinant for an

A Consensus-Based Fault-Tolerant Event Logger 423

 0

 20

 40

 60

 80

 100

 120

 140

 160

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

AMG

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

0

2

4

6

8

10

12

 0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

5

10

15

20

25

30

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

20

40

60

80

 0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

128 MPI Processes

Fig. 3. AMG performance and througput.

 0

 20

 40

 60

 80

 100

 120

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

LU class C

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

2

4

6

8

10

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

2

4

6

8

10

 0 5 10 15 20 25
Th

ro
ug

hp
ut

 (d
et

/m
se

c)

Duration (sec)

128 MPI Processes

Fig. 4. LU class C performance and throughput.

Iprobe with the any source tag is only created when the message is ready to be
received. Similarly, for Test and Testall invocations, we count the number of
invocations but only submit the determinant to the event logger when the MPI
message related to Test or Testall is ready to be delivered.

Figure 3 (left) presents results for the AMG application, including the repli-
cated event loggers. The “Unmodified” label refers to executions without any
event logging. Although all strategies introduce an overhead, with 64 and 128
processes Classic Paxos increased the duration of the original application by
approximately 3.8%, the worst-performing technique. The centralized scheme
presented an overhead of approximately 2% for 16, 32 and 64 processes. Parallel
Paxos presented the lowest overhead, below 1.3% for all configurations.

Figure 3 (right) shows the number of determinants logged per milliseconds
considering both the synchronous and asynchronous Parallel Paxos modes, for
16, 32, 64 and 128 MPI processes. In the asynchronous mode, application
processes never wait for the logger; thus, this case provides an upper bound
for the performance of the event logger. As it can be seen, log requests are
not uniformly distributed over time. For the case with 128 processes, between
time instants 80 s and 90 s a peak can be distinguished, that reaches approxi-
mately 34 det/msec in the synchronous mode and 66 det/msec in the asynchro-

424 E.T. de Camargo et al.

nous mode. These results help understand how the overhead of Parallel Paxos
is distributed over time.

4.3 LU and MG

LU and MG are kernels of the NAS parallel benchmarks. As pointed out in [2],
only MG and LU among the NAS-PB kernels generate nondeterministic events.
We assess classes C and D of the kernels in deployments with 16, 32, 64 and 128
MPI processes. LU contains both Recv and Irecv primitives. The last one is
used with the any source tag. MG receives all its messages through MPI Irecv
with the any source tag.

The total number of events logged in LU is less than 1% of the total of
all its receptions in class C. The MG kernel however has almost 100% of non-
deterministic events among its receptions. Although both AMG e MG solve
similar problems, the reason for much more nondeterministic events in MG is
its implementation. Unlike MG, AMG does not receive all its messages through
MPI Irecv with the any source tag. This illustrates the fact that nondetermin-
ism is often a programmer’s choice (e.g., to boost performance), rather than a
requirement coming from the problem being solved.

From our experimental evaluation, we concluded that logging determinants
using any of the three event logging strategies presents nearly no overhead when
logging events of classes C and D of the LU kernel. This is somewhat surprising
since logging introduces some overhead in the AMG application and both classes
C and D of the LU benchmark contain a higher percentage of nondeterministic
events than AMG contains. Figure 4 (left) shows the results for class C of the LU
kernel. By inspecting the number of determinants logged during the execution
in Fig. 4 (right), we notice that determinants are more uniformly distributed in
LU class C than in AMG and they happen at a rate that is within the limits
the event logger can sustain (see Sect. 4.1). The difference between class C and
D of the LU is that the last one has longer duration and lower throughput. As
a consequence, the event logger never becomes an execution bottleneck in LU.

On the contrary, the logging of determinants introduces a considerable over-
head to MG classes C and D (Figs. 5 and 6, respectively). In class C, while
Classic Paxos presents an overhead of more than 125% and 200% for 64 and 128
processes, the overhead of the centralized event logger is below 31% and 55%
for 64 and 128 processes, respectively. Parallel Paxos sports even lower over-
heads: 17,71% and 24,26% for 64 and 128 processes, respectively. The results for
MG class D show a similar trend, with Parallel Paxos outperforming both the
two other techniques. The MG kernel is highly communication-bound and all its
receive events use the any source tag. As the number of application processes
increases, the event logger reaches its limits with the centralized and the Classic
Paxos strategies. Parallel Paxos is able to scale performance by distributing the
load among the various series of Paxos.

Figures 5 and 6 also show the rate of logged determinants per milliseconds
for the synchronous and asynchronous Parallel Paxos-based event logger. The
throughput of the synchronous mode is close to the asynchronous mode for MG

A Consensus-Based Fault-Tolerant Event Logger 425

 0

 5

 10

 15

 20

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

MG class C

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

20

40

60

80

100

120

 1 1.5 2 2.5 3 3.5 4 4.5 5

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

20

40

60

80

100

120

 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

128 MPI Processes

Fig. 5. MG class C performance and throughput.

 0

 50

 100

 150

 200

 250

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

MG class D

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0

 1

 2

 3

 4

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

4

8

12

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

5

10

15

20

25

 0 10 20 30 40 50 60
Th

ro
ug

hp
ut

 (d
et

/m
se

c)

Duration (sec)

128 MPI Processes

Fig. 6. MG class D performance and throughput.

class C with 16, 32 and 64 processes. For 128 processes, the asynchronous mode
presents a throughput that is higher than that of the synchronous mode and fin-
ishes approximately 1 s earlier. MG class D has lower throughput than MG class
C. The throughputs of both synchronous and asynchronous Parallel Paxos are
very similar. In all configurations, both the synchronous and the asynchronous
modes display a uniform rate over time.

5 Conclusion

In this work we presented a fault-tolerant and distributed event logger based on
consensus for HPC applications. The event logger is the component responsible
for reliably logging determinants and its performance can represent a signifi-
cant impact on the efficiency of message logging protocols. We implemented two
fault-tolerant event loggers based on the Paxos algorithm. By using Paxos, our
event loggers guarantee safety even if the system is asynchronous and liveness
despite processes failures. Our first protocol is based on classic state machine
replication. In our second protocol, which we call Parallel Paxos, we assign a
separate sequence of Paxos executions to each application process. We assessed

426 E.T. de Camargo et al.

experimentally the performance of a centralized event logger and our two event
loggers based on consensus. Besides evaluating the event loggers by themselves,
we used three MPI applications to evaluate their performance: AMG, MG and
LU. Results of all experiments show that the event logger based on Parallel
Paxos always outperformed the centralized approach in terms of both the exe-
cution time and the throughput in terms of the number of determinants logged
per millisecond.

The implementation of a recovery protocol using the nondeterministic events
stored on the Parallel Paxos event logger is left as future work.

References

1. Bouteiller, A., Collin, B., Herault, T., Lemarinier, P., Cappello, F.: Impact of event
logger on causal message logging protocols for fault tolerant MPI. In: IPDPS (2005)

2. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. Concurr. Comput.: Pract. Exp. 22(16), 2196–2211 (2010)

3. Bouteiller, A., Hérault, T., Krawezik, G., Lemarinier, P., Cappello, F.: MPICH-V
project: a multiprotocol automatic fault-tolerant MPI. Int. J. HPC Appl. 20(3),
319–333 (2006)

4. Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.: Reasons for a
pessimistic or optimistic message logging protocol in MPI uncoordinated failure,
recovery. In: Cluster (2009)

5. Cappello, F., Guermouche, A., Snir, M.: On communication determinism in parallel
HPC applications. In: ICCCN (2010)

6. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mecha-
nisms and checkpoint/restart implementations for HPC systems. J. Supercomput.
65(3), 1302–1326 (2013)

7. Elnozahy, A., Wang, J.: A survey of rollback-recovery protocols in message-passing
systems. CSURV Comput. Surv. 34, 375–408 (2002)

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty processor. J. ACM 32(2), 374–382 (1985)

9. Johnson, D.B., Zwaenepoel, W.: Sender-based message logging. In: FTCS (1987)
10. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,

and Systems. Cambridge University Press, Cambridge (2011)
11. Lamport, L.: Paxos made simple. SIGACTN: SIGACT News (ACM Spec. Interest

Group Automata Comput. Theory) 32, 51–58 (2001)
12. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
13. Lamport, L.: Lower bounds for asynchronous consensus. Distrib. Comput. 19(2),

104–125 (2006)
14. Lemarinier, P., Bouteiller, A., Krawezik, G., Cappello, F.: Coordinated checkpoint

versus message log for fault tolerant MPI. Int. J. High Perform. Comput. Netw. 2,
146–155 (2006)

15. MPI Forum: document for a standard message-passing interface 3.1. Technical
report, University of Tennessee (2015). http://www.mpi-forum.org/docs/mpi-3.1

16. Riesen, R., Ferreira, K., Silva, D.D., Lemarinier, P., Arnold, D., Bridges, P.G.:
Alleviating scalability issues of checkpointing protocols. In: SC (2012)

http://www.mpi-forum.org/docs/mpi-3.1

A Consensus-Based Fault-Tolerant Event Logger 427

17. Ropars, T., Morin, C.: Active optimistic message logging for reliable execu-
tion of MPI applications. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par
2009. LNCS, vol. 5704, pp. 615–626. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03869-3 58

18. Ropars, T., Morin, C.: Improving message logging protocols scalability through
distributed event logging. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-
Par 2010. LNCS, vol. 6271, pp. 511–522. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15277-1 49

19. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(3), 299 (1990)

http://dx.doi.org/10.1007/978-3-642-03869-3_58
http://dx.doi.org/10.1007/978-3-642-03869-3_58
http://dx.doi.org/10.1007/978-3-642-15277-1_49
http://dx.doi.org/10.1007/978-3-642-15277-1_49

	A Consensus-Based Fault-Tolerant Event Logger for High Performance Applications
	1 Introduction
	2 Log-Based Rollback Recovery
	2.1 The Event Logger

	3 Consensus and Message Logging
	3.1 Consensus and State Machine Replication
	3.2 The Paxos Protocol
	3.3 Consensus-Based Message Logging

	4 Evaluation
	4.1 The Event Logger
	4.2 AMG
	4.3 LU and MG

	5 Conclusion
	References

