
More Sharing, More Benefits?
A Study of Library Sharing

in Container-Based Infrastructures

José Bravo Ferreira1(B), Marco Cello2, and Jesús Omana Iglesias2

1 Princeton University, Princeton, USA
josesf@princeton.edu

2 Nokia Bell Labs, Dublin, Ireland
{marco.cello,jesus.omana iglesias}@nokia-bell-labs.com

Abstract. Container-based infrastructures have surged in popularity,
offering advantages in agility and scaling, while also presenting new chal-
lenges in resource utilization due to unnecessary library duplication. In
this paper, we consider sharing libraries across containers, and study the
impact of such a strategy on overall resource requirements, scheduling,
and utilization. Our analysis and simulations suggest significant benefits
arising from library sharing. Furthermore, a small fraction of libraries
shared between any two containers, on average, is enough to reap most
of the benefits, and even näıve schedulers, such as a First Fit scheduler,
succeed at doing so. We also propose a score maximization, mixed-integer
linear-programming scheduler for handling bulk request arrivals (such as
large jobs composed of many smaller tasks), which compares favorably
against state-of-the-art schedulers in these scenarios.

1 Introduction

Container-based infrastructures are gaining popularity both in Infrastructure-
as-a-Service (IaaS) and Platform-as-a-Service (PaaS) models. In IaaS (e.g. Pan-
theon and Amazon ECS) abstracting away the host operating system allows
providers to make system-wide changes quickly, to provision new containers with
little delay, and to scale up without worrying about architecture. This is also
the case for PaaS (e.g. Heroku and Google’s App Engine), where providers must
automatically manage and maintain necessary infrastructure behind the scenes.

Containers can be added and removed in seconds, allowing for greater flex-
ibility in dynamically scaling applications and in running mostly idle services.
Modern container hypervisors, such as LXD1, or container managers, such as
Docker2 or Kubernetes3, facilitate the management of containers, with auto-
matic scheduling, scaling and storage orchestration. This is accomplished while
running seamlessly on most infrastructures using open standard containers.
1 https://linuxcontainers.org/lxd/.
2 https://www.docker.com/.
3 https://kubernetes.io.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 358–371, 2017.
DOI: 10.1007/978-3-319-64203-1 26

https://linuxcontainers.org/lxd/
https://www.docker.com/
https://kubernetes.io


More Sharing, More Benefits? A Study of Library Sharing 359

The adoption of container-based infrastructures is bolstered by the increasing
popularity of a microservices approach to software design, focused on scalabil-
ity, agility, resilience, and developer efficiency [3]. However, breaking down an
application into many smaller processes that need large-scale replication might
also require loading the same set of libraries inside each container, resulting in
memory duplication.

Existing schedulers, such as Tetris [5] or dominant resource fairness [4] can
successfully schedule and pack tasks in an efficient way, but a large increase in
the number of containers demands answers to new challenges related to volume,
locality (runtime environments), and dependencies between containers [9].

As an extreme example of microservices design, recent efforts in Serverless
solutions, such as AWS Lambda4, incentivize the application developer to imple-
ment their services as a composition of stateless functions, often triggered by
predefined events (e.g. a user request or a database change) and written in
predefined programming languages. This leads the cloud provider to instanti-
ate many containers loaded with similar runtime environments and the same
language-specific libraries, so that library-sharing could be not just beneficial
but an actual necessity. The analysis presented in [8, Figs. 3 and 13] shows that
current Docker images contained in Docker Hub5 already share some amount of
libraries since they share common AUFS layers.

In this paper, we analyze the possible benefits of library-sharing across con-
tainers as a potential solution in current container-based infrastructures. Con-
ceptually, we consider a scenario in which libraries are shared using a union
file system across Linux containers (LXC), and study the impact on resource
utilization through simulations and mathematical analysis. We:

1. Study library-sharing in single- and multi-resource scenarios analytically and
through simulation, illustrating that even small levels of sharing yield signif-
icant savings in memory-bound scenarios (Sects. 4.1 and 4.2);

2. Propose a scheduling algorithm based on mixed-integer linear-programming
(MILP) for handling bulk arrivals, which compares favorably against state-of-
the-art schedulers and can be adapted to custom goals via a scoring function
Sect. 4.2 providing improvements over näıve schedulers.

Section 2 lays down the motivation for this work in greater detail, Sect. 3
describes the methodology used in the paper, Sect. 4 presents the results of the
analysis, and Sect. 5 summarizes the main conclusions.

2 Motivation

Current standard practice in container-based applications is to package all
needed libraries in the container [7]. This approach has several advantages, such

4 https://aws.amazon.com/lambda/.
5 https://hub.docker.com/u/library/.

https://aws.amazon.com/lambda/
https://hub.docker.com/u/library/


360 J. Bravo Ferreira et al.

as ensuring that the application uses the intended version of the libraries. How-
ever, this solution suffers from redundantly loading libraries in memory that
could otherwise be shared across containers.

Sharing libraries is a form of memory deduplication (MD), defined as a set
of techniques to reduce the memory footprint of a running system by merging
memory pages6 with the same contents. A way to implement MD is through the
use of union filesystem, such as AUFS7. AUFS takes a list of directories on a
single Linux host and provides a single unified view. These directories are often
referred to as layers and the technology used to layer them is known as a union
mount. In AUFS, all the layers but the top one are read-only, and the unified
view is exposed through its own directory called merged

In order to showcase the benefits of AUFS, we present results when 3 con-
tainers are running in the same host. Let us denote the three containers by c1,
c2 and c3. c1 and c2’s filesystem directories are AUFS union mount points,
composed of 3 layers: ubuntu base (Ubuntu base OS), gsl layer (GNU scientific
libraries), and container layer (writeable layer containing the binary test file). In
contrast, c3’s filesystem directory is a regular ext4 filesystem containing Ubuntu
base OS, GNU scientific libraries and the binary test file. Figure 1 shows how
the filesystem directories are created for the three containers. When the LXC
containers are created, c1 and c2 share both Ubuntu base OS files and GSL
scientific libraries on disk, while c3 does not share any file with the other two.

Fig. 1. Creation of testbed container filesystems.

6 A fixed-length contiguous block of virtual memory, described by a single entry in
the page table. It is the smallest unit of data for memory management in a virtual
memory operating system.

7 http://aufs.sourceforge.net/aufs.html.

http://aufs.sourceforge.net/aufs.html


More Sharing, More Benefits? A Study of Library Sharing 361

A C executable, test.out, using GSL, is ran in all three containers. We
considered different scenarios in which containers and the binary are running:

S1 Only c1+test.out is running on the host.
S2 Both c1+test.out and c2+test.out are running on the host.
S3 Both c1+test.out and c3+test.out are running on the host.

To show the amount of memory shared by GSL libraries (used internally by
test.out) across containers we make use of the linux command pmap8 which
displays the process map of any process and its actual memory consumption.

Table 1 shows part of the output of the pmap command for scenarios S1, S2,
and S3. The Shrd column shows the amount of memory which is shared with
other processes and has not been modified, while the Priv column shows the
amount of memory which is private to this process. Note that libgsl is not
shared in S1. In S2, all libraries are now shared by the two containers, such that
the total memory utilized is ≈2780 + 2 · 156 = 3092 kB. Finally, in scenario S3,
we see the same numbers as in scenario S1, indicating no additional libraries are
being shared. In this instance, ≈1288 + 2 · 1472 = 4232 kB are in use.

Table 1. Memory usage by c1 in scenarios S1, S2, and S3 [in kB].

S1 S2 S3

Shrd Priv Shrd Priv Shrd Priv

0 4 0 4 0 4 test.out

0 56 64 0 0 56 libgcc

1156 0 1244 0 1156 0 libc

0 128 128 32 0 128 libm

0 752 748 28 0 752 libstdc++

0 44 44 0 0 44 libgslcblas

0 472 420 92 0 472 libgsl
128 0 128 0 128 0 ld

1288 1472 2780 156 1288 1472 Total

With this analysis, we verified that when two containers are sharing some
of the libraries (in this case GSL libraries) on disk (using AUFS), they can
actually share libraries in memory (S2). Moreover, from an operational point of
view, AUFS is no more complex than other filesystems.

In this work, we analyze and quantify the improvements in resource utiliza-
tion from sharing libraries. In particular, we highlight that even if two containers
share, on average, only a small fraction of their libraries, the resulting mem-
ory deduplication is still substantial. Therefore, when memory is the limiting

8 https://linux.die.net/man/1/pmap.

https://linux.die.net/man/1/pmap


362 J. Bravo Ferreira et al.

resource, as in today’s data intensive applications, library sharing can result in
improved server utilization. Meanwhile, resource isolation of containers is not
affected, as it is handled by the linux control groups (cgroups) regardless of the
union filesystem used (e.g. AUFS or OverlayFS).

3 Analysis Description

We begin by describing an abstracted model of a cloud environment for use
in mathematical analysis and simulations (Subsect. 3.1). This is followed by a
description of our methodology (Subsect. 3.2), and, finally, by a brief presentation
of the simulator developed for this analysis (Subsect. 3.3).

3.1 Abstract Representation of a Cloud Environment

This work considers an arbitrary cloud environment, which could be a Platform-
as-a-Service (PaaS) or a Serverless (Computation-as-a-Service, CaaS) platform
in which the applications are designed following microservices or stateless func-
tions principles. Users’ requests for a specific application arrive at the scheduler9

according to a well-defined distribution, and the scheduler schedules containers
in an available server to complete each request. A request and a container are
equivalent since container start-up and wind-down times are small relative to
the duration of the container, and the containers’ duration is randomly sampled,
such that start-up and wind-down times can be absorbed into the distribution.

The cloud platform is composed of ns servers, with normalized capacity of 1 in
each resource (memory, cpu). Fixed, nonzero server boot-up and shut-down times
are assumed throughout. The scheduler is assumed to have perfect knowledge of
the state of the system (i.e. resource availability at each server). This is the case
at different granularity levels in typical cloud environments [11].

3.2 Analysis Methodology

This work presents theoretical analysis and simulation results of single- and
multi-resource scenarios. The two types of analysis are described in the following:

Mathematical analysis, Sect. 4.1. The memory requirements of containers
are studied and parameterized by the average level of sharing across contain-
ers (f), the ratio of library to container memory requirements (r), and the
memory requirements of the containers (v). The analysis considers a single-
resource scenario (memory), where containers have similar memory require-
ments and their library sets are randomly sampled from a finite set of libraries.

Simulations, Sect. 4.2. Several simulation scenarios are considered in order
to: (1) validate the mathematical analysis, (2) study the performance of the
system under different scheduling algorithms and under realistic load traces.
Details about the setting and traces are provided in the relevant sections.

9 Or frontend. We refer here to the logical entity in the cloud infrastructure in charge
of receiving requests and assigning them to the cloud’s resources.



More Sharing, More Benefits? A Study of Library Sharing 363

3.3 Simulator

In order to single-out the parameters of our abstracted cloud model in a large-
scale context, we designed and implemented an event-driven simulator in Python
2.7, for arrival and scheduling across an arbitrary number of abstracted servers
using four different scheduling algorithms, (First Fit, Greedy Fit, Tetris [5], and a
mixed-integer linear-programming scheduler), in both single and multi-resource
scenarios (memory, CPU, disk, I/O, and so on).

The simulator can generate requests on the fly according to predefined proba-
bility distributions, or use predefined container types (both described in Sect. 4)
arriving according to Poisson distributions or uniformly on a time interval.
Scheduling events periodically trigger the orchestrator, which queries the state of
the servers and then runs the chosen algorithm to schedule containers in available
servers. A hysteresis controller governs the boot-up and shut-down of servers by
estimating resource utilization at future times assuming linear system dynamics
[1]. The state of the simulation is logged periodically.

A pictorial representation of the inner workings of the simulator is presented
in Fig. 2 below.

Event queue

Container arrival

Container arrival

Logging event

Container arrival

Scheduling Event Scheduler

Container
queue

Logger

Servers

Orchestrator
Container
Generators

Fig. 2. Container generators (left) produce container arrival events, which contribute to
form a container queue. Scheduling events trigger the orchestrator, which prompts the
scheduler to query the queue and the servers and schedule containers appropriately. The
status of the simulator is logged periodically. The controller (not shown) monitors the
container queue and the servers, estimates resource utilization at future times assuming
linear system dynamics, and triggers server boot-ups and shut-downs as needed to
handle the load using a hysteresis-based approach [1].

4 Performance Evaluation

Terminology. Server capacities are normalized to 1 for each resource. The
memory requirements of a container (excluding libraries) are denoted by v. The
memory requirements of the library set for a container is given by r · v, so that
the total memory required by the container is v · (1 + r). A value of r = 1 thus
indicates that 50% of the container’s total required memory is due to the library
set. If a container shares libraries with other containers on the same server,



364 J. Bravo Ferreira et al.

then the effective memory required by the libraries is smaller. We introduce the
variable f to represent the fraction of libraries shared by any two containers, on
average. Therefore, if two containers require a library set of 10 libraries, a value
of f = 0.1 would indicate that the containers would share 1 library, on average.

The following section describes the mathematical analysis. This is followed
by a discussion of the simulations.

4.1 Mathematical Analysis

The goal of this analysis is to study the relationship between memory utilization
and the three variables: v, r, and f . Assume each container has the same resource
requirements v, and utilizes a library set of m libraries, selected uniformly at
random from a set of n libraries, such that, in expectation, f = m/n. The sched-
uler schedules each container in the first available server that can accommodate
it (FirstFit).

Under the conditions defined above, the expected number of containers that
fit in each server, N , is given by the following implicit equation:

N ≈ E[cavail]
v

=
1 − v·r

f (1 − (1 − f)N )

v
. (1)

For a derivation of this result see Appendix A.
To quantify the impact of library sharing, we introduce the concept of rela-

tive utilization, u, which is the ratio of the total utilized resources to the total
utilized resources when libraries are not shared (the worst-case scenario).

Figure 3 shows the value u obtained from solving Eq. (1) for various values
of v and r, with f varying between 0 and 1. Several aspects are worthy of note:

Fig. 3. Relative utilization as a function of f for various values of v and r, obtained
from solving the implicit Eq. (1).

Observation 1: Higher values of f reduce the effective resource requirements
of containers.



More Sharing, More Benefits? A Study of Library Sharing 365

Observation 2: r governs the “steady-state” of utilization in terms of f , deter-
mining the savings that can be obtained through library sharing by regulating
the relative impact of libraries on the overall resource requirements of the tasks.

Observation 3: A low f is sufficient to yield significant savings.

Observation 3 is less intuitive than the others, but of great importance, as
it suggests that even small levels of library-sharing across containers suffice to
achieve most of the memory savings that one could hope for. Note, for example,
that for v = 0.005 there is little difference between f = 0.1 and f = 1.

Observation 4: Larger v (the memory requirements of a container, excluding
libraries) and r (the ratio of library memory requirements relative to v) both
result in a delay of the “steady-state” in terms of f (the fraction of libraries
shared by any two containers, on average).

Observation 4 implies that a larger f is required to produce the same
savings when resource requirements of each container are larger, suggesting that
container-based approaches have more to gain from library sharing, as container
memory requirements are typically small relative to the server capacities.

4.2 Simulations

Three sets of simulations were conducted, exploring different scenarios.
The first set of simulations, A1, studies a single-resource scenario similar

to the one assumed by the analysis in Sect. 4.1. A2 considers a multi-resource
scenario with multiple container types arriving in a Poisson fashion. Finally, A3
studies a multi-resource scenario where requests arrive in bulk (100 s of containers
at the same time).

A1. This is a single-resource simulation with 50 servers, representative of a
small cluster [5], each with capacity c = 1. Four different container types and
distributions are considered, with different v, r, and Poisson rate of arrival,
λ. These are specified in Table 2 below. A FirstFit algorithm that places each
container in the first available server that can accommodate it was used for

Table 2. Parameters for simulation set A1.

S1.a S1.b S1.c S1.d

v U(0, 0.01) U(0, 0.01) U(0, 0.003) U(0, 0.1)

r 1.0 0.1 5.0 1.0

λ 50 50 50 5



366 J. Bravo Ferreira et al.

scheduling. The key difference between this simulation and the setting in Sect. 4.1
is that the container sizes, v, are sampled uniformly in some interval.

Figure 4 shows the results of simulation S1.a for different values of f (left),
where we see that f = 0.05 reduces utilized memory by nearly 50%, confirming
the previous finding that even a small level of overlap between container library
sets suffices to yield significant savings. Figure 4 also shows the agreement in
relative utilization between the simulations and the analysis in Sect. 4.1 (right),
validating Eq. 1 even when v is randomly sampled.

The initial bump in the active server count is a result of the finite server boot-
up times, as the controller initializes a large number of servers to accommodate
the requests accumulated at the beginning of the simulation.

Fig. 4. Left: Number of active servers over time in a simulation with v ∼ U(0, 0.01),
r = 1, and f ∈ (0, 0.01, 0.05, 1.0). Each simulation runs until 5 · 105 containers are
processed. Right: Comparison of relative total utilization in simulations A1 versus
theoretical results from Sect. 4.1, showing clear agreement.

A2. The second set of simulations considers a multi-resource scenario (memory
and cpu) with 20 container types, each arriving according to a Poisson distrib-
ution where the arrival rate, λ = 0.4 (number of arrivals per unit of time). The
container size, v, for both memory and cpu is sampled according to the cumu-
lative distribution functions described in [10], falling in the range (10−4, 10−1).
Each container type’s library sets were chosen such that r = 1 and such that
any two container types share 10% of their libraries (so that f = 0.1). Note that
this inflates the memory requirement of the containers relative to [10], but it
illustrates the point when memory is the dominant resource.

Figure 5 shows the result of the simulation when libraries are not shared (left)
and when libraries are shared (right). We observe a drastic drop of about 40%
in the required number of servers when libraries are being shared. We also note
that by reducing the memory saturation, fewer inputs for server boot-ups and
shut-downs are needed from the controller, resulting in a more stable number of
active servers over time.



More Sharing, More Benefits? A Study of Library Sharing 367

Fig. 5. Normalized memory and cpu utilization and number of active servers over time
for simulation A2. The plots on the left show the result when libraries are not shared,
while the plots on the right showcase the results when libraries are shared.

A3. This simulation set considers a multi-resource scenario where containers
arrive in bulk, representing large jobs such as map-reduce tasks. Each job is
randomly chosen as small (100 containers) or large (500 containers) with equal
probability. Containers are chosen randomly from 20 container types, with ran-
domly chosen libraries such that f = 0.1 across container types. Each container
type is either high- or low-memory and high- or low-cpu (v = 0.10 or v = 0.025,
respectively). The size of the libraries is adjusted such that r = 1.0. Arrival times
are sampled uniformly between t = 0 and t = 3600, and there are 200 jobs in
total. This simulation setting is similar to the one in [5].

Having quantified the memory savings one can achieve through library shar-
ing, this simulation considers how to best take advantage of library set overlaps
between different containers, at the scheduler’s level. To do this, we propose
a mixed-integer linear-programming (MILP) scheduling algorithm that exploits
the cost of libraries on each server, while attempting to minimize waiting time.

MILP scheduler: Let X(i,j),k be the number of containers of type i from job
j scheduled on server k. Let t(i,j),k be the total resource requirements of
container of type i from job j on server k and ck be the vector of resource
capacities for server k. Let A(i,j),k be the corresponding score of schedul-
ing a container of type i from job j on server k. Each entry A(i,j),k is a
weighted combination of scores for waiting time (tmax − t(i,j),k), the shortest
time remaining to finish (STRF) metric (smax − s(i,j),k), and a fairness score
(amount of resources below the job’s fair-share). The algorithm is summarized
below.

This is a score maximization program with linear constraints. Note that con-
straint 4 ensures that at most n(i,j) containers of type i from job j get scheduled,
while constraint 5 prevents the servers’ capacities from being exceeded, thereby
avoiding overallocation. Gurobi [6] was used to obtain an approximate solution
to the problem at each allocation interval (<100 ms per scheduling event).



368 J. Bravo Ferreira et al.

Algorithm 1. MILP scheduling algorithm

letN=Y
Require: containers, jobs, servers

A ← score(containers, jobs, servers)
Solve:

max
X

∑

(i,j)

∑

k

X(i,j),kA(i,j),k (2)

s.t.
∑

k

X(i,j),k ≤ n(i,j), ∀(i, j) (3)

∑

(i,j)

X(i,j),kt(i,j),k ≤ ck, ∀k (4)

X(i,j),k ∈ Z
+
0 , ∀(i, j), k (5)

for each (i, j), k do
schedule X(i,j),k containers of type i from job j on server k

Efficiency: The size of the problem is proportional to the number of servers and
of distinct job/container type tuples. Scheduling separately on different sets of
servers can help improve efficiency in scheduling at a small cost in the solution
quality (provided that the server subsets are still large enough). Jobs and con-
tainer types can also be classified into a smaller, perhaps fixed, number of job
and container type classes, or divided into separate scheduling groups in order
to minimize the scaling effects on the solver (approaches of this flavor have been
adopted in scheduling literature before [2]). Note that this scheduler assigns
many tasks to servers in a single scheduling event, such that such events can
happen at less regular intervals.

Tetris. For comparison purposes, we also adapted the Tetris scheduler [5] to
our problem, as it has been found to perform well in reducing job processing
times. In this simulation we do not consider writes and reads over the network,
which are explicitly accounted for in Tetris.

Figure 6 shows the average waiting times for the 20 different container types
for all three algorithms. Waiting times using the MILP scheduler were reduced
by 22% and 41% compared with Tetris and FirstFit, respectively. Job processing
times (arrival to end of processing of the job’s last task) were reduced by 18% and
19%. This can be attributed to the fact that the algorithm schedules all available
containers in a single-pass, thus taking explicit advantage of the overlap between
the containers’ library sets and those already loaded in the servers.

Note that, unlike Tetris, the MILP scheduler accounts for packing in the con-
straints, so it does not require an alignment score in the cost function. This also
contributes to the improved results. Overall, the results suggest that accounting
for containers’ libraries explicitly when allocating a large number of containers
simultaneously is advantageous in a shared-library setting.



More Sharing, More Benefits? A Study of Library Sharing 369

Fig. 6. Boxplot of waiting times for the 20 different container types in A3 using three
algorithms: MILP, Tetris, and First Fit.

4.3 Real Case Scenario

The analysis above covers a very large spectrum of real case scenarios. As an
example, the analysis in [8] presents results about Docker images contained in
Docker Hub and describes a situation in which different images share common
AUFS layers. For the most downloaded docker container images, the authors
show that the top layer of 90% of the images represents less than 10% of the size
of the whole image [8, Fig. 13].

These scenarios fall within the parameterization in our analysis. Specifically,
the results in [8] suggest a large value of r > 5.0 (since the topmost layer is
typically a small fraction of the container), and a value of v < 0.005 for a server
with 32 GB of RAM, in the majority of cases. The fraction of shared layers is
not explicitly reported, but as the analysis in the above section has made clear,
a small f of even 0.05 would drastically reduce the memory required by the
containers. In particular, Fig. 3 and Eq. 1 suggest that if the images share 5% of
their layers, then for r = 5.0 and v = 0.005 one could expect a relative utilization
of 33.1% of that achieved when layer sharing is not used.

5 Conclusions and Future Work

Sharing libraries using filesystems such as AUFS offers a convenient yet effective
solution to combat memory duplication in container-based cloud applications.
Our mathematical analysis and simulations showed that the memory used by a
container can be reduced by nearly 50% when the containers’ library sets are as
large as the container itself (r = 1), even if any two containers share just 10% of
their libraries, on average. Our proposed MILP scheduler further improved on
the results by considering the scheduling of hundreds of containers at once when
requests arrive in bulk, reducing waiting times and processing times by about
22% and 18% respectively, relative to state-of-the-art schedulers. Its generality
as a score-maximization algorithm also opens the door to many possible scoring
functions that could include locality and architectural constraints [9].



370 J. Bravo Ferreira et al.

Appendix A

Derivation of Equation 1

Recall that each container has the same resource requirements v, and a set
of m libraries randomly sampled from a larger set of n total libraries, such that
f = m/n.

The probability that a particular library is not one of the m libraries used by
a particular container is simply (n−m)/n = 1−f . Letting N denote the number
of containers in a particular server, then the probability that a particular library
is loaded in that server is given by

p = 1 − (1 − f)N (6)

The expected number of unique libraries in the server, nL, is thus E[nL] = n · p.
Using the chosen terminology, the memory required by each library is given

by sL = v · r/m. We can therefore estimate the expected available capacity in a
server after discounting all libraries loaded in memory:

E[cavail] = 1 − sL ·E[nL] = 1 − v · r

m
· n · (1 − (1 − f)N ) = 1 − v · r

f
(1 − (1 − f)N ).

The remaining capacity is used for the containers themselves, each requiring
v resources. As a result, we have

N ≈ E[cavail]
v

=
1 − v·r

f (1 − (1 − f)N )

v
(7)

which implicitly defines N in terms of v, r, and f .

References

1. Bod́ık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, Hot-
Cloud 2009. USENIX Association, Berkeley (2009). http://dl.acm.org/citation.
cfm?id=1855533.1855545

2. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous
datacenters. SIGPLAN Not. 48(4), 77–88 (2013)

3. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: yesterday, today, and tomorrow. CoRR
abs/1606.04036 (2016). http://arxiv.org/abs/1606.04036

4. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementa-
tion, pp. 323–336. NSDI 2011. USENIX Association, Berkeley (2011). http://dl.
acm.org/citation.cfm?id=1972457.1972490

http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://arxiv.org/abs/1606.04036
http://dl.acm.org/citation.cfm?id=1972457.1972490
http://dl.acm.org/citation.cfm?id=1972457.1972490


More Sharing, More Benefits? A Study of Library Sharing 371

5. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. SIGCOMM Computer Communication Review, vol.
44, no. 4, August 2014

6. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015). http://www.
gurobi.com

7. Haas, F.: Containers: just because everyone else is doing them wrong,
doesn’t mean you have to. https://www.hastexo.com/blogs/florian/2016/02/21/
containers-just-because-everyone-else/. Accessed 10 Feb 2017

8. Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:
Slacker: fast distribution with lazy Docker containers. In: 14th USENIX Conference
on File and Storage Technologies (FAST 2016), pp. 181–195. USENIX Association
(2016)

9. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with OpenLambda. In: 8th
USENIX Workshop on Hot Topics in Cloud Computing. USENIX Association,
June 2016

10. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
3rd ACM Symposium on Cloud Computing, SoCC 2012, pp. 7:1–7:13. ACM, New
York (2012). http://doi.acm.org/10.1145/2391229.2391236

11. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys 2013, pp. 351–364. ACM,
New York (2013). http://doi.acm.org/10.1145/2465351.2465386

http://www.gurobi.com
http://www.gurobi.com
https://www.hastexo.com/blogs/florian/2016/02/21/containers-just-because-everyone-else/
https://www.hastexo.com/blogs/florian/2016/02/21/containers-just-because-everyone-else/
http://doi.acm.org/10.1145/2391229.2391236
http://doi.acm.org/10.1145/2465351.2465386

	More Sharing, More Benefits? A Study of Library Sharing in Container-Based Infrastructures
	1 Introduction
	2 Motivation
	3 Analysis Description
	3.1 Abstract Representation of a Cloud Environment
	3.2 Analysis Methodology
	3.3 Simulator

	4 Performance Evaluation
	4.1 Mathematical Analysis
	4.2 Simulations
	4.3 Real Case Scenario

	5 Conclusions and Future Work
	References




