
Deadline-Aware Deployment for Time Critical
Applications in Clouds

Yang Hu1,2(B), Junchao Wang1, Huan Zhou1,2, Paul Martin1, Arie Taal1,
Cees de Laat1, and Zhiming Zhao1

1 University of Amsterdam, Amsterdam, The Netherlands
{Y.Hu,j.wang2,H.Zhou,P.W.Martin,A.Taal,delaat,Z.Zhao}@uva.nl

2 National University of Defense Technology, Changsha, China

Abstract. Time critical applications are appealing to deploy in clouds
due to the elasticity of cloud resources and their on-demand nature. How-
ever, support for deploying application components with strict deadlines
on their deployment is lacking in current cloud providers. This is partic-
ularly important for adaptive applications that must automatically and
seamlessly scale, migrate, or recover swiftly from failures. A common
deployment procedure is to transmit application packages from the appli-
cation provider to the cloud, and install the application there. Thus, users
need to manually deploy their applications into clouds step by step with
no guarantee regarding deadlines. In this work, we propose a Deadline-
aware Deployment System (DDS) for time critical applications in clouds.
DDS enables users to automatically deploy applications into clouds. We
design bandwidth-aware EDF scheduling algorithms in DDS that mini-
mize the number of deployments that miss their deadlines and maximize
the utilization of network bandwidth. In the evaluation, we show that
DDS leverages network bandwidth sufficiently, and significantly reduces
the number of missed deadlines during deployment.

1 Introduction

Cloud computing is the platform of choice for deploying and running many of
today’s businesses. When executing applications in clouds, deployment is an
important step to make required software and data of an application avail-
able before execution. In cloud environments, Software as a Service (SaaS), e.g.,
Google Apps, or Platform as a Service (PaaS), e.g., Amazon EMR, aim at hid-
ing the deployment complexity by automating deployment during resource pro-
visioning [13]. However, these solutions are not sufficient for applications that
require infrastructure-level optimization under the given platform services or
application-level customized environments, which are not included in predefined
virtual machines or container images.

Time critical applications, such as disaster early warning systems, often have
very high performance requirements for data communication and processing [18].
To support time critical applications using cloud environments, developers often
use Infrastructure as a Service (IaaS) to optimize overall system-level perfor-
mance by selecting the most suitable virtual machines, customizing their network
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 345–357, 2017.
DOI: 10.1007/978-3-319-64203-1 25



346 Y. Hu et al.

topology and optimizing the scheduling of execution on the virtual infrastruc-
ture [6,16,20]. During the execution, the virtual infrastructure often has to be
adapted, e.g., virtual machines scaling out/in or up/down to handle dynamically
changing workloads [19]. A deployment service is thus needed not only before the
application execution for making the environment available, but also at runtime.
In particular, it is necessary to ensure that components can be deployed immedi-
ately whenever the application needs to re- scale to handle increased workloads,
or migrate components to new VMs. Moving the repository of components closer
to the application is necessary to ensure that such deployments can be handled
as rapidly as possible for time critical applications. Furthermore, the deploy-
ment service also has to be aware of time constraints, e.g., deadlines, required
for acceptable system performance. Deployments that fail to finish within certain
deadlines harm user experience, affect application performance, and even incur
penalties for application failure. However current cloud providers lack explicit
support for deploying time critical applications where users need to manually
deploy their applications step by step and have no guarantee regarding deploy-
ment deadlines.

In this paper, we propose a Deadline-aware Deployment System (DDS)
for time critical applications in clouds. DDS enables users to automatically
deploy time critical applications and provide scheduling mechanisms to guaran-
tee deployment deadlines. First, DDS helps users to create a local repository for
application components instead of using a remote repository, providing a guar-
antee of bandwidth for transmitting application packages where the transmission
rate directly from the remote repository is widely varying. To be deadline-aware,
DDS schedules deployment requests based on Earliest Deadline First (EDF) [8]
which is a classical scheduling technique to minimize the number of deployments
that miss deadlines. Furthermore, we design bandwidth-aware EDF to facilitate
DDS to satisfy a greater number of deadline requirements and achieve sufficient
utilization of bandwidth. In the evaluation, we demonstrate that DDS signif-
icantly reduces the number of deployments that miss deadlines, and leverages
bandwidth sufficiently. We summarize our contributions as follows:

– We design and implement DDS, a deadline-aware deployment system which
can support automatic deployments of time critical applications in clouds.

– We build on DDS to implement deployment scheduling algorithms that min-
imize the number of deployments that miss deadlines and maximize the uti-
lization of bandwidth.

– We experimentally evaluate the benefits of DDS on the ExoGENI [2] test-bed
and large-scale simulations by comparing it with three different scheduling
techniques.

2 Problem Statement

A typical scenario for deploying distributed applications in clouds involves two
basic steps: transmitting necessary application packages or software components



Deadline-Aware Deployment for Time Critical Applications in Clouds 347

from remote repositories to virtual machines (VMs) in the provisioned infrastruc-
ture; and installing the software once runnable. In this paper, we assume con-
tainers, e.g., Docker [9], are the default way to wrap application components.

For a distributed application, the deployment service has to know the location
of application components, and the location to deploy (VMs) for each compo-
nent. Those container images are often stored in a repository, e.g., Docker hub,
which is not a part of the provisioned virtual infrastructure. The deployment
service should schedule the sequence of each component based on the applica-
tion description for transmitting and installing each individual component. The
time for deploying a single container (Td) typically contains time cost for trans-
mitting the component from its repository (Tf ) and installing (extracting files
from the Docker image) the component (Ti). The total time of the deployment of
the whole application starts from the first component transmission until the last
component finishes its installation. When an application contains more com-
ponents, careless scheduling of the deployment sequence might lead to a high
time cost, which can eventually influence the execution of the application if key
application components are delayed during deployment.

Tf depends on the size of the container and the network bandwidth between
repository and target. Ti mainly depends on the performance of the VM and
the complexity of the container itself. In many cases, Tf is much bigger than
Ti. Table 1 shows some observations in a private cloud environment (ExoGENI
[2]). We created VMs which are “xo.medium” configuration in three different
locations: Boston, Washington and Houston. We found that Tf is widely vary-
ing because the internet connection between VMs and Docker hub is different
between different locations, and Ti is stable for the same VM configurations. For
meeting the deployment time constraints of time critical applications in provi-
sioned virtual infrastructure, the key challenge is how to minimize the transmis-
sion time Tf and predict the installation time Ti. Installation time prediction is
not the focus on this paper—we assume that existing predictors [11] can achieve
good estimations of installation time. In this paper, we focus on the transmission
process (Tf ) of deployment.

Table 1. Comparison of transmission time and installation time in different locations

Docker image Image size Boston rack Washington rack Houston rack

ubuntu 400Mb Tf : 40.8 s(±2.2 s) Tf : 27.0 s(±1.5 s) Tf : 20.3 s(±1.5 s)

Ti : 6.3 s(±0.5 s) Ti : 6.4 s(±0.4 s) Ti : 6.3 s(±0.6 s)

nginx 576Mb Tf : 58.7 s(±2.5 s) Tf : 38.9 s(±2.6 s) Tf : 29.2 s(±1.8 s)

Ti : 9.3 s(±0.7 s) Ti : 9.1 s(±0.5 s) Ti : 9.3 s(±0.6 s)

mongodb 1200Mb Tf : 122.4 s(±3.0 s) Tf : 81.0 s(±3.4 s) Tf : 60.9 s(±1.9 s)

Ti : 15.4 s(±0.5 s) Ti : 15.7 s(±0.8 s) Ti : 15.5 s(±0.8 s)

cassandra 1296Mb Tf : 132.2 s(±3.1 s) Tf : 87.5 s(±3.4 s) Tf : 65.7 s(±2.3 s)

Ti : 17.1 s(±0.9 s) Ti : 17.3 s(±0.7 s) Ti : 17.4 s(±0.6 s)



348 Y. Hu et al.

The deployment model in this work is a set of deployment requests. The
deployment service has to optimize the time cost by scheduling component trans-
missions carefully, and parallelize the data transfer based on the time constraint
obtained from the application. We model the deployment request as a tuple
Ri = (vi, si, di), where vi is the target virtual machine to deploy request Ri,
si is the application size (e.g., Mb), and di is its deadline. As we concentrate
on transmission, we model bandwidth information for provisioned VMs as sets
B = {b1, b2, b3, . . . , bn}, where bi denotes the bandwidth of virtual machine i.
This means that the throughput of virtual machine i can not exceed bi during
the transmission process, and the bandwidth is stable based on the SLA provi-
sioning mechanisms [3] in this context. We denote the bandwidth of the target
machine vi as bj , so that the transmission time of request Ri can be represented
as Tf = si

bj
. Similarly, the deployment time can be represented as Td = si

bj
+ Ti.

The problem of this paper is thus to investigate the scheduling mechanisms
needed to meet the deployment deadlines (i.e., ensure that Td ≤ di) of time
critical applications in clouds.

3 Deadline-Aware Deployment System

This section highlights our approach in DDS. DDS aims to provide a deadline-
aware, efficient and automatic deployment system that supports time critical
applications on infrastructure as a service on cloud systems. As we mainly con-
sider the transmission part of the deployment procedure in this paper, DDS
focuses on the network of the underlying distributed system to provide the best
guarantee for deployment within deadlines.

3.1 Design Principles

Repository Location. The repository for the application is a shared stor-
age from which application packages can be fetched to be installed on another
machine. The repository can be located in a remote server or in the cloud already.
The location of the repository can directly impact the deployment time because
the network bandwidth between cloud VMs and between a VM and a remote
repository in a different location can be very different. Compared to a remote
repository, a local repository within a cloud has some obvious advantages. First,
the local repository has greater transmission capacity than the remote reposi-
tory. Second, the bandwidth of the local repository inside a cloud is more stable,
which provides a guarantee regarding the transmission time. Third, the local
repository is more flexible due to the possibility of personalized configuration.
Thus, DDS would help users to create a local repository first if there is only a
remote repository from which to fetch application packages.

Deadline-Aware Mechanism. As the goal of DDS to meet the deadline of
requests, whether the system is aware of the deadline is important for deploy-
ment. Consider a common time critical application scenario involving two deploy-
ment requests sent to the same application component provider simultaneously,



Deadline-Aware Deployment for Time Critical Applications in Clouds 349

Fig. 1. Awareness of deadlines can be used to meet two deadlines

where one request has a tighter deadline than the other. The resulting requests
share a bottleneck via which to transmit application packages. As shown in Fig. 1,
with today’s setup, the transport protocol (e.g., TCP) strives for fairness and
the transmission finishes for both requests almost simultaneously. However, only
one of the requests meets its deadline which makes the another request useless or
degrades its value. Alternatively, given explicit information about deployment
deadlines, the system can arrange the transmission order to better meet the
deployment deadline.

Fig. 2. Awareness of bandwidth can be used to meet two deadlines

Bandwidth-Aware Mechanism. In addition to deadline-aware scheduling, to
be aware of bandwidth is another significant attribute for deployment. Consider
another scenario with two deployment requests, where the second request pulls
a larger application package. The resulting requests also share a link to trans-
mit their respective packages. As shown in Fig. 2, the deployment system has
information about the deadlines and schedules the transmission based on those
deadlines. However only one request meets its deadline. Because the transmission
bottleneck is the bandwidth of the target machine, there is some spare band-
width on the server which is not used. Thus, given explicit information about
the bandwidth capacity of each machine in the cloud, the system could schedule
more deployment requests and leverage the bandwidth more efficiently.



350 Y. Hu et al.

3.2 Scheduling Algorithm

In this section, we zoom in on the design principles presented in Sect. 3.1 by
providing an algorithmic description. The main goal of our algorithms is to min-
imize the deadline miss rate: the application packages should be transmitted to
the target machine within the deadline wherever possible. In addition to mini-
mizing miss rate, we should maximize the bandwidth utilization to reduce the
total transmission time. To achieve both these goals, we employ EDF to priori-
tize requests and design bandwidth-aware EDF to support parallel transmission
and realize dynamic rate control.

EDF Scheduling. The key insight guiding the design of deadline-aware
scheduling is derived from the classic real-time scheduling algorithm Earliest
Deadline First (EDF) [8], which prioritizes tasks based on their deadline. EDF
is an optimal scheduling algorithm in that if a set of deadlines can be satisfied
under some schedule, then EDF can satisfy them too.

We adopt EDF to schedule deployment requests. When a deployment request
comes, DDS compares the deadline of new request with previous requests and
then sets the corresponding priority relative to the other deadlines. DDS then
puts the new request into the request queue where the requests are sorted by
priority. The algorithm is described in Algorithm1. Consequently, DDS obtains
the request from the queue and starts to transmit application packages to the
target machine.

Algorithm 1. EDF scheduling
Input: The new deployment request Ri
Output: The request queue RQ where requests sorted by the deadline
1: for each Rj ∈ RQ do
2: if Ri.deadline < Rj.deadline then
3: RQ.insert(Ri)
4: return RQ
5: end if
6: end for
7: RQ.append(Ri)
8: return RQ

Bandwidth-Aware EDF Scheduling. In addition to EDF scheduling, we
design bandwidth-aware scheduling in cooperation with EDF scheduling. The
key idea of bandwidth-aware scheduling is to make use of the spare bandwidth
available between the local repository and the target as much as possible for
parallelizing multiple requests. Thus, DDS needs the bandwidth information for
each machine in the cloud. DDS would collect the bandwidth information before
the whole deployment procedure begins.



Deadline-Aware Deployment for Time Critical Applications in Clouds 351

Algorithm 2. Bandwidth-aware EDF scheduling
Input: throughput and bandwidth of the local repository
1: while throughput < bandwidth do
2: if RQ /∈ ∅ then
3: Ri = RQ.pop()
4: bj = GetBandwidth(vi)
5: if throughput + bj < bandwidth then
6: throughput = throughput + bj
7: else
8: SetTransmissionRate(Ri, bandwidth − throughput)
9: throughput = bandwidth

10: end if
11: StartTransmission(Ri)
12: end if
13: end while
14: return

EDF is optimal when the deadlines can be satisfied. However, without band-
width information, EDF would schedule requests in a sequential way which
leads to insufficient utilization of bandwidth or even missed deployment dead-
lines. However if we directly schedule requests in a parallel way, the bandwidth
contention among different requests can also cause deployment deadlines to be
missed. Therefore, the challenge of bandwidth-aware scheduling is how to dynam-
ically allocate transmission rates for deployment requests in order to avoid unnec-
essary contention. For this purpose, we design bandwidth-aware EDF algorithm
as described in Algorithm 2.

As per the description of bandwidth-aware EDF, if there is spare bandwidth
in the local repository, DDS will continue to obtain requests from the request
queue until the required bandwidth is equal or greater than the local reposi-
tory bandwidth. DDS then sets the specific rate for the last deployment request
to make sure the total required bandwidth is equal to the bandwidth of local
repository. Consequently, it avoids bandwidth contention with previous deploy-
ment requests and makes full use of spare bandwidth to transmit. Once a new
deployment request arrives, DDS performs bandwidth-aware EDF scheduling
after putting the request in the request queue. When one deployment request
finishes, DDS will allocate the released bandwidth for the running requests first,
and then perform bandwidth-aware EDF scheduling again.

4 Evaluation

In this section, we describe experiments for quantitative evaluation of the
deadline-aware deployment system. We perform three kinds of experiments.
First, we evaluate the transmission time using a DDS local repository versus
a remote repository. Second, we evaluate DDS in comparison with three typical
scheduling algorithms by running experiments on our cloud test-bed. Third, we
evaluate DDS in larger-scale simulations.



352 Y. Hu et al.

4.1 Repository Evaluation

In this section, we compare the transmission time to a target machine from a
DDS local repository and a remote repository based on Docker. In most common
cases, the application provider only has the repository outside cloud. Thus, DDS
would help users to create local repository within their cloud first. We provision
two virtual machines with 50Mbps bandwidth in the ExoGENI Boston rack and
create a local repository in one of them. Then, we use the other machine to
fetch the image from the local repository and also the original remote repository
(Docker Hub). The comparative results are shown in the Table 2. Note that the
transmission time (Tf ) from the local repository is much less than from the
remote repository, the reason being that the bandwidth inside cloud is much
better than outside.

Table 2. Comparison of transmission time from different repository

Docker image Image size Local repository Remote repository

ubuntu 400 Mb Tf : 8.1 s(±1.1 s) Tf : 40.8 s(±2.2 s)

nginx 576 Mb Tf : 11.7 s(±1.3 s) Tf : 58.7 s(±2.5 s)

mongodb 1200 Mb Tf : 24.4 s(±1.2) Tf : 122.4 s(±3.0 s)

cassandra 1296 Mb Tf : 26.4 s(±1.5) Tf : 132.2 s(±3.1 s)

4.2 Testbed Experiments

In this section, we evaluate DDS alongside three typical scheduling algo-
rithms in ExoGENI [2] test-bed. ExoGENI is a networked infrastructure-as-
a-service (NIaaS) platform where researchers can define the network topology
and bandwidth of virtual infrastructures. In our experimental setup, we chose
the “xo.xlarge” type of machine as our local repository, and all other application
nodes we chose “xo.medium” type machines. The guest OS in VMs which are
provisioned for evaluation is Ubuntu 14.04. In the experiment, we use iPerf [12]
to simulate the application package transmission, therefore the size of applica-
tion package can be customized via iPerf in the evaluation. For transmission rate
control, we leverage Linux Traffic Control (TC) to perform deployment request
rate limiting. We use two-level Hierarchical Token Bucket (HTB) in TC: the root
node classifies requests to their corresponding leaf nodes based on IP address
and the leaf nodes enforce each request rate.

Schemes to Compare: We compare the following schemes with DDS.

– FIFO: All the deployment requests are scheduled by the arrival time of the
request in a sequential way.

– EDF: All the deployment requests are scheduled by the EDF algorithm in a
sequential way.



Deadline-Aware Deployment for Time Critical Applications in Clouds 353

– PARALLEL: All the deployment requests are scheduled immediately after
arrival in a parallel way.

Through comparison with these three schemes, we can inspect the benefits from
DDS for different aspects. FIFO is the most common scheduling algorithm in
distribution. EDF is optimal in sequential scheduling when the deadline can be
satisfied, but it is not bandwidth-aware. PARALLEL can make high utilization
of the bandwidth, but it is not deadline-aware.

Metrics: In this section, we compare the number of schedulable requests
(requests that meet the deadline) and the total deployment time among dif-
ferent schemes. The number of schedulable requests can indicate the satisfaction
of deadline requirements. The total deployment time can indicate the utilization
of network bandwidth.

In this experiment, we provision two kinds of bandwidth configuration to
evaluate DDS as the Table 3 described. We instantiate four nodes to deploy
time critical applications in ExoGENI. For these four nodes, we generate six
deployment requests which include the target machine, application size, arrival
time and the deadline as the Table 4 described. To understand the scheduling
mechanisms in DDS better, we assume that the installation time Ti of each
application is 1s in this experiment.

In Fig. 3, we inspect the number of schedulable requests on different schemes.
We observe that DDS can schedule more requests in two different bandwidth
configurations, because sequential scheduling (EDF, FIFO) can not meet all
the deadlines when multiple requests emerge simultaneously, and direct parallel
scheduling suffers from bandwidth contention. Figure 4 shows the total deploy-
ment time of various schemes. We note that the total deployment time of DDS
is less than EDF & FIFO, and similar to PARALLEL. This indicates that DDS
makes full use of network bandwidth.

4.3 Large-Scale Simulations

Our simulations evaluate DDS considering the common public cloud provider
(EC2, Azure) in this section. We evaluate the deployment schedulable ratio which
is the percentage of schedulable requests in different schemes.

Table 3. Bandwidth configuration

(a) Configuration A (Mbps)

Repository Node1 Node2 Node3 Node4

100 20 50 70 100

(b) Configuration B (Mbps)

Repository Node1 Node2 Node3 Node4

100 70 70 70 70

Table 4. Deployment request

Machine Size Deadline Arrival time

Node1 200 Mb 14 s 0 s

Node1 160 Mb 20 s 10 s

Node2 320 Mb 9 s 11 s

Node2 560 Mb 15 s 30 s

Node3 960 Mb 20 s 30 s

Node4 640 Mb 25 s 30 s



354 Y. Hu et al.

Fig. 3. Comparison of the number of
schedulable requests in various schemes

Fig. 4. Comparison of the total deploy-
ment time in various schemes

VMs Configuration: We equip the deployment server with 10 Gbps bandwidth
connection and application node with 1 Gbps bandwidth connection which are
typical configuration in public cloud. In the simulation, the number of application
nodes range over 10, 20, 40 and 80 nodes which are sufficient to account for most
distributed cloud applications.

Deployment Requests: We simulate the deployment service running 10 days
(Trunning) in the experiment. During this period, we generate deployment
requests in different densities to simulate deploying various applications on each
node. We denote Si

total as the total application size of all deployment requests

on node i. The request density of node i is equal to Si
total

Trunning∗10Gigabit , and the
request density of whole system is the average for each node. The overall request
density varies from 0.1 to 0.9. In the experiment, the deadline (di) of each request
ranges from 10s to 100s, and the application size is equal to di ∗ 1Gigabit. We
assume the installation time (Ti) is 1s in the simulation.

Figure 5 shows the deployment schedulable ratio in different scenarios. We
observe that DDS can reduce from 24% to 83% of the deployment deadline
miss ratio compared to EDF, from 26% to 89% compared to FIFO, and up to
86% compared to PARALLEL. Because EDF and FIFO schedule deployment
requests in sequential way, DDS can take advantage of parallelized deployments.
The PARALLEL scheme parallelizes deployments but suffers severe bandwidth
contention as request density increases. In contrast, DDS is bandwidth-aware
and provides dynamic transmission rate control to avoid bandwidth contention
for different deployment requests. In summary, DDS significantly reduces the
number of deadline missing requests for deploying cloud applications.



Deadline-Aware Deployment for Time Critical Applications in Clouds 355

(a) 10 nodes (b) 20 nodes

(c) 40 nodes (d) 80 nodes

Fig. 5. Comparison of the deployment schedulable ratio in different scenarios

5 Related Work

In recent years, deployment has been an important topic in distributed environ-
ment, service-oriented systems and cloud computing. The techniques in DDS are
related to the following areas of research:

Automatic Cloud Application Deployment. To enable automatic deploy-
ment has been the focus of several recent works. SO-MVDS [5] allows users to
design and create virtual machines with specific services running in them and
define a service deployment request to enhance the efficiency of service deploy-
ment. Li et al. [7] propose a general approach to application deployment. They
adopt contextualization process which is to embed various scripts in VM images
to initiate applications. DDS, on the other hand, is compatible with Docker
containers, achieving automatic deployment more easily.

On-Demand Image Distribution. The idea of distributing images in clouds
efficiently has been explored in recent works. Vaquero et al. [15] proposes a solu-
tion based on combining hierarchical and Peer to Peer (P2P) data distribution
techniques. VDN [10], a new VM image distribution network on the top of chunk-
level, enables collaborate sharing in cloud data centers. These approaches focus



356 Y. Hu et al.

on fast transmission. In contrast, DDS is not only transmitting images efficiently
but is also aware of deadlines via scheduling mechanisms.

Deadline-Aware Scheduling Techniques. D3[17] and D2TCP [14] are trans-
port protocols designed for deadline-aware transmission inside data centers.
These protocols add the deadline information to TCP and provide control
mechanisms based on the deadline information. Techniques like Karuna [4] and
pFabric [1] prioritize network flows to transmit. All these approaches schedule
transmission at flow level. In contrast, DDS exploits the information of band-
width to schedule transmission in application level which is more relevant to
users requirements.

6 Conclusion

It is challenging to deploy time critical applications into clouds while meeting
the time constraints of deployment. This is an important and practical problem,
but has been neglected by prior work in this field. In this paper, we propose
a Deadline-aware Deployment System (DDS) which helps users to create local
repository and automatically deploy applications into clouds. We investigate the
scheduling mechanisms in cloud deployment system and implement bandwidth-
aware EDF scheduling algorithm in DDS. DDS schedules deployment requests
based on deadline and bandwidth information to make better scheduling deci-
sion. In the evaluation, we showed that DDS leverages network resources suf-
ficiently and significantly reduces the number of missed deployment deadlines.
Furthermore, we plan to investigate multiple repositories deployment and inter-
data center network for time critical cloud applications.

Acknowledgments. This research has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreements 643963
(SWITCH project), 654182 (ENVRIPLUS project) and 676247 (VRE4EIC project).
The research is also partially funded by the COMMIT project.

References

1. Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar, B., Shenker,
S.: pFabric: minimal near-optimal datacenter transport. In: ACM SIGCOMM
Computer Communication Review, vol. 43, pp. 435–446. ACM (2013)

2. Baldin, I., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C., Orlikowski, V.,
Heermann, C., Mills, J.: ExoGENI: a multi-domain infrastructure-as-a-service test-
bed. In: McGeer, R., Berman, M., Elliott, C., Ricci, R. (eds.) The GENI Book, pp.
279–315. Springer, Cham (2016). doi:10.1007/978-3-319-33769-2 13

3. Casalicchio, E., Silvestri, L.: Mechanisms for SLA provisioning in cloud-based ser-
vice providers. Comput. Netw. 57(3), 795–810 (2013)

4. Chen, L., Chen, K., Bai, W., Alizadeh, M.: Scheduling mix-flows in commodity dat-
acenters with Karuna. In: Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference, pp. 174–187. ACM (2016)

http://dx.doi.org/10.1007/978-3-319-33769-2_13


Deadline-Aware Deployment for Time Critical Applications in Clouds 357

5. Gao, W., Jin, H., Wu, S., Shi, X., Yuan, J.: Effectively deploying services on vir-
tualization infrastructure. Front. Comput. Sci. 6(4), 398–408 (2012)

6. Hu, Y., Li, H., Peng, Y.: NVLAN: a novel VLAN technology for scalable multi-
tenant datacenter networks. In: 2014 Second International Conference on Advanced
Cloud and Big Data (CBD), pp. 190–195. IEEE (2014)

7. Li, W., Svärd, P., Tordsson, J., Elmroth, E.: A general approach to service deploy-
ment in cloud environments. In: 2012 Second International Conference on Cloud
and Green Computing (CGC), pp. 17–24. IEEE (2012)

8. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

9. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

10. Peng, C., Kim, M., Zhang, Z., Lei, H.: VDN: virtual machine image distribution
network for cloud data centers. In: 2012 Proceedings IEEE INFOCOM, pp. 181–
189. IEEE (2012)

11. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459,
pp. 122–142. Springer, Heidelberg (1998). doi:10.1007/BFb0053984

12. Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K.: Iperf: the TCP/UDP
bandwidth measurement tool (2005). http://dast.nlanr.net/Projects

13. Tsai, W., Bai, X., Huang, Y.: Software-as-a-service (SaaS): perspectives and chal-
lenges. Sci. China Inf. Sci. 57(5), 1–15 (2014)

14. Vamanan, B., Hasan, J., Vijaykumar, T.: Deadline-aware datacenter TCP
(D2TCP). ACM SIGCOMM Comput. Commun. Rev. 42(4), 115–126 (2012)

15. Vaquero, L.M., Celorio, A., Cuadrado, F., Cuevas, R.: Deploying large-scale
datasets on-demand in the cloud: treats and tricks on data distribution. IEEE
Trans. Cloud Comput. 3(2), 132–144 (2015)

16. Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H., Pang, J., de Laat, C., Zhao,
Z.: Planning virtual infrastructures for time critical applications with multiple
deadline constraints. Future Gener. Comput. Syst. (2017)

17. Wilson, C., Ballani, H., Karagiannis, T., Rowtron, A.: Better never than late:
meeting deadlines in datacenter networks. In: ACM SIGCOMM Computer Com-
munication Review, vol. 41, pp. 50–61. ACM (2011)

18. Zhao, Z., Martin, P., De Laat, C., Jeffery, K., Jones, A., Taylor, I., Hardisty,
A., Atkinson, M., Zuiderwijk, A., Yin, Y., Chen, Y.: Time critical requirements
and technical considerations for advanced support environments for data-intensive
research. In: 2nd International Workshop on Interoperable Infrastructures for Inter-
disciplinary Big Data Sciences (IT4RIs) in the Context of IEEE Real-Time System
Symposium (RTSS) (2016)

19. Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor, I., Stankovski, V.,
Vega, I.G., Suciu, G., Ulisses, A., et al.: Developing and operating time critical
applications in clouds: the state of the art and the SWITCH approach. Procedia
Comput. Sci. 68, 17–28 (2015)

20. Zhou, H., Hu, Y., Wang, J., Martin, P., De Laat, C., Zhao, Z.: Fast and dynamic
resource provisioning for quality critical cloud applications. In: 2016 IEEE 19th
International Symposium on Real-Time Distributed Computing (ISORC), pp. 92–
99. IEEE (2016)

http://dx.doi.org/10.1007/BFb0053984
http://dast.nlanr.net/Projects

	Deadline-Aware Deployment for Time Critical Applications in Clouds
	1 Introduction
	2 Problem Statement
	3 Deadline-Aware Deployment System
	3.1 Design Principles
	3.2 Scheduling Algorithm

	4 Evaluation
	4.1 Repository Evaluation
	4.2 Testbed Experiments
	4.3 Large-Scale Simulations

	5 Related Work
	6 Conclusion
	References




