
Hardware Support for Scratchpad Memory
Transactions on GPU Architectures

Alejandro Villegas1(B), Rafael Asenjo1, Angeles Navarro1, Oscar Plata1,
Rafael Ubal2, and David Kaeli2

1 Department of Computer Architecture, University of Málaga, Andalućıa Tech,
29071 Málaga, Spain

{avillegas,asenjo,magonzalez,oplata}@uma.es
2 Department of Electrical and Computer Engineering, Northeastern University,

Boston, MA, USA
{ubal,kaeli}@ece.neu.edu

Abstract. Graphics Processing Units (GPUs) have become the accel-
erator of choice for data-parallel applications, enabling the execution of
thousands of threads in a Single Instruction - Multiple Thread (SIMT)
fashion. Using OpenCL terminology, GPUs offer a global memory space
shared by all the threads in the GPU, as well as a low-latency local
memory space shared by a subset of the threads. The latter is used as a
scratchpad to improve the performance of the applications.

We propose GPU-LocalTM, a hardware transactional memory (TM),
as an alternative to data locking mechanisms in local memory. GPU-
LocalTM allocates transactional metadata in the existing memory
resources, minimizing the storage requirements for TM support. In addi-
tion, it ensures forward progress through an automatic serialization
mechanism. In our experiments, GPU-LocalTM provides up to 100X
speedup over serialized execution.

Keywords: Transactional memory · Scratchpad memory · GPGPU

1 Introduction

Graphics Processing Units (GPUs) have been adopted as hardware accelera-
tors given their ability to significantly improve the performance of data-parallel
applications. Using OpenCL terminology, GPUs are organized as a set of highly
multi-threaded Single Instruction - Multiple Thread (SIMT) cores called com-
pute units (CUs) and feature two different memory spaces. The global memory
space provides high capacity with high latency. In contrast, the local memory
space (named shared memory in CUDA terminology) features a smaller capac-
ity with lower latency. Programmers are encouraged to use local memory as a
scratchpad to speedup their applications (in fact, 27 out of the 52 sample appli-
cations in the AMD APP SDK for OpenCL prove the benefit from using local
memory).

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 273–286, 2017.
DOI: 10.1007/978-3-319-64203-1 20



274 A. Villegas et al.

Transactional Memory (TM) [6,7] has emerged as a promising alternative to
locking mechanisms to coordinate concurrent threads. TM provides the concept
of a transaction to determine the bounds of a critical section (usually providing
TX Begin and TX Commit functions) enforcing atomicity and isolation. In con-
trast to traditional lock-based mechanisms, transactions are allowed to run in
parallel. A conflict occurs if two transactions have to access to the same mem-
ory location and, at least, one of the accesses is a write. In such situations, one
of the transactions aborts, discarding its updates to memory and restarting its
execution. This is achieved by implementing appropriate conflict detection and
version management mechanisms. Recently, TM solutions have been proposed
for GPU global memory, both software [2,8,10,12] and hardware [3–5].

Motivating Example. The left side of Fig. 1 shows the traditional implemen-
tation of a spinlock. In the SIMT programming model, as threads execute in
lockstep, only one of them is able to get the lock and leave the while-loop (line
1). As there is a divergence in the execution of the program, the SIMT pro-
gramming model sets a convergence point at the end of the while-loop (line 2),
creating an implicit barrier. This implicit barrier forces the thread who acquired
the lock to wait for the rest to finish the execution of the while-loop. This will
never happen, as the lock is held by the waiting thread and the remaining threads
will not leave the while-loop until the lock is released. Thus, the classic spinlock
creates a deadlock in the SIMT programming model. The central part of Fig. 1
shows the required transformation for this spinlock to work. In this case, all the
active threads enter the while-loop (line 2). The convergence point (i.e., implicit
barrier) for this loop is set in line 8, which will be eventually reached by all
the threads. Then, only one of the threads acquires the lock (line 3) inside an
if-statement. In this case, the convergence point is set at line 7. This way, the
threads that did not acquire the lock perform the implicit barrier at line 7, while
the thread that acquired the lock executes its critical section (line 4), sets itself
to go to the convergence point of the while-loop (line 5), and releases the lock
(line 6). With this code transformation we can safely implement coarse-grained
locks in the SIMT programming model.

Fig. 1. Coarse-grained lock implementation in CPUs (left), its required transforma-
tion to avoid deadlocks in the SIMT programming model (center), and the TM-based
solution (right).

Using a coarse-grained lock creates an inefficient serialization of the execution
of the critical sections. Fine-grained locks can help improving parallelism, but



Hardware Support for Scratchpad Memory Transactions 275

its use is complicated and error-prone. Furthermore, its implementation can be
harder in the SIMT programming model, as transformations similar to the ones
shown in Fig. 1 are required in order to avoid deadlocks and livelocks. In addition,
the use fine-grained locks is application-specific and a generic template can not be
provided. Thus, it is hard to implement automatic code transformations similar
to the one explained above. Given these problems, TM has been proposed to
both improve parallelism of the applications and ease programming. The right
side of Fig. 1 shows how simple is the implementation of mutual exclusion using
the TM interface. In order to discuss the performance of the TM implementation,
the applications Hash Table (HT) and Genetic Algorithm (GA) (see Sect. 5 for
a full description) were implemented on a GPU using fine-grained locks (FGL)
as well as with TM to coordinate the execution of 256 threads (work-items
in OpenCL terminology). The implementation of these applications were done
taking advantage of the low-latency provided by the local memory. HT is a
simple application and the 3 implementations require a similar programming
effort. Both the FGL and TM versions outperform the serial execution (90X and
60X, respectively). To implement GA using a FGL approach, lock acquisition
has to be serialized to avoid deadlocks, requiring more programming effort. Also,
execution time increases by 30% due to lock management overhead. However, a
TM-based solution halves the execution time and requires a similar programming
effort as a serial implementation.

This paper introduces GPU-LocalTM, a lightweight hardware TM for local
memory. The goal is to use TM as an efficient alternative to existing methods
(i.e., locks). GPU-LocalTM is designed in a way that reuses existing memory
resources (if active), and can be disabled (if not needed). The conflict detection
and version management mechanisms are distributed per local memory bank,
improving concurrency. Lastly, GPU-LocalTM implements an automatic serial-
ization mechanism that ensures forward progress of the transactions without the
need of any programmer action.

The rest of the paper is organized as follows. Section 2 provides the back-
ground and discusses the related work. Section 3 presents the design of GPU-
LocalTM. Section 4 presents the simulation framework used for evaluation,
and Sect. 5 discusses the experimental evaluation. Finally, Sect. 6 draws the
conclusions.

2 Background and Related Work

Baseline GPU Architecture. We use OpenCL terminology to describe our
baseline GPU architecture, which is the AMD’s Southern Islands [1] (see Fig. 2).
An ultra-threaded dispatcher assigns work-groups (work-groups are a set of com-
puting threads called work-items) to the Compute Units (CUs). A work-group
is assigned to a single CU, but a CU may contain several work-groups. This
architecture supports a maximum of 256 work-items per work-group. This set of
work-items are grouped in 4 wavefronts of 64 work-items executing in lockstep.
Wavefronts are the schedulable unit within the CU. All work-groups share data



276 A. Villegas et al.

through the physical global memory available on the GPU. Work-items within
a work-group have access to the local memory, a low-latency memory used to
speedup applications. Each CU contains a wavefront scheduler, 4 SIMD units
(consisting of vector ALUs and general purpose vector registers), a scalar unit
(with a scalar ALU and general purpose scalar registers), a local data share
(LDS) unit and a L1 data cache.

Fig. 2. Baseline GPU architecture: AMD’s Southern Islands.

The LDS unit, which contains the local memory, deserves special attention
as it is a key component in the GPU-LocalTM design. The LDS included in
each CU features 64 KB distributed across 32 banks with interlaced addressing
(consecutive memory addresses map to consecutive banks). Each work-group
is allowed to use only 32 KB, leaving the other 32 KB reserved for concurrent
work-group execution. The LDS unit is in charge of managing this local mem-
ory. The accesses to local memory issued by a wavefront are scheduled by the
LDS unit, supporting up to 32 coalesced (i.e., without bank conflicts) accesses
simultaneously. Uncoalesced memory accesses are serialized by the LDS unit.

Related Work. To the best of our knowledge, Kilo TM [3–5] is the only existing
hardware TM for GPUs. Kilo TM [5] operates on global memory and implements
conflict detection and version management at commit time (lazy) using a specific
Commit Unit. Kilo TM was improved by considering read-only transactions and
reducing bus communication [4], and to detect conflicts before sending transac-
tions to the Commit Units and to stall transactions that are likely to conflict [3].

In our proposal, we target different applications: Kilo TM addresses appli-
cations that synchronize at global memory and our proposal supports synchro-
nization at local memory. Both memory spaces have different purposes and very
different characteristics. For instance, the difference in latency of both memory
spaces affects application performance, even if they do not use any TM support.
Once both TM approaches are integrated, applications can be developed tak-
ing full advantage of the complete GPU memory model. In addition, we explore
eager (at memory access time) conflict detection and version management, in
contrast to the lazy Kilo TM approach, by adding logic to the LDS unit instead
of having a new dedicated unit for TM.



Hardware Support for Scratchpad Memory Transactions 277

There are a number of software TM proposals for GPUs which only use the
global memory space. Cederman et al. proposes two STM systems for graphics
processors [2], operating at work-group granularity. Xu et al., Holey et al., and
Shen et al. propose different STM approaches working at work-item granular-
ity [8,10,12].

3 GPU-LocalTM Design

GPU-LocalTM is a hardware TM for GPU local memory. Transactional execu-
tion, conflict detection, and, version management are implemented with minor
logic modifications in the wavefront scheduler, SIMD and LDS units. Required
space is taken from the scalar register file and the local memory banks.

Transactional SIMT Execution. In our baseline architecture, control flow of
the SIMT programming model is implemented with predication, using two 64-bit
masks managed by the hardware and the compiler. The execution mask (EXEC)
indicates, per wavefront, the work-items that are running or disabled (one bit
per work-item). The vector comparison mask (VCC) stores, for each work-item
within the wavefront, the resulting Z flag of arithmetic/logic operation. By com-
bining EXEC and VCC, compilers implement loops and conditionals. The VCC
and EXEC masks are mapped into two consecutive 32-bit scalar registers each
one (four 32-bit registers in total) [1].

In order to define the bounds of a transactional block of code, we add two
instructions to the ISA: TX Begin and TX Commit (see Fig. 1). These instruc-
tions work at a wavefront granularity as work-items within the wavefront execute
in lockstep. Local memory operations performed between these instructions are
transactional and are instrumented via hardware for conflict detection and ver-
sion management. The TX Begin sets the beginning of the transaction. When the
TX Commit instruction is reached, the transactional SIMT execution is respon-
sible for restarting the execution of the conflicting work-items (if any).

To implement this, we introduce a new 64-bit transaction conflict mask
(TCM) per wavefront (one bit per work-item). Similarly to EXEC and VCC
masks, TCM is mapped to two consecutive scalar registers. TCM is used to mark
conflicting work-items. The reason for not reusing EXEC is that it is explicitly
managed by the compiler [1] and allowing implicit hardware modifications can
lead to inconsistent situations. When the work-items within a wavefront execute
the TX Begin instruction, the TCM mask is reset (all bits to 0, meaning that
no conflict occurred). If a work-item detects a conflict the corresponding bit in
TCM is set to 1. When this bit is 1, it indicates the such work-item is disabled
(i.e., the enabled work-items are those whose EXEC bit is 1 and whose TCM
bit is 0). If all the TCM bits are 0 when the TX Commit instruction is reached,
then all transactions have finished with no conflicts. In other case, conflicting
transactions must retry the execution by copying TCM to EXEC and returning
to the TX Begin instruction (and, again, TCM is reset).



278 A. Villegas et al.

Fig. 3. Example of transactional SIMT execution. A work-item (WI) is enabled if
EXEC[WI] & !TCM[WI]. Single lines separate transaction executions.

Figure 3 shows an example of transactional execution using TCM. In this
example, during the execution of the transactions, work-item 1 detects a conflict,
is marked by setting its bit in TCM, and is disabled immediately. At commit
time, the rest of work-items successfully complete their transactions and wait
while work-item 1 is restarted. This second time, work-item 1 is able to complete.

Forward Progress. A livelock situation can be detected if the TCM remains
the same after two consecutive transaction re-executions. This means that two or
more work-items were not able to progress, creating an infinite loop. To resolve
this without requiring programmer action, GPU-LocalTM includes a two-level
serialization mechanism: wavefront serialization (WfS) mode and work-group
serialization (WgS) mode.

The basic WfS mode is enabled when a livelock situation is first detected. In
this mode, the transaction is retried a third time but, instead of clearing TCM
at the beginning of the transaction execution, only one of the active bits is reset.
This action results in the execution of the only selected work-item within the
wavefront during the next transaction retry (i.e., the rest are already marked as
conflicting). If the execution ends with no new conflicts, the transaction is again
retried but in normal mode (i.e., not using WfS). Otherwise, the conflict may
come from a work-item that belongs to a different wavefront. In such situations,
the basic WfS mode transfers to the basic WgS mode. In this mode, only the
current wavefront re-executes transactionally. Transactions executing in other
wavefronts are aborted, rolled back and stalled at the TX Begin instruction
until the selected work-item ends execution. Now that a single work-item within
the work-group is accessing local memory, no conflicts can occur and forward
progress is assured. After this execution, the transaction returns to normal mode
and the stalled wavefronts are allowed to continue execution.

Version Management. GPU-LocalTM uses eager version management, where
new local memory values are stored in place while old values are saved on the
side. Specifically, old values are stored in a memory area called shadow memory,
allocated in local memory. These values are used to restore the original state
of the local memory in case of a transaction abort. As the local memory is
multi-banked (32 banks in the case of our baseline GPU architecture), version



Hardware Support for Scratchpad Memory Transactions 279

Fig. 4. Version management (LDS unit) and register checkpointing (SIMD units) (a)
and shadow memory organization (b).

management and conflict detection can be carried out concurrently in different
banks (i.e., there is a shadow memory per bank). The shadow memory area is
organized in two spaces (see Fig. 4(a)): a backup space with enough room to
store backups for all of the local memory variables declared within the kernel
allocated in each bank, and an ownership space.

The shadow memory is organized as in Fig. 4(b): if there is a set of N words
in local memory, a contiguous section of N words is allocated to backup the
values, and after this section, N/4 additional words are reserved to store the
owners. Each word in the ownership region stores 4 owners (1 byte each). Given
this layout, when a memory access is issued to a location k, a backup value is
stored at word position N + k, and the work-item ID (owner) is stored at word
position 2N + k/4, byte k%4. By adopting this scheme, the hardware required
to backup a memory value and store its owner is minimal, as it only performs
integer addition and bit manipulation. In addition, capacity conflicts are avoided,
as each memory location is ensured to have space for its backup. The shadow
memory area is statically allocated by the compiler using the same mechanism
used for regular local memory variables [1,11].

Register Checkpointing. When starting a transaction (TX Begin instruc-
tion), the user-visible non-memory work-item state must be saved (and restored
on transaction abort). This includes vector and scalar registers. Vector registers
are checkpointed to a shadow register file. This is implemented by splitting the
vector register file in each SIMD unit into two equally sized parts. Every two
registers, one for each part, are paired together so as one of them acts as the
backup (shadow) register of the other (see Fig. 4(a)). Scalar registers, on the
other hand, are used to store scalar shared data for an entire wavefront, such as
a for-loop index. As this information is shared by 64 work-items, if some of them
commit their transactions while others abort, the value held by scalar registers
become inconsistent. For this reason, scalar registers are not checkpointed at the
beginning of a transaction. To allow for loops within a transaction, the compiler
must promote the use of work-item-private vector registers.



280 A. Villegas et al.

Conflict Detection. GPU-LocalTM performs eager conflict detection at a
work-item level. During the transactional execution of a wavefront, the LDS
unit serializes all local memory accesses so that, at a given time, a memory
bank is accessed by only one work-item. Parallel accesses to different banks do
not present conflicts, as the banks have different address ranges. Assuming a
multi-bank arrangement, conflict detection proceeds in two steps:

(1) Intra-bank conflict detection: conflicts are detected for memory accesses
within a bank. The conflict detection mechanism works in parallel for all
memory banks. This step is responsible of updating TCM, setting to 1 the
bits for those work-items involved in a conflict.

(2) Inter-bank conflict communication: once a conflict is detected in a memory
bank, it is communicated to the rest of banks in order to remove the shadow
memory entries allocated for the conflicting work-item. This is accomplished
through the TCM, avoiding the need of an expensive broadcast communica-
tion. TCM informs to each memory bank which work-items detected conflicts
(bits set to 1). For each one of these work-items, all the backups are restored
and the associated shadow memory is cleared.

We have designed two strategies for intra-bank conflict detection (inter-bank
conflict communication is common for both approaches).

Directory-Based Conflict Detection (DCD). In order to detect conflicts,
the DCD mechanism checks the ownership information associated to the memory
location being accessed. Valid bit V, required to differentiate empty and non-
empty entries, is stored in vector registers. The number of V bits required is
equal to the number of words allocated in each bank (see Fig. 4(b)). Provided
that N words are allocated, N/32 vector registers are needed to store the V bits.
Depending on the result of the check, three actions may occur (see Table 1(a)):

(1) First (new) access: the shadow memory entry has no owner associated (valid
bit V is 0). A copy of the current value of the memory location is stored in the
corresponding shadow memory entry and its owner is set to the work-item
that made the access (now V is set to 1).

(2) Repeated access: the owner of the shadow memory entry is the accessing
work-item. If the access is a read, the value in memory is returned. If it is a
write, the memory is updated.

(3) Conflict: the owner of the shadow memory entry is a different work-item
than the one that made the access. TCM is updated to mark this conflict,
setting to 1 the bit of the work-item accessing to memory. In addition, the
backup values of the accessing work-item are restored and all ownership
entries in the shadow memory for WI are deleted.

DCD is a simple and precise approach for detecting conflicts, but at the cost
of an additional local memory access to check the ownership records. Note that
this mechanism cannot filter out read-read conflicts.



Hardware Support for Scratchpad Memory Transactions 281

Table 1. Conflict detection using DCD (a) and SMDCD (b). WI is the accessing
work-item, o-WI is other work-item, “0/1” means 0 or 1. “Abort” means the following
actions: restore backup for WI, delete WI ownership entries and set TCM[WI] = 1.

Current State Mem. Next State
Owner V Operat. Owner V Action
Not set 0 Read or Write WI 1 back up value; read or write mem.

WI 1 Read or Write WI 1 read or write memory
o-WI 1 Read or Write o-WI 1 conflict; abort

(a)

Current State Mem. Next State
Owner S M Operat. Owner S M Action

Read WI 0 0 read memory
Not set 1 1 Write WI 0 1 back up value; write memory

Read WI 0 0/1 read memory
WI 0 0/1 Write WI 0 1 write memory

Read WI 1 0 read memory
WI 1 0 Write WI 1 0 Conflict (R→W); abort

Read o-WI 1 0 read memory
o-WI 0/1 0 Write o-WI 0/1 0 Conflict (R→W); abort

Read o-WI 0 1 Conflict (W→R); abort
o-WI 0 1 Write o-WI 0 1 Conflict (W→W); abort

(b)

Shared-Modified DCD (SMDCD). The DCD mechanism can be improved
by adding two state bits per memory location to the ownership records: the S
bit, set to 1 if multiple work-items accessed the location, and the M bit, set to 1 if
the location has been written. These bits replace the valid bit (V) (see Fig. 4(b))
and permit to filter out read-read conflicts. In this case, provided that N words
are allocated per memory bank, N/16 32-bit vector registers are used to store
this information. The new mechanism is called Shared-Modified Directory-based
Conflict Detection (SMDCD).

The case of both state bits set to 1 at the same time is used to encode
the “not set” (i.e., V = 0) owner state. This way, when starting a transaction
(TX Begin), both S and M are set to 1. For each transactional access to local
memory, the SMDCD mechanism carries out the actions specified in Table 1(b).
Accessing a memory location for the first time sets the owner in shadow memory
and performs a backup of the current memory value if the access is a write (bit
M permits to distinguish between reads and writes). A read access to memory
location owned by a different work-item is allowed as long as M is 0. These
accesses set the S bit to 1. If M is, however, 1, a conflict is detected (read after
write). A write access is allowed only if the owner is the accessing work-item and
the memory location was not accessed by another work-item (bit S set to 0).
These accesses set the M bit to 1. Otherwise, they are considered conflict (write
after read, or write after write).

4 GPU-LocalTM Modeling

The implementation of GPU-LocalTM requires changes to the GPU microarchi-
tecture. We have implemented these changes using the Multi2sim 4.2 simulation



282 A. Villegas et al.

framework [11] which supports the AMD Southern Islands family of GPUs. These
changes introduce memory and latency overheads in the microarchitecture.

Latency Overhead. The TX Begin and TX Commit instructions are modeled
as scalar instructions with an extra cycle of latency to manage the EXEC and
TCM masks. Accesses to shadow memory are modeled as local memory accesses,
plus an extra cycle used to manage the state bits.

Storage Overhead. Storage resources required in GPU-LocalTM are taken
from those available in the CU. The amount of local memory available per work-
group depends on the size of the shadow memory. If the user requests N words to
store local variables, the shadow memory allocates another N words for backups
and N/4 words for the ownership records (see Fig. 4). As the physical amount of
local memory is 64KB, the maximum value of N is 29126 bytes and N/4 is 7282
bytes. This represents and overhead of ∼56% of the total local memory space.
Vector registers are used to store the state bits. In the case of DCD, we need
to store a V bit per word, requiring a maximum of 228 registers This supposes
∼0.3% of 65536 available. In the case of SMDCD, the number of registers needed
doubles. The 4 TCMs required for a work-group (one per wavefront) use 8 scalar
registers (two 32-bit registers for a 64-bit TCM, ∼0.4% of 2048 available). GPU-
LocalTM may require to use the full amount of physical memory (64KB) for
memory-demanding workloads, reducing potential concurrency. GPU-LocalTM
is designed with the principle of not adding extra memory resources and to be
fully configurable: no TM-dedicated memory needs to be added and the amount
memory available is not affected if no TM support is needed. Furthermore, the
programmer (or compiler) can opt for a lock implementation if no resources are
available for TM support, and the runtime can assign new work-groups to a
different CU to improve concurrency.

5 Evaluation

We have designed eight TM benchmarks to evaluate GPU-LocalTM in specific
scenarios. All the experiments execute a single work-group with the maximum
number of work-items allowed (i.e., 4 wavefronts of 64 work-items each, for a
total of 256 work-items). The benchmarks are implemented in 3 different ver-
sions: a TM version, a fine-grained locks (FGL) or atomics version, and a third
version serializing the critical section. In addition, each application uses two dif-
ferent inputs to test different levels of contention: high contention (HC) and low
contention (LC). Table 2 summarizes the descriptions of these workloads.

Note that the HT, IT, DB and QU implementations using atomics are simple
and the programming effort is comparable to the use of TM. However, GA, KM,
GC and VA require extra lock management for FGL (17%, 10%, 42%, and 22% of
the total code, respectively). The DB and QU applications are prone to conflicts
and are designed to stress the TM to understand the possible sources of overhead



Hardware Support for Scratchpad Memory Transactions 283

(i.e., they test the TM beyond its expected capabilities). The serialization of the
critical section is implemented by delegating the work of the whole work-group to
a single work-item.

Table 2. Characteristics of the applications used for evaluation

Bench. Description Bench. Description

HT Inserts elements in a hash table,
searching for the desired position.
Features short and read-only
transactions

IT Similar to HT, but uses an
index to point to the desired
position. Features short and
read-modify-write transactions

VA The Vacation workload from the
STAMP [9] suite, adapted and
evaluated for inputs that modify
from 2–4 elements. Features long
transactions with a low probability
of conflict

GA Genetic algorithm used to solve
an optimization problem
searching for the best solution
by combining a set of possible
solutions. Features long and
read-modify-write transactions

GC Decentralized Graph Coloring
algorithm. Features read-only
transactions

KM Implementation of the K-Means
clustering algorithm. Features
long transactions with multiple
memory accesses

DB Simulates an in-memory database
composed of multiple IT tables.
Features multiple memory accesses

QU Simulates the queue and
dequeue operations on a
concurrent queue. Features
short transactions with a high
probability of conflict

Fig. 5. Speedup w.r.t. TX. serialization (higher is better).

Speedup. Figure 5 presents the speedup achieved by the two different conflict
detection strategies (DCD and SMDCD), fine-grained locks (FGL), and when
serializing the critical sections. Performance is relative to serialized execution.
In general, both DCD and SMDCD have similar performance. The exception
are these applications with read-modify-write and read-only transactions that



284 A. Villegas et al.

do not benefit from the SMDCD features. For the first set of applications (HT,
IT, VA, and GC) both TM solutions and FGL outperform serial execution. The
exception is VA when using FGL: the overhead of lock management is too high
and such algorithm is not suitable for the use of fine-grained locks in a SIMT
architecture. In the case of low contention scenarios, the performance of GPU-
LocalTM is similar to FGL for applications such as HT and IT, and is in the same
order of magnitude for GC. The second set of applications (GA, KM, DB, and
QU) present a different scenario. As in VA, the extra lock management required
for GA results in low performance when using FGL. For KM, GPU-LocalTM
and FGL perform similar and close to the serial execution. The reason is that
only 10% of the code of KM is able to take advantage of TM or FGL execution.
DB and QU are challenging scenarios for GPU-LocalTM. The following metrics
help to explain the reasons of their low performance.

Execution Breakdown. Figure 6 shows the execution breakdown using the two
implementations of GPU-LocalTM. In all the scenarios, most of the overhead is
introduced during the memory operations due to conflict detection and version
management. As DCD aborts transactions on read-read conflicts while SMDCD
waits until one of the memory operations is a write. Thus, in some cases, the
overhead of SMDCD is larger as these conflicts are detected later. The overhead
of TX Begin and TX Commit instructions is low and almost unnoticeable.

Fig. 6. Normalized execution breakdown.

Commit Ratio. Figure 7 shows the ratio of transactions committed over trans-
actions started. In general, DCD and SMDCD conflict detection algorithms offer
similar commit ratio. In the case of GA(LC), as transactions perform read-
modify-write operations on the same memory location, DCD has some advantage
over SMDCD as conflicts are detected during the read operation. GA, KM, DB,
and QU suffer of a low commit ratio, harming performance (see Fig. 5). Future
research will reduce the overhead of conflict detection in order to minimize the
impact in performance of applications with a high probability of conflict.

Serialization Mechanism Evaluation. Figure 8 shows the percentage of
transactions that proceed in transactional, WfS and WgS modes. Both DCD and
SMDCD have similar results. We observe that many transactions (up to 90% in



Hardware Support for Scratchpad Memory Transactions 285

Fig. 7. Commit ratio (higher is better).

Fig. 8. Normalized transaction execution mode.

HT with high contention) need to make use of the serialization mechanism. The
reason is that most of the conflicts continue to appear after a transaction retry
due to lockstep execution.

6 Conclusions

In this paper we present GPU-LocalTM as a hardware TM for GPU architec-
tures that focuses on the use of local memory. GPU-LocalTM is intended to
limit the amount of additional GPU hardware needed to support TM. We pro-
pose two alternative conflict detection mechanisms targeting different types of
applications. Conflict detection is performed per-bank, ensuring scalability of the
solution. We find that for some applications the use of TM is not optimal and dis-
cuss how to improve our implementation for better performance. Furthermore,
GPU-LocalTM introduces a serialization mechanism to ensure forward progress.

Acknowledgements. This work has been supported by projects TIN2013-42253-P
and TIN2016-80920-R, from the Spanish Government, and P11-TIC8144 and P12-
TIC1470, from Junta de Andalucia.

References

1. AMD: Southern Islands series instruction set architecture (2012)
2. Cederman, D., Tsigas, P., Chaudhry, M.T.: Towards a software transactional mem-

ory for graphics processors. In: 10th Eurographics Conference on Parallel Graphics
and Visualization (EG PGV 2010), pp. 121–129 (2010)

3. Chen, S., Peng, L.: Efficient GPU hardware transactional memory through early
conflict resolution. In: 22nd International Symposium on High Performance Com-
puter Architecture (HPCA 2016) (2016)



286 A. Villegas et al.

4. Fung, W.W.L., Aamodt, T.M.: Energy efficient GPU transactional memory via
space-time optimizations. In: 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2013), pp. 408–420 (2013)

5. Fung, W.W.L., Singh, I., Brownsword, A., Aamodt, T.M.: Hardware transactional
memory for GPU architectures. In: 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 2011), pp. 296–307 (2011)

6. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan & Clay-
pool Publishers, San Rafael (2010)

7. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: 20th Annual International Symposium on Computer Archi-
tecture (ISCA 1993), pp. 289–300 (1993)

8. Holey, A., Zhai, A.: Lightweight software transactions on GPUs. In: 43rd Interna-
tional Conference on Parallel Processing (ICPP 2014), pp. 461–470 (2014)

9. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IEEE International Symposium on
Workload Characterization (IISWC 2008), pp. 35–46 (Sept 2008)

10. Shen, Q., Sharp, C., Blewitt, W., Ushaw, G., Morgan, G.: PR-STM: priority rule
based software transactions for the GPU. In: Träff, J.L., Hunold, S., Versaci, F.
(eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 361–372. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48096-0 28

11. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: a simulation frame-
work for CPU-GPU computing. In: 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT 2012) (2012)

12. Xu, Y., Wang, R., Goswami, N., Li, T., Gao, L., Qian, D.: Software transactional
memory for GPU architectures. In: Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO 2014), pp. 1:1–1:10 (2014)

http://dx.doi.org/10.1007/978-3-662-48096-0_28

	Hardware Support for Scratchpad Memory Transactions on GPU Architectures
	1 Introduction
	2 Background and Related Work
	3 GPU-LocalTM Design
	4 GPU-LocalTM Modeling
	5 Evaluation
	6 Conclusions
	References




