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Abstract. Energy efficiency in data centres is addressed through work-
load management usually to reduce the operational costs and as a by-
product, the environmental footprint. This includes to minimise total
power consumption or to minimise the power issued from non-renewable
energy sources. Hence, the performance requirements of the client’s appli-
cations are either totally overlooked or strictly enforced.

To encourage profitable sustainability in data centres, we consider the
total financial gain as a trade-off between energy efficiency and client
satisfaction. We propose Carver to orchestrate energy-adaptive appli-
cations, according to performance and environmental preferences and
given forecasts of the renewable energy production. We validated Carver
by simulating a testbed powered by the grid and a photovoltaic array
and running the Web service HP LIFE.

1 Introduction

Energy efficiency in data centre is a major topic over the last decade. The ear-
liest approaches focused on spatial optimisation using workload consolidation.
The use of renewable energies led to temporal optimisation where the workload
is shifted to periods of green and cheap energy [1,6,7,9,10]. In parallel, applica-
tions moved from monolithic to elastic then to energy-adaptive [4,8,12] designs to
align their performance with explicit energy concerns. Finally, smart city energy
authorities pressure data centre managers to reduce their environmental foot-
print, conflicting with the data center client’s performance expectations. While
clients and energy authorities have competing objectives, they both interact
with the data centre through financial agreements and their associated penal-
ties. Energy-adaptive applications should then be scaled according to economic
concerns when looking either for service or sustainability or both.
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In this paper, we present Carver, a tool to reach profitable sustainability for
data centre managers inside a smart city. Carver orchestrates energy-adaptive
applications on a 24-h horizon, based on performance level, the variable avail-
ability of renewable energies, and the variable price of multiple power sources. It
adjusts the application’s working modes to minimise a financial cost combining
the power cost and penalties for not complying with the client’s performance
and the smart city authority’s expectations in terms of renewable energy use.

We validated Carver benefits by simulating a real testbed powered by the
grid and a photovoltaic array and running the application HP LIFE. Carver
reduced running costs by 34.71% compared to the current scenario, which runs
the applications at peak performance. In practice, it reduced incomes by 2.17%
to increase the use of renewables by 3.48%. Carver also reduced running costs by
52.40% compared to a scenario that maximises the usage of renewable energies,
by decreasing the use of renewables by 1.61% to increase incomes by 52.35%.

The rest of this paper is organised as follows: Sect. 2 presents Carver’s archi-
tecture. Section 3 details the implementation. Section 4 evaluates our prototype.
Section 5 describes related works and Sect. 6 presents our conclusions.

2 CARVER Overview

Carver orchestrates energy-adaptive applications for profitable sustainability.
At regular intervals, it analyses the forecasts of the energy providers powering
the data centre, the application’s characteristics and the smart city authority’s
expectations in terms of sustainable development, to compute an economically
viable way to run the applications. In this section, we introduce Carver’s archi-
tecture and detail the supported application’s characteristics. We finally present
Carver’s general behaviour.

2.1 Architecture

Carver is a Web service written in Java. It interacts with energy providers, a
smart city authority, and energy-adaptive applications using Rest APIs.

The energy providers characterise the power sources that are connected to the
data centre. This includes commercial energy providers, through power distrib-
ution grids, but also a local production using a photovoltaic array for example.
Each energy provider comes up with forecasts on a typical two-day horizon of the
variable energy pricing and availability, as well as the proportion that comes from
renewable sources. Pure renewable sources such as photovoltaic arrays display a
constant 100% proportion while the power grid usually exhibits a variable ratio
over time. Forecasting issues are outside the scope of this paper. We consider
that the data supplier possesses its own algorithms or existing ones [14].

The smart city authority draws up agreements to regulate the energy used
by consumers inside a smart city. An agreement declares a sustainable objective
to reach and the financial penalties to pay in case of failure. By default, Carver
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supports agreements stating a minimal percentage of renewable energy to con-
sume. It is however extensible enough to support other kinds of energy-related
agreements.

The energy-adaptive applications form the auto-scalable workload of the
data centre. Each application can run under different working modes that vary
in performance and power consumption. Carver interacts with the applications
through an Energy Adaptive Software Controller (EASC) connected to each of
them. This controller enables developers to make their application adaptive to
variable energy availability and sets out the application’s characteristics in a
textual description [4].

2.2 The EASC Description Script

A script describes the scalability characteristics of an application and its service-
level objectives.

The Service Level Objective (SLO) is a business objective to reach over a
validity period, and a pricing model. Carver currently supports cumulative and
instant performance models. Cumulative models mainly concern batch-oriented
applications that must achieve a given amount of work within a given time
frame. Instant models concern interactive applications, such as a Web service
that fulfills a given amount of requests per second that vary over the day.

The pricing model defines the base price the client pays when the objective
is achieved, as well as a list of modifiers, i.e. financial penalties refund to the
client depending on the gap between the actual and target performance levels.
Each price modifier specifies a threshold and a flat or linear penalty. When the
objective is not reached, the penalty to apply is given by the modifier with the
largest threshold that is below or equal to the performance achieved. A flat
penalty value is subtracted once from the base price, while a linear value is
expressed as a price per performance unit.

The Working modes correspond to the possible deployments of the applica-
tion (e.g. by a variable number of running replicas). It is described by a per-
formance level, a power consumption, and a shell command to use to start the
reconfiguration. When the application switches to a new working mode, it may
temporary undergo a performance loss that depends on the previous working
mode. A matrix indicates these transition costs. We assume that establishing
the working modes it is done manually during a training phase, or using auto-
mated methods [3].

2.3 General Workflow

Carver schedules the application execution on a time frame spanning from 24 to
48 h. The time frame is discretised into time slots of 15 min and its duration is
computed to include the complete validity period of each contract established
between the data centre business service, the smart city authority and the appli-
cation owners. Each contract starts at midnight and imposes a validity period
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of 24 h. Accordingly, the time frame covers the ongoing day only when Carver is
called at midnight; otherwise it covers the period from the present time to the
end of the following day.

By default, Carver is called every 15 min. This means that future decisions
can be revised with regards to the refinement of the forecasts made by the
energy providers. Carver first computes the time frame duration, then requests
the forecasts from the energy providers, the smart city authority objective, and
the EASC descriptions. Using this data, Carver computes, for each time slot of
the time frame, the most suitable working mode for each application in order
to maximise the data centre’s profits. Once the computation is done, it informs
each EASC of the schedule to follow.

3 Implementation

We refer to the optimisation problem computed by Carver as the EASC Allo-
cation Problem (EascAP). The basic EascAP with only one power source, two
modes per application, no smart city objectives, no instant performance goals,
and no transition costs is already NP-hard in the strong sense as it contains Bin
Packing as a special case because of the limited amount of power available at each
time slot. As a consequence, no simple algorithm exists to solve real instances of
the EascAP. The situation naturally becomes even more complicated when the
instances exhibit all of the problem facets and heterogeneous components.

Carver relies on constraint programming to solve EascAP, using the Choco
solver1. Constraint programming (CP) is a declarative paradigm to solve com-
binatorial decision problems. [13] We choose CP over alternative declarative
approaches, such as mathematical or logic programming, because it tends to be
more efficient on allocation and scheduling problems, and even more so with
composite aspects: its higher-level modelling language enables the direct encod-
ing of a wide variety of constraints and prevents the aggregated model from
becoming intractable because of its size.

Applications and SLO. The execution of an application a ∈ A is defined
by its working mode m ∈ Ma during each time slot t ∈ T . This is mod-
elled as a sequence of decision variables modea = (modeat)t∈T , each having
an initial domain Ma. Each variable-value assignment modeat = m is asso-
ciated with the amount of work done by application a in mode m, possibly
lowered by the transition cost incurred by a mode switch at time t, i.e. when
modea(t−1) = m′ �= m. Let Wa(m′,m) denote the resulting value. The total
instant and cumulative performance penalty costs over the time frame T can
be respectively computed as icosta =

∑
t∈T KI(Wa(modea(t−1), modeat)) and

ccosta = KC(
∑

t∈T Wa(modea(t−1), modeat)) where KI and KC describe any
penalty functions associated with the non-achievement of the instant and cumu-
lative performance goals.

1 http://choco-solver.org.

http://choco-solver.org
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The two later relations could be encoded as such in a CP model. However,
we obtain a deeper inference if they are grouped into one multicost-regular con-
straint [11]. This constraint captures the dependence of the mode transitions on
the penalty values. This constraint is specified with a weighted finite automa-
ton, over the variable sequence modea and two numerical variables perfa and
icosta, and enforces that: (1) sequence modea has no forbidden mode switches
if any exist, (2) perfa is the cumulative performance of application a over time
frame T , i.e. perfa =

∑
t∈T Wa(modea(t−1), modeat), and (3) icosta is the total

instant penalty cost of application a.
The instant penalty function KI is directly modelled by this constraint,

within the pre-computed automaton weights. Since the cumulative penalty cost
depends on the entire sequence, function KC must be modelled with an extra
constraint relating the cumulative performance to the penalty cost variable:

ccosta = KC(perfa) (1)

Without any assumption on the nature of the function KC , we model Eq. (1)
with the element constraint after calculating the penalty costs associated with
every possible value of perfa.

Power Sources and Consumption. The data centre is powered with a dedi-
cated set of power sources S. Each source s ∈ S is available in a limited amount
at each period t ∈ T . We introduce a variable psrcst stating the power usage and
a constant kst stating the unit energy price of source s at time t. Equation (2)
models the total energy cost pcost of the data centre over one day:

pcost =
∑

t∈T

∑

s∈S

psrcst × kst (2)

The power consumption of application a ∈ A during time slot t is modelled as
a variable pappat and its value only depends on the current working mode modeat.
This relation is modelled using an element constraint. Finally, Eq. (3) link the
power consumed by the applications to the power provided by the sources at
each time slot:

∀t ∈ T,
∑

a∈A

pappat =
∑

s∈S

psrcst (3)

Smart City Objective. The smart city authority controls the minimum rate
of renewable energy consumed by the data centre. According to the energy fore-
casts, i.e. the percentage rst of green power provided by any source s at time t,
the total ratio is a variable rpart computed as:

rpart =
∑

t∈T

∑
s∈S psrcst × rst

∑
t∈T

∑
s∈S psrcst

(4)

The penalty cost is again modelled by an element constraint, whatever the
applied penalty function KR:

rcost = KR(rpart) (5)
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Economic Profit. The daily net benefits for the data centre are given as the
base revenue for running the applications minus the energy cost and the penal-
ties incurred for violating the application performance goals and the smart city
objective. The optimisation criterion is then to minimise the sum of the expenses:

min
∑

a

(ccost + icost) + pcost + rcost (6)

4 Evaluation

The goal of Carver is to minimise the total running costs of a data centre inside
a smart city so that its sustainability-oriented investments are viable. To eval-
uate its practical benefits in as realistic an environment as possible, we used a
simulator to replay a 4-day trial inside a company data centre powered by the
grid and a photovoltaic array set from 16 to 20 January 2015. We replayed the
environment and the production workload with different solar profiles and com-
pared the running cost obtained by Carver with the scaling used in production,
and another one focusing on maximising the use of renewable energy.

4.1 Environment Setup

The simulated environment reproduces the testbed of the HP Innovation Lab in
Milan. The testbed is composed of 20 Moonshot cartridges2 that have a power
consumption in the range of 20 Watt-peaks each. Such a size in terms of node
stay representative in the context of a private cloud. Indeed Cano et al. [2]
studied more than 2,000 private cloud installations. They observed their size
vary between 3 and 40 servers, with an average of 6.18 nodes per cluster.

The testbed is powered by the grid and a photovoltaic array. The grid pro-
vides energy at a price of 0.16e/kWh. The photovoltaic array produces 1 kWatt
peak. Because the trial represents a negligible period compared to the array’s
lifespan, we ignore the investment cost for the photovoltaic array and assume
an energy production cost of zero. The solar irradiation and the percentage of
renewable energy in the grid vary on a daily basis. The supply of dual energy
is simulated using 4 characteristic pre-defined profiles for each source, extracted
from a 7-month history using the methodology in [15].

The testbed runs the HP LIFE project, a highly available Web-based
e-learning platform spread over the globe. The platform is composed of 3 energy-
adaptive applications whose characteristics are summarised in Table 1. The Web-
site application has 6 working modes and uses from 10 to 17 cartridges. The
unused ones are turned off to save power. The 10 cartridges that are always
running host the database replicas and the load balancers to ensure high avail-
ability. This results in high consumption in the lowest working mode relative to
its low performance. The E-learning and G-learning applications are responsi-
ble for indexing the content of the Website application. Each uses 1 cartridge,
2 http://www8.hp.com/us/en/products/servers/moonshot/.

http://www8.hp.com/us/en/products/servers/moonshot/
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Table 1. HP LIFE project characteristics. The Website application is the 3-tier Web
service that delivers static and dynamic contents. The E-learning and G-learning appli-
cations are responsible for indexing Website content.

Application Performance Power (W) Working modes Cartridges

Website 1050–3250 Req/s 360–550 6 10–17

G-learning 0–565 kPages/h 6–33 3 1

E-learning 0–60 kPages/h 6–33 3 1

has 3 working modes, and a number of concurrent crawlers that increases with
the working mode performance. The applications are deployed statically on the
cartridges without any virtualisation layer or co-location. The trial workload is
based on the scenarios used by the operation team of the HP LIFE project. For
the Website, we analysed the production traces to identify the day on which
the highest request rate was observed. This load was multiplied by a correction
factor to cope with the higher computing power of the Moonshots compared to
the production cluster. The workload for E-learning and G-learning consists in
crawling 200,000 then 300,000 pages.

The Website SLO requires the first working mode that can absorb the average
hourly load, and uses a piecewise linear penalty function with a penalty of up to
2e when the request rate is below the expectations by at least 800 requests per
second. Inside the simulator, we consider that the request rate is constant per
time slot, and equal to its SLO. Accordingly, the simulated behaviour slightly
exaggerates the power consumption. This simplification does not impact the
evaluation as the simulated conditions are constant for the whole experiment.

The SLOs for the G-learning and the E-learning require to crawl all of the
Website pages, their penalty functions being linear with the number of missing
indexations. For G-learning and E-learning, they equal 0.2e and 0.01e per 1000
missing indexations, respectively. For each time slot, these applications always
run at peak performance within the limits of their working mode. Inside the
simulator we then assume a constant power consumption and performance.

Finally, we stated that the smart city authority’s objective requires that the
data centre use at least 65% of renewable energy every day, with a penalty of
100e per missing percent point. These values were chosen to evaluate Carver in
situations where it is not always possible to attain the expected threshold, and
with a penalty high enough to evaluate Carver trade-off decisions.

We evaluated the simulator accuracy in [15] and reported the amount of
renewable energy used in reality and in the simulator deviated by less than a
percent point. We ran the evaluation on a MacBook Pro with 3.1 GHz Intel Core
i7 and 16 GB RAM and gave Carver 15 s to compute the best solution possible.
As Carver is called every 15 min by default, it is possible to increase the time
limit. However, we observed that usually Carver reaches a local optimum in less
than 15 s.
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We compared Carver with two representative scenarios named perf and
green that were also executed using the simulator to avoid any comparison
bias. perf mimics the scaling used in production. The working mode used for
the Website is the one that ensures the SLO while using the least power. The
G-learning and E-learning applications are launched at 00:00 and 03:00, respec-
tively; a common time for background jobs. Each runs at peak performance
until it reaches its SLO. In the green scenario, the applications are scaled to
use as much renewable energy as possible. For this scenario, we ran Carver with
a heuristic that selects the most efficient working mode when the photovoltaic
array produces enough energy to power the entire testbed, and the least effi-
cient working mode otherwise. Furthermore, each time a solution is computed,
Carver must compute a new solution that provides a better renewable energy
percentage.

4.2 Results

The resulting power profiles for the three scenarios are depicted in Figs. 1a to
c. We observe that the profiles vary with the scenario despite identical work-
loads. This confirms that the applications were scaled differently depending the
photovoltaic array production.

Figure 2 depicts the achieved daily renewable energy percentage per scenario.
We first observe that the percentages vary depending on the day and the scenario
with a maximum margin of 3.5 percentage points. This shows that perf provides
a respectable value even when the renewable energy availability is ignored. First,
this is because the servers have low power consumption and because the photo-
voltaic array can supply the entire testbed at peak period. Second, the Website,
which is the biggest energy consumer, delivers pages upon request from daytime
workers. Its workload, so its power consumption, is thus naturally aligned with
the solar irradiation. Finally, its flexibility in terms of energy proportionality is
limited, as its lowest working mode uses only 34.5% less energy than the most
efficient one, and yet is 67.7% less efficient.

We also observe that Carver improves the daily percentage by 3.48% on
average compared to perf, while green exhibits a 1.61% increase with regards to
Carver. Figure 1a to c explain this increase. Indeed, the power profiles of Carver
and green indicate that the two indexing applications were deferred to periods
with maximum renewable energy, while the Website was scaled down during the
evenings of 18 to 20 January to cope with the low share of renewables. Finally,
the extra gain obtained in green is justified by its aggressive scale down of the
Website to its minimal working mode each time that energy was not provided
by the photovoltaic array. In terms of energy consumption, perf was the highest
energy consumer, while green was the lowest one. Carver consumed 5.21% less
than perf and 6.01% more than green.

Figure 3 shows the daily incomes. This income equals the cost of running
the HP LIFE project (estimated at 1 euro per user per year by the HP LIFE
managers), reduced by the penalties the data centre must pay to the application
owner when the SLO is not reached. As expected, perf provides the maximum
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Fig. 1. Power profiles depending on the running scenario. The line indicates the share
of renewable energy used.
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Fig. 2. Daily usage of renewable energy. The expected threshold is 65%.

incomes as the applications are scaled manually and statically to ensure the
SLOs. Green provides the lowest income. This is explained by its unique objective
of maximising the renewable percentage, without any consideration of the SLOs.
We finally observe that Carver establishes a trade-off with these two baselines.



32 F. Hermenier et al.

17/01/15 18/01/15 19/01/15 20/01/15

1999

1466

1999 1999

1352

1933 1999

1305

1936 1999

1072

1955

0

500

1000

1500

2000

pe
rf

gre
en

Carv
er pe

rf
gre

en

Carv
er pe

rf
gre

en

Carv
er pe

rf
gre

en

Carv
er

S
LO

 p
en

al
ty

 (e
ur

os
)

Fig. 3. Daily incomes

It provides an income 2.17% lower than perf but 52.48% higher than green.
This exhibits the consequences of not having scaled down the Website during
the evenings of 18 to 20 January.
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Fig. 4. Data centre running costs

Figure 4 summarises the daily running cost per scenario. This cost is the sum
of the energy to be paid for and any financial penalties paid to the smart city
authority and to the HP LIFE project owner. We first observe that energy does
not play a significant role here. This is explained by the pricing model. For a data
centre business manager, it is important to be sure that it is always economically
viable to host a client’s application even when the SLO is not achieved, to avoid
bankruptcy. The incomes must then always cover energy expenses or the payment
of human resources. For example, Amazon refunds its clients a maximum of 30%
of their bill3. We observe that Carver provides the lowest daily running costs.
This shows that Carver found a valuable compromise between prioritising the HP
LIFE application or the smart city authority. Compared to perf, Carver reduced
incomes by 2.17% to increase renewable energy use by 3.48% and the resulting
running costs by 34.71%. Contrary to green, Carver did not over-commit on
the smart city objective. It traded 1.61% of renewable energy to increase the
incomes by 52.48% and the resulting running costs by 52.35%.

3 https://aws.amazon.com/fr/ec2/sla/.

https://aws.amazon.com/fr/ec2/sla/
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It is worth noting that the running costs of Carver and perf are close on the
first and the last days. The difference on the first day is justified by the high
solar irradiation as stated earlier. The difference on the last day is explained by
the lack of flexibility in terms energy consumption for the Website application
coupled with the low solar irradiation. Indeed, the objective was unrealistic and
the high power consumption of the Website, even in its lowest working mode,
precludes paying a small SLO penalty to avoid paying a high one to the smart
city authority. In addition to validating the benefits of Carver, this evaluation
also confirms the important of employing energy-adaptive applications with high
variable working modes.

5 Related Works

Initial solutions to address energy efficiency focused on minimising the number of
online servers, the power consumption, and gas emissions. With the democratisa-
tion of renewable energies, solutions have evolved to integrate their intermittent
nature. Accordingly, the community integrated a temporal dimension going as
far as to leave the spatial dimension to the underlying resource manager.

Li et al. [9] propose a scheduler for batch and service jobs that dynamically
adjusts the number of online servers to maximise the usage of a purely renewable
power source. Contrary to Carver, SLOs are not explicitly considered and the
proposed scheduler presumes non-elastic jobs.

Goiri et al. propose with GreenSlot [5] and Greenswitch [6] a job sched-
uler that reduces the grid’s electricity cost when the grid is up and reduces
the performance degradation otherwise. The proposed scheduler is devoted to
a modified version of Hadoop, called GreenHadoop [7] that supports deferrable
and non-deferrable jobs, and the performance degradation denotes the amount
of the workload to process. Lui et al. [10] consider the cooling costs along with
the energy cost and the renewable share. The SLO represents a certain response
time for interactive applications, or a completion time for the batch jobs. How-
ever, the proposed scheduler forces SLO satisfaction. Similarly to these works,
Carver supports deferrable and non-deferrable applications through cumulative
and instant SLOs while the penalty model is flexible enough to support their
notion of performance degradation, but also instantaneous performance metrics.
Carver does not integrate a cooling model, but does include the flexibility offered
by constraint programming, and the economic objective provides the required
entry points to integrate this concern. Most importantly, Carver offers the ben-
efits of elastic applications, while its economic objective helps identify which of
the clients or smart city authority is likely to minimise the total running costs.

Recently, Wang et al. [16] proposed a game-based, cloud-pricing framework
to maximise the cloud profit regarding energy costs. Carver also addresses profit
maximisation but at a lower level. While these authors centre on computing a
pricing model that guides clients to profitable periods, Carver focuses on scaling
applications with regards to their pricing model and trade-off possibilities.
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In terms of energy-adaptive applications, Oliviera and Ledoux [12] proposed
applications that revise their design with regards to their current performance
expectations and an energy regulation imposed by the underlying resource man-
ager that focuses on maximising data centre revenue. Similarly, Carver supports
variadic application architectures with the notion of working modes and trading
possibilities to minimise running costs. However, Carver differs through its inte-
gration of the temporal dimension of the problem to integrate intermittent power
sources. This makes it possible to study the energy dispatch over time, support
cumulative performance models, and take care of transition costs. Hasan et al. [8]
provides green awareness in interactive cloud applications. Their controllers
increase revenues through better response times, and decrease renewable and
non-renewable energy use. Carver also scales interactive applications. Thanks
to an explicit manipulation of the temporal dimension, it also supports non-
interactive applications and join the business and the energy-awareness dimen-
sions using an economical model to reach a sustainable profitability.

6 Conclusion

Energy efficiency in data centres is addressed through workload management to
reduce the environmental footprint or operational costs. Recent approaches take
also into account the intermittent nature and lower prices of renewable energy
sources and aim to limit the brown energy input by shaving or shifting the load.
In doing so, they often overlook the performance requirements of the client’s
applications, even though the economic return of a data centre depends on these
two factors. Our approach is driven by a broader view: (1) data centre managers
are encouraged to adopt environmental measures, if these measures translate in
terms of financial gain; and (2) financial gain results from a trade-off between
energy consumption and client satisfaction.

We proposed Carver, a tool to orchestrate on a 24-h horizon, energy-adaptive
applications according to their performance level, the variable availability of
renewable energies, and the variable price of multiple power sources. Carver
adjusts the application’s working modes in order to minimise a global financial
cost combining the power cost and penalties for not complying with the client
service level objectives and the smart city authority’s requirements in terms of
renewable energy use. Carver currently supports performance models for batch-
and service-oriented applications, and flexible penalty functions that go beyond
standard piecewise linear models.

We validated Carver by simulating a 4-day execution of a testbed powered by
the grid and a photovoltaic array. The simulator mimicked the production work-
load of the e-learning application HP LIFE. Carver provided the best incomes for
the data centre provider by balancing the SLOs the smart-city authority penal-
ties with regards to the workload and the availability of renewable energies.
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