
Runtime-Assisted Shared Cache Insertion
Policies Based on Re-reference Intervals

Vladimir Dimić1,2(B), Miquel Moretó1,2, Marc Casas1,2, and Mateo Valero1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{vladimir.dimic,miquel.moreto,marc.casas,mateo.valero}@bsc.es

2 Universitat Politécnica de Catalunya, Barcelona, Spain

Abstract. Processor speed is improving at a faster rate than the speed
of main memory, which makes memory accesses increasingly expensive.
One way to solve this problem is to reduce miss ratio of the processor’s
last level cache by improving its replacement policy. We approach the
problem by co-designing the runtime system and hardware and exploit-
ing the semantics of the applications written in data-flow task-based
programming models to provide hardware with information about the
task types and task data-dependencies. We propose the Task-Type aware
Insertion Policy, TTIP, which uses the runtime system to dynamically
determine the best probability per task type for bimodal insertion in
the recency stack and the static Dependency-Type aware Insertion Pol-
icy, DTIP, that inserts cache lines in the optimal position taking into
account the dependency types of the current task. TTIP and DTIP per-
form similarly or better than state-of-the-art replacement policies, while
requiring less hardware.

Keywords: Shared cache · Replacement policy · Runtime system ·
Task-based programming model · Hardware-software co-design

1 Introduction

Throughout the last decades, main memory performance has been improving
with a slower rate than the performance of CPUs, which has been described as
the Memory Wall [28]. Misses happening in last level caches (LLC) result in
memory accesses, which cause CPU to wait for the data. Non-blocking caches
try to mitigate this problem by being able to serve several outstanding misses,
but they cannot hide the memory latency in all cases. One way to approach this
problem is to reduce the miss rate of the LLC. Optimizing the LLCs usage is a
complex problem and requires identifying the important factors that impact its
performance.

The access pattern of an application together with the memory hierarchy
configuration (i.e. cache size, associativity, replacement policy, etc.) are some of
these factors. Most commonly used applications can have several fundamental
access patterns. Memory accesses with high spatial and temporal locality are

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 247–259, 2017.
DOI: 10.1007/978-3-319-64203-1 18

248 V. Dimić et al.

cache friendly and usually have good hit rates. Streaming access patterns are
characterised by sequential or strided access of vectors in memory. In general,
they have no reuse and, therefore, the choice of the cache placement policy has
a low impact on the miss rate. Thrashing access patterns are the ones that have
reuse distances bigger than the cache associativity. Repeated, circular, accesses
to the same sequence of addresses cause the circular eviction of the cache lines,
thus making all accesses resulting in misses. Many applications show more com-
plex access patterns that are a combination of the simple ones. Choosing an
appropriate replacement policy is important for achieving good performance
when executing these applications.

The majority of modern CPUs are multi-core and have a multi-level cache
hierarchy with shared LLC. The sequences of memory accesses coming from
threads executing on different cores arrive into the LLC. If the LLC uses a
replacement policy that does not take into account the priority of certain access
patterns, such as LRU, accesses generated by a thread may trash the working set
of another. Giving more priority to the lines of the trashed thread will improve its
performance while not hurting the performance of the thrashing thread. There
are several state-of-the-art replacement policies designed by taking access pat-
tern priorities into account, such as DIP [19], DRRIP [9] and SHiP [27]. However,
they do not consider application semantics, which can give useful information
about access patterns for different memory regions and different code segments
in the application. Using this information in designing a replacement policy for
LLC can bring benefits in performance.

Applications written in a task-based programming model can provide more
information about the semantics. Many programming models use the notion
of task as a unit of work, such as OpenMP 4.0 [15], Cilk [5], Chapel [3], Intel
TBB [21], Charm++ [11] and OmpSs [25]. In task-based data-flow programming
models, task data-dependencies are used for synchronisation, meaning that tasks
consuming a dependency cannot start executing before the task producing that
dependency finishes. Special directives, inserted by programmers, instruct the
compiler how to parallelise the code. The compiler translates these directives to
calls to the runtime library, which manages the execution of the application.

Tasks perform different functions and access their dependencies in different
ways. We argue that using information about task types and dependency types
can help designing better replacement policies in the LLC. To approach the
problem, we use a recently proposed idea [4,26], where architectures and runtime
systems collaborate in order to achieve better performance in modern and future
computer systems. We exploit application semantics available in the runtime
system and provide the processor with the necessary information to optimise the
behaviour of the LLC. In this paper, we propose two insertion policies that utilise
information about task types (TTIP) and task data-dependency types (DTIP),
which are described in more detail in Sect. 3. TTIP dynamically determines
the best probability per task-type for probabilistic insertion achieving 5.1% and
0.8% better execution time than LRU and DRRIP, respectively. DTIP statically
assigns different insertion positions based on data-dependency type and is faster
4.8% and 0.3% than LRU and DRRIP, respectively.

Runtime-Assisted Shared Cache Insertion Policies 249

2 Related Work

Cache replacement policies are a set of algorithms that maintain the logical
order of cache lines inside a cache set. Insertion policies determine the position
of the line in the logical queue on its insertion into the cache. Promotion policies
update the line’s position when it is accessed. Eviction policies decide which line
to remove from the cache when a space for a new line is needed.

The optimal replacement policy, the Belady’s MIN algorithm [1], evicts the
line that is going to be referenced farthest in the future. It is unusable in real
systems because it requires the knowledge of the future. Least-Recently Used
(LRU) policy evicts the line that was used farthest in the past, while on inser-
tion and promotion lines are moved to the top of the LRU stack. The cost of
maintaining LRU states is increasing with set size, so it is not used in caches
with high associativity (LLC). Pseudo LRU policies [7,14] sacrifice precision
while simplifying the state management. On average, they perform similarly to
LRU in caches with high associativity.

LRU performs poorly with scanning and thrashing workloads. Qureshi
et al. [19] propose several insertion policies that try to reduce thrashing. Bimodal
Insertion Policy (BIP) inserts a tunable percentage of lines in the LRU position,
and the rest of the lines in the Most-Recently Used (MRU) position. LRU and
BIP outperform each other in different cases, so Dynamic Insertion Policy (DIP)
chooses the best of the two via sampling-based adaptive replacement [20].

Jaleel et al. [9] propose a cache replacement policy that uses Re-Reference
Interval Prediction (RRIP) in order to prevent cache pollution by lines that
are not going to be referenced for a long time. For managing the logical order
of the lines, two bits per cache line are used to encode 4 different states: 00
(immediate), 01, 10 (long) and 11 (distant). Multiple lines can be in the same
state. On a cache hit, the accessed line is promoted to immediate position. On
eviction, a line with distant state is removed. If no such line exists, states of all
lines are increased by one until at least one of the lines is in distant position. On
insertion, a line is assigned a position that depends on the insertion policy.

Static RRIP (SRRIP) always assigns long re-reference interval to new lines,
which protects lines with shorter re-reference interval from being evicted by scan-
ning access patterns. In thrashing workloads, SRRIP performs poorly. Bimodal
RRIP (BRRIP) solves this by inserting the majority of new lines with distant,
and the rest with long re-reference interval. Both policies implement promotion
and eviction similarly to NRU [14]. Dynamic RRIP (DRRIP) uses set duel-
ing [18] to dynamically select the best performing policy. Finally, Wu et al. [27]
propose Signature-based Hit Predictor (SHiP) that extends RRIP by predicting
the re-reference interval of an incoming cache line based on its history. Cache
line’s PC-based signature is used for tracking the history of hits.

There have been several proposals that use the runtime system of task-
based data-flow programming models to optimize the LLC performance.
Papaefstathiou et al. [17] propose a prefetching scheme in which the runtime
provides hardware with information about task data-dependencies. To mini-
mize cache pollution, quotas are assigned to current and future tasks based

250 V. Dimić et al.

on their footprint. The current task is given the highest priority, thus keep-
ing its lines in cache. Manivannan and Stenstrom [13] propose cache coherence
protocol, in which the runtime system exposes to the hardware which are the
lines that will be reused. The coherence protocol can then reduce coherence traf-
fic by invalidating or downgrading lines precisely. Pan and Pai [16] propose a
runtime-assisted cache partitioning technique. Runtime knowledge about task
inter-dependencies and future tasks is used in order to preserve useful data in
the cache, while removing the data that will not be re-referenced in the future.

RADAR [12], a runtime-assisted scheme for dead-block management, consists
of two independent algorithms for dead-block prediction, which are combined to
give the better final algorithm. The first, Look-ahead scheme, uses information
about task dependencies and current state of the task dependency graph to
determine whether certain blocks of data will reused. The second, Look-back
scheme, uses previous outcomes of cache accesses to estimate whether certain
cache lines will be dead.

3 Runtime-Assisted Insertion Policies in the LLC

An important factor that affects the LLC performance is the memory access pat-
tern. Runtime systems that support task-based data-flow programming models
have information about task types and task data-dependencies of the applica-
tion. We aim to utilise this information at the hardware level to improve the
LLC performance by optimizing its insertion policy.

3.1 Task Type Aware Probabilistic Insertion

BRRIP is designed to overcome thrashing in access patterns with longer re-
reference interval than the cache associativity. It achieves so by selecting the
new line’s insertion position in the recency stack based on a pre-determined
static probability.

If multiple access patterns, including thrashing ones, meet in the LLC, it is
beneficial to assign them different insertion probabilities. We assign probabili-
ties per task type, thus giving them different priorities in the LLC. A higher
probability means inserting more lines into the long position, so the lines have
more chances to be preserved in cache. Tasks that show more locality in their
accesses should get a higher insertion probability than the tasks having scanning
access patterns. Moreover, using a larger set of probabilities instead of a fixed
one gives more opportunities to tune the tasks’ performance in complex scenar-
ios where many different task types compete for the LLC resources. The optimal
probability depends on the co-runners that share the LLC at the moment. In
complex applications, instances of a given task type may execute with different
co-runners in different phases of the application, which means that the optimal
probability may change.

We develop a dynamic mechanism that aims to determine the best probabil-
ity per task type during the execution of an application. The proposed mecha-
nism alternates between two phases, training phase and stable phase, for each

Runtime-Assisted Shared Cache Insertion Policies 251

task type independently. The goal of the training phase is to find the optimal
probability for the given task type which is then used during the stable phase.

At the beginning of the application, all task types are set to run in the
training phase. When a task instance is scheduled on a given core, the algorithm
selects a probability from the pool of preselected probabilities P and instructs
the LLC to use that probability for all accesses issued by this task instance. Upon
completion of each task instance, the algorithm records the number of misses
generated by that task with the selected probability. The same probability is
used for K task instances. Probabilities are selected sequentially from the
pool until all probabilities are evaluated. In total, K × |P| task instances are
used for training during one training phase for one task type. This concludes
the training phase and the stable phase begins. The algorithm then selects the
probability that induced lowest average number of misses and uses it for the
next N instances of the given task type. After that, the whole process repeats
until the end of the application’s execution.

Consequently, TTIP is able to select the best probability parameter for a
given task type appropriate for the current conditions in the LLC.

3.2 Dependency Type Aware Insertion

We reason in Sect. 1 that task data-dependencies show different access patterns.
Input dependencies are read-only data useful for the current task instance. Out-
put dependencies are generated by a task in order to be consumed by its succes-
sors in the task dependency graph. Therefore, it may be beneficial to insert cache
lines belonging to outputs in higher positions of the recency stack, thus giving
them more chances to stay in the cache until the moment they are required by the
consumer task. A similar reasoning applies to dependencies denoted as inouts, as
they are also inputs of a future task. Non-dependencies are the local variables in
the call stack and the global variables that are not specified as task dependencies.
In some of our benchmarks, like CG, they are predominantly accesses to large
global variables that have streaming-like access patterns. In other benchmarks,
where this is not true, decisions that we make for non-dependencies do not harm
the performance.

We develop an insertion policy that inserts lines in positions based on which
dependency type they belong to. We call this policy Dependency Type aware
Insertion Policy (DTIP). The policy configuration can be formally defined as a
function f : DT → IP, where DT = {input, output, inout, non-dependency}
and IP = {immediate, long, distant}. To determine the impact of mapping
dependency types to specific positions in the recency stack, we perform an
exhaustive design space exploration where we try all possible functions f . Num-
ber of different policy configurations per benchmark is |IP||DT | = 34 = 81. For
all benchmarks, we run 405 simulations. On average, the best performing policy
is the one that inserts inputs and non-dependencies on the distant position in
the recency stack and outputs and inouts on long or immediate positions. This
is consistent with the intuitive expectations described above.

252 V. Dimić et al.

3.3 Implementation

In this section, we describe the hardware and runtime extensions necessary for
implementation of our policies. The cost of their implementation is discussed in
detail in Sect. 4.5.

Hardware Extensions. To be able to use different insertion probabilities
for different task types, TTIP requires a small and fast hardware structure in
the LLC that maps a hardware thread ID to the appropriate probability. It is
designed as a SRAM memory containing probabilities and is addressed by the
hardware thread ID, which is already required to enforce coherence in the LLC.
The mapping table is accessed on a new miss, in parallel with creation of a new
MSHR entry. The read probability from the table is used to calculate the inser-
tion position, which is cached in the newly created MSHR entry. The runtime
modifies the structure via memory-mapped registers. To track the performance
under each probability, we use one hardware counter per hardware thread for
misses to LLC. The counters are exposed to the runtime as a set of registers.

To identify the dependency type of an access, which is necessary for DTIP, we
add a special hardware structure that stores the mappings of dependency regions
to the dependency type for all running tasks. We assume that only one task is
executing concurrently on any given hardware thread. If tasks are switched, the
runtime or the operating system updates the mapping table with dependency
regions of the new task. There might be several tasks using the same region at
the same time, but the runtime scheduler inherently guarantees that the region
will have the same dependency type in all these tasks.

The mapping table is read on every occurrence of a miss in the LLC to
determine the dependency type of the missing line. The missing line’s address is
fed to the table, which simultaneously compares all stored region boundaries and
selects the entry containing the dependency type corresponding to the region of
the missed address. This is done in parallel with creating a new MSHR entry,
thus not introducing any additional latency. The dependency type of the line is
stored in the newly created MSHR entry. Upon serving the request from main
memory, the new line is inserted into the position in recency stack determined
by the stored dependency type.

Hardware structures of both TTIP and DTIP are centralised and located
in the LLC. They are accessed by the core via special requests through the
memory hierarchy. The requests are propagated to the LLC and do not change
the contents of the private caches.

Runtime System Extensions. To implement TTIP, several runtime modi-
fications are required. The runtime system contains a per-task data structure
that tracks the performance in terms of number of misses for each probability.
When a task starts, before its user code starts executing, the runtime decides
which probability to use for that task instance and writes it in the probability
table on the position specified by the core ID on which the task is scheduled to

Runtime-Assisted Shared Cache Insertion Policies 253

run. At the end of execution of a task, the number of misses produced by that
task in the LLC is read by the runtime and stored in the software data structure
mentioned above.

DTIP requires several changes in the runtime system. When a new task
starts executing on a core, the runtime system updates the mapping table with
the information for the new task by issuing store instructions to the memory-
mapped registers. This does not require changes to the ISA, since many modern
processors have a support for memory-mapped registers. If there are several
consecutive dependency regions of the same type, the runtime may perform two
optimizations to reduce the storage requirements in the mapping table. The first
optimization merges the consecutive dependency regions of the same dependency
type into one. The second does not insert the region if it already exists in the
table, which happens if two or more tasks are sharing the same region. Since the
mapping table is not readable by the runtime to simplify the hardware design,
the runtime keeps a software copy of the mapping information.

4 Evaluation

4.1 Simulation Infrastructure

We use TaskSim [23], a trace-driven [22] computer architecture simulator that
simulates applications written in data-flow task-based programming models. The
simulated system is a 4-core processor with a cache hierarchy consisting of 3
levels, two of which are private, L1 (4-way, 32 KB) and L2 (8-way, 256 KB), and
the LLC is shared (16-way, 8 MB). All caches are write-back and write-allocate.
Access latencies are 4, 10 and 24 cycles, respectively. Each cache can serve up to
16 outstanding misses and 4 write-back requests which are served when the bus
is not in use. Private caches use LRU replacement policy. The size of a cache
line in all caches is 64 B. Only memory instructions are simulated in detail while
other instructions are simulated on a simple CPU model. Inter-dependencies
of memory accesses are respected. The reorder buffer contains 128 entries. The
main memory has a latency of 200 ns and a bandwidth of 2.4 GB/s per core.

4.2 Benchmarks

In order to evaluate our proposals in relevant scenarios, we use benchmarks
that cover a wide range of modern applications and kernels used in HPC and
show variability in task sizes and dependency types. PARSECSs [6] is a task-
based implementation of widely-accepted benchmark suite of parallel applica-
tions, PARSEC [2]. Benchmarks that fulfil our requirements are facesim and
ferret. We use simlarge input set, the largest input set suitable for simula-
tion. Moreover, we use two HPC applications used in previous works [22,23],
specfem3D and stap. The inputs are selected to balance between simulation
time and LLC footprint. Finally, we use benchmark CG, a conjugate gradient
method [24], implemented in OmpSs by Jaulmes et al. [10]. The input is the
matrix qa8fm from The University of Florida Sparse Matrix Collection [8]. The
algorithm is decomposed in 8 blocks and runs until convergence (97 iterations).

254 V. Dimić et al.

4.3 TTIP Parameters Space Exploration

TTIP’s performance depends on two parameters K and N , which are described
in Sect. 3.1. These parameters determine how many task instances per probabil-
ity are used in training, and how many instances for running with the best prob-
ability in the stable phase. We explore the set of configurations (K,N) where
K ∈ {1, 2, 4, 8, 16} and N ∈ {10, 50, 100, 500, 1000,∞}. Configurations where
N = ∞ have only one training phase which is followed by one stable phase that
lasts until the end of execution. Intuitively, choosing a larger K offers better
precision by having more time to evaluate one probability. However, too large
K can hurt the overall performance if certain probabilities perform badly. Con-
figurations with larger N use the best probability for a longer period of time,
but are less able to adapt to potential changes in application behaviour. Using
a smaller N can be bad for the final performance because a larger percentage of
the execution is spent in the training phase.

Figure 1 shows the performance of TTIP in terms of MPKI depending on
the choice of parameters K and N . For most benchmarks except specfem3D
we can observe a performance improvement as N increases. This is due to the
fact that, in the majority of benchmarks, instances of the same task type have
similar behaviour. For cg, we can notice the trend of performance degradation
when increasing K for a constant N . Similar behaviour can be noticed for stap.
Stap highly benefits from configurations where N = ∞ due to having a large
number of task instances. Having many training phases in case of stap means
repeatedly evaluating sub-optimal probabilities, thus hurting the overall perfor-
mance. Ferret does not show significant sensitivity to K and N . Facesim obtains
better performance with larger K due to having a lot of small task instances
and, therefore, needing more instances per probability to properly evaluate the
performance of each probability. The configuration that performs the best on
average for all our benchmarks is (N,K) = (∞, 8), which we will use for further
evaluation of TTIP in the remaining of the paper.

Fig. 1. TTIP sensitivity to N ∈ {10, 50, 100, 500, 1000,∞} and K ∈ {1, 2, 4, 8, 16}

Runtime-Assisted Shared Cache Insertion Policies 255

4.4 Performance Results

Figure 2 compares TTIP and DTIP with LRU and state-of-the-art SRRIP,
BRRIP and DRRIP in terms of MPKI and speedup normalised to LRU. For
BRRIP we use the probability for inserting into the long position ε = 1/32 and
for DRRIP SDM with 32 sets.

TTIP upgrades BRRIP by supporting multiple probability values and being
able optimize the probability per task type. It achieves up to 32.1% and on
average 11.2% reduction in MPKI compared to LRU. The speedup over LRU is
up to 12.3% and on average 5.1%. TTIP performs similarly as DRRIP, having
3.3% higher MPKI and being 0.8% faster than DRRIP. However, it does not need
the hardware for Set Dueling, but instead uses a small mapping table described
in Sect. 3.3 and whose cost is discussed in the Sect. 4.5.

DTIP improves MPKI over LRU for up to 33.3% and on average 16.8%. The
largest contribution of improvement in MPKI comes from specfem3D, where
misses to output dependencies of the largest task are reduced by inserting outputs
in immediate position. This decision does not significantly impact the number of
misses to inputs and non-dependencies. DTIP is faster than LRU for up to 12.1%
and on average 4.8%. Compared to SRRIP, which is another static RRIP policy,
DTIP achieves up to 29.1% (12.8% on average) lower MPKI and performs up to
10.5% (3.7% on average) faster. The improvement over SRRIP comes from the
fact that DTIP differentiates the cache lines by their data-dependency types.
DTIP is able to benefit from this information by inserting the new lines in a
more optimal position in the recency stack so that different access patterns that

Fig. 2. Performance of TTIP and DTIP

256 V. Dimić et al.

collide in LLC have least possible negative effects on each other. DTIP reduces
MPKI by 3.1% on average and is faster 0.3% than DRRIP.

Even though it shows higher MPKI than DTIP on average, TTIP achieves
better execution time. The contributor to this effect is cg, where DTIP fails to
achieve a speedup comparable to TTIP and DRRIP. The largest task type, which
performs a matrix-vector multiplication, is the main source of MPKI improve-
ment of DTIP over TTIP. However, three smaller, but still important tasks,
show higher execution time with DTIP due to increased number of misses to
inputs and non-dependencies. The improvement in execution time achieved in
the largest task is not enough to compensate losses in three smaller tasks, because
hits in the largest task are hidden by the unavoidable misses to the matrix.

4.5 Design Costs

To store the state of the recency stack, both TTIP and DTIP need 2n bits per
cache set, the same as DRRIP, whereas LRU requires n log n bits per set, where
n is the cache associativity. In the system evaluated in this work (n = 16), RRIP
policies consume 2× less space than LRU.

The mapping table required by TTIP has 4 entries, one for each core. Prob-
abilities are stored with resolution of 6 bits, making the size of the structure
4 × 6 bit = 3B. In addition, TTIP requires 4 hardware counter registers, each
one being 32 bit long. The total additional hardware cost required by TTIP is
3B + 4 × 32 bit = 19B. After each task instance, the runtime reads the corre-
sponding hardware counter and potentially sets the new probability for the new
task instance, which incurs overhead of few instructions. Calculating the best
probability after the training period takes less than hundred instructions.

The mapping table for DTIP technique contains 32 pairs of 48-bit physical
addresses, thus providing each core with 8 entries, which is more than enough
to cover the most demanding tasks in regards to number of data-dependencies.
In the case of larger demand for mapping table entries, smaller, less important
dependencies can be omitted or merged with another dependency of the same
type without degrading the performance. The total size of the mapping table is
32×2×48 bit = 348B. When a new task instance is scheduled for execution, the
mapping table is updated with data-dependencies of the task. Upon completion
of a task, the runtime clears the entries from the mapping table that belong only
to that task. Both actions require several tens of instructions. The total runtime
overhead in terms of number of instructions is negligible when compared with
the total number of instructions of any benchmark that we use.

5 Conclusions

Improving LLC performance is of great importance in modern and future sys-
tems. In multi-core processors, threads generating various access patterns are
competing for LLC resources. To achieve best performance, it is necessary to
protect certain access patterns from being thrashed by accesses coming from

Runtime-Assisted Shared Cache Insertion Policies 257

another thread. In this paper we aim to exploit semantic information about
applications written in data-flow task-based programming model to better man-
age the LLC. The runtime system provides the information about task types
and task data-dependencies to the LLC in order to improve the insertion policy.
We propose two techniques:

TTIP - Task Type aware Insertion Policy tries to determine the best probability
for inserting lines in the recency stack by using runtime-guided dynamic app-
roach that evaluates the performance of several pre-set probabilities and chooses
the best performing one.
DTIP - Dependency Type aware Insertion Policy is a static policy that inserts
lines in the recency stack based on the type of data-dependency they belong to.
Data that will be used by the next tasks is given more chance to stay in cache
by inserting it in higher positions of the recency stack, while read-only data is
given less priority.

Our policies use the runtime system for providing the hardware with the nec-
essary information for determining appropriate insertion positions, which sim-
plifies hardware design. The overheads of the runtime extensions are negligible.
The performance benefits compared to LRU are significant for both policies.
TTIP performs slightly worse than DRRIP, but uses simpler hardware. DTIP
performs better than DRRIP on average, which proves the benefits of using run-
time information about the application in designing LLC replacement policies.
In comparison with DRRIP, our policies do not use set dueling monitors and do
not require a decoder for determining dedicated follower sets.

Possible improvements for TTIP include discarding probabilities that per-
form badly from the training process. DTIP can be extended to distinguish
between dependencies, since different dependencies of the same type may have
slightly different access patterns that benefit from different insertion positions.
Further benefits could be obtained by also taking into account task type.

Acknowledgments. This work has been supported by the RoMoL ERC Advanced
Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Span-
ish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). V. Dimić has been partially
supported by AGAUR of the Government of Catalonia (contract 2017 FI B 00855).
M. Moretó has been partially supported by the Ministry of Economy and Competitive-
ness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas
has been supported by the Secretary for Universities and Research of the Ministry of
Economy and Knowledge of the Government of Catalonia and the Cofund programme
of the Marie Curie Actions of the 7th R&D Framework Programme of the European
Union (contract 2013 BP B 00243).

258 V. Dimić et al.

References

1. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.
IBM Syst. J. 5, 78–101 (1966)

2. Bienia, C.: Benchmarking modern multiprocessors. Ph.D. thesis, Princeton (2011)
3. Blumofe, R., Joerg, C., Kuszmaul, B., et al.: Cilk: an efficient multithreaded run-

time system. J. Parallel Distrib. Comput. 37, 55–69 (1995)
4. Casas, M., et al.: Runtime-aware architectures. In: Träff, J.L., Hunold, S., Versaci,

F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 16–27. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48096-0 2

5. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appl. 21, 291–312 (2007–2008)

6. Chasapis, D., Casas, M., Moretó, M., Vidal, R., Ayguadé, E., Labarta, J., Valero,
M.: PARSECSs: evaluating the impact of task parallelism in the PARSEC bench-
mark suite. In: TACO (2015)

7. Chen, W., Liu, P., Stelzer, K.: Implementation of a pseudo-LRU algorithm in a
partitioned cache, US Patent 7,069,390 (2006)

8. Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1 (2011)

9. Jaleel, A., Theobald, K.B., Steely Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (RRIP). SIGARCH Comput.
Arch. News 38, 60–71 (2010)

10. Jaulmes, L., Casas, M., Moretó, M., et al.: Exploiting asynchrony from exact for-
ward recovery for due in iterative solvers. In: SC (2015)

11. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. In: OOPSLA (1993)

12. Manivannan, M., Papaefstathiou, V., Pericas, M., Stenstrom, P.: RADAR:
runtime-assisted dead region management for last-level caches. In: HPCA (2016)

13. Manivannan, M., Stenstrom, P.: Runtime-guided cache coherence optimizations in
multi-core architectures. In: IPDPS (2014)

14. Sun Microsystems: UltraSPARC T2 supplement to the UltraSPARC architecture
2007, draft D1.4.3 (2007)

15. OpenMP Arch. Rev. Board: OpenMP Application Program Interface, v4.0 (2013)
16. Pan, A., Pai, V.S.: Runtime-driven shared last-level cache management for task-

parallel programs. In: SC (2015)
17. Papaefstathiou, V., Katevenis, M.G., Nikolopoulos, D.S., Pnevmatikatos, D.:

Prefetching and cache management using task lifetimes. In: ICS (2013)
18. Qureshi, M., Jaleel, A., Patt, Y., Steely, S., Emer, J.: Set-dueling-controlled adap-

tive insertion for high-performance caching. In: Micro. IEEE (2008)
19. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion

policies for high performance caching. In: ISCA (2007)
20. Qureshi, M.K., Lynch, D.N., Mutlu, O., Patt, Y.N.: A case for MLP-aware cache

replacement. In: ISCA (2006)
21. Reinders, J.: Intel Threading Building Blocks. First edn. (2007)
22. Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., Valero, M.: Trace-driven

simulation of multithreaded applications. In: ISPASS (2011)
23. Rico, A., Cabarcas, F., Villavieja, C., et al.: On the simulation of large-scale archi-

tectures using multiple application abstraction levels. In: TACO (2012)
24. Shewchuk, J.R.: An introduction to the conjugate gradient method without the

agonizing pain. Technical report (1994)

http://dx.doi.org/10.1007/978-3-662-48096-0_2

Runtime-Assisted Shared Cache Insertion Policies 259

25. Teruel, X.: OmpSs quick overview, a practical approach (2013)
26. Valero, M., Moreto, M., Casas, M., Ayguade, E., Labarta, J.: Runtime-aware archi-

tectures: a first approach. Supercomp. Front. Innov. 1, 29–44 (2014)
27. Wu, C.J., Jaleel, A., Hasenplaugh, W., et al.: SHiP: signature-based hit predictor

for high performance caching. In: MICRO (2011)
28. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.

SIGARCH Comput. Arch. News 23, 20–24 (1995)

	Runtime-Assisted Shared Cache Insertion Policies Based on Re-reference Intervals
	1 Introduction
	2 Related Work
	3 Runtime-Assisted Insertion Policies in the LLC
	3.1 Task Type Aware Probabilistic Insertion
	3.2 Dependency Type Aware Insertion
	3.3 Implementation

	4 Evaluation
	4.1 Simulation Infrastructure
	4.2 Benchmarks
	4.3 TTIP Parameters Space Exploration
	4.4 Performance Results
	4.5 Design Costs

	5 Conclusions
	References

