
Low-Cost Approximation Algorithms
for Scheduling Independent Tasks

on Hybrid Platforms

Louis-Claude Canon1,2(B), Loris Marchal2, and Frédéric Vivien2

1 FEMTO-ST Institute, Université de Bourgogne Franche-Comté, 16 route de Gray,
25 030 Besançon, France

louis-claude.canon@univ-fcomte.fr
2 CNRS, Inria, ENS Lyon and University of Lyon, LIP Laboratory 46 allée d’Italie,

69 007 Lyon, France
loris.marchal@ens-lyon.fr, frederic.vivien@inria.fr

Abstract. Hybrid platforms embedding accelerators such as GPUs or
Xeon Phis are increasingly used in computing. When scheduling tasks
on such platforms, one has to take into account that a task execution
time depends on the type of core used to execute it. We focus on the
problem of minimizing the total completion time (or makespan) when
scheduling independent tasks on two processor types, also known as the
(Pm, Pk)||Cmax problem. We propose BalancedEstimate and Bal-
ancedMakespan, two novel 2-approximation algorithms with low com-
plexity. Their approximation ratio is both on par with the best approxi-
mation algorithms using dual approximation techniques (which are, thus,
of high complexity) and significantly smaller than the approximation
ratio of existing low-cost approximation algorithms. We compared both
algorithms by simulations to existing strategies in different scenarios.
These simulations showed that their performance is among the best ones
in all cases.

1 Introduction

Modern computing platforms increasingly use specialized computation accelera-
tors, such as GPUs or Xeon Phis: 86 of the supercomputers in the TOP500 list
include such accelerators, while 3 of them include several accelerator types [17].
One of the most basic but also most fundamental scheduling step to efficiently
use these hybrid platforms is to decide how to schedule independent tasks. The
problem of minimizing the total completion time (or makespan) is well-studied
in the case of homogeneous cores (problem P ||Cmax in Graham’s notation [13]).
Approximation algorithms have been proposed for completely unrelated proces-
sors (R||Cmax), such as the 2-approximation algorithms by Lenstra et al. [14]
based on linear programming. Some specialized algorithms have been derived
for the problem of scheduling two machine types ((Pm,Pk)||Cmax, where m
and k are the number of machines of each type), which precisely corresponds
to hybrid machines including only two types of cores, such as CPUs and GPUs
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 232–244, 2017.
DOI: 10.1007/978-3-319-64203-1 17

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 233

(which corresponds to most hybrid platforms in the TOP500 list). Among the
more recent results, we may cite the DADA [5] and DualHP [3] algorithms
which both use dual approximation to obtain 2-approximations. Bleuse et al. [6]
also propose a more expensive (43 + 1

3k + ε)-approximation relying on dynamic
programming and dual approximation with a time complexity O(n2m2k3) (with
n being the number of tasks). PTAS have even been proposed for this problem
[7,12]. However, the complexity of all these algorithms is large, which makes
them unsuitable for efficiently scheduling tasks on high-throughput computing
systems.

Our objective is to design an efficient scheduling algorithm for (Pm,Pk)||
Cmax whose complexity is as low as possible, so as to be included in modern run-
time schedulers. Indeed with the widespread heterogeneity of computing plat-
forms, many scientific applications now rely on runtime schedulers such OmpSs
[16], XKaapi [5], or StarPU [2]. In this context, low complexity schedulers have
recently been proposed. The closest approaches to our work in terms of cost,
behavior, and guarantee are HeteroPrio [4], a (2 +

√
2)-approximation algo-

rithm when spoliation is permitted, and CLB2C [10], a 2-approximation algo-
rithm in the case where every task processing time, on any resource, is smaller
than the optimal makespan. A more detailed and complete analysis of the related
work can be found in the companion research report [9].

In this paper, we propose a 2-approximation algorithm, namedBalancedEs-
timate, which makes no assumption on the task processing times. Moreover, we
propose BalancedMakespan which extends this algorithm with a more costly
mechanismto select thefinal schedule,while keeping the sameapproximation ratio.
Wealsopresent the simulationscarriedout toestimate in realistic scenarios the rela-
tiveperformanceofthealgorithms.Table 1summarizesthecomparisonbetweenour
algorithmsandexistingsolutions.Amongmanyavailablehighcomplexitysolutions,
we selected the ones whose running times were not prohibitive. The time complex-
ity, when not available in the original articles, corresponds to our best guess, while
performance are the range of the most frequent relative overheads of the obtained
makespan with respect to a proposed lower bound that precisely estimates the min-
imum load on both processor types. In this table, BalancedEstimate and Bal-
ancedMakespan achieve both the best approximation ratio and the best perfor-
mance in simulation.

Therefore, the main contributions of this paper are:

1. Two new approximation algorithms, BalancedEstimate and Balanced-
Makespan, which both achieve very good tradeoffs between runtime com-
plexity, approximation ratios, and practical performance. The former has the
smallest known complexity, improves the best known approximation ratio for
low-complexity algorithms without constraints, and is on par with all com-
petitors for practical performance, while the latter outperforms other strate-
gies in most cases, at the cost of a small increase in the time complexity.

2. A new lower bound on the optimal makespan, a useful tool for assessing the
actual performance of algorithms.

234 L.-C. Canon et al.

Table 1. Complexity and performance of the reference and new algorithms. The “per-
formance” corresponds to the 2.5%–97.5% quantiles. The time complexity of Hetero-
Prio assumes an offline variant that needs to compute the earliest processor at each
step. A =

∑
i max(c1i , c

2
i)−maxi min(c1i , c

2
i) is the range of possible horizon guesses for

the dual approximations. (*: 3.42-approximation ratio for HeteroPrio when spolia-
tion is permitted; **: 2-approximation ratio for CLB2C restricted to the cases when
max(c1i , c

2
i) ≤ OPT)

Name Time complexity Approx. ratio Performance

BalancedEstimate n log(nmk) 2 0.2–15%

BalancedMakespan n2 log(nmk) 2 0.2–8%

HeteroPrio [4] n log(n) + (n + m + k) log(m + k) 3.42∗∗ 3.3–17%

CLB2C [10] n log(nmk) 2∗ 3.6–37%

DualHP [4] n log(nmkA) 2 0.2–14%

DADA [5] n log(mk) log(A) + n log(n) 2 0.9–15%

3. A set of simulations including the state-of-the-art algorithms. They show that
BalancedMakespan achieves the best makespan in more than 96% of the
cases. Moreover, its makespan is always within 0.6% of the best makespan
achieved by any of the tested algorithms.

The rest of the paper is organized as follows. The problem is formalized in
Sect. 2 and the proposed algorithms are described in Sect. 3. Section 4 is devoted
to a sketch of the proof of the approximation ratio. Section 5 presents a new lower
bound for the makespan. Finally, we report the simulation results in Sect. 6 and
conclude in Sect. 7.

2 Problem Formulation

A set of n tasks must be scheduled on a set of processors of two types containing
m processors of type 1 and k processors of type 2. Let c1i (resp. c2i) be the
integer time needed to process task i on processors of type 1 (resp. of type 2).
We indifferently refer to the ci’s as processing times or costs. The completion
time of a processor of type u to which a set S of tasks is allocated is simply
given by

∑
i∈S cui . The objective is to allocate tasks to processors such that the

maximum completion time, or makespan, is minimized.

3 Algorithm Description

We now move to the description of the first proposed approximation algorithm:
BalancedEstimate. We start by introducing some notations/definitions that
are used in the algorithm and in its proof. In the following μ represents an
allocation of the tasks to the two processor types: μ(i) = 1 (resp. μ(i) = 2) means
that task i is allocated to some processor of type 1 (resp. 2) in the allocation μ.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 235

The precise allocation of tasks to processors will be detailed later. Note that in
the algorithms, allocation μ is stored as an array and thus referred to as μ[i],
which corresponds to μ(i) in the text. For a given allocation μ, we define W 1(μ)
(resp. W 2(μ)) as the average work of processors of type 1 (resp. 2):

W 1(μ) =
1
m

∑

i:µ(i)=1

c1i and W 2(μ) =
1
k

∑

i:µ(i)=2

c2i .

We also define the maximum processing time M1(μ) (resp. M2(μ)) of tasks
allocated to processors of type 1 (resp. 2):

M1(μ) = max
i:µ(i)=1

c1i and M2(μ) = max
i:µ(i)=2

c2i .

The proposed algorithm relies on the maximum of these four quantities to esti-
mate the makespan of an allocation, as defined by the following allocation cost
estimate:

λ(μ) = max(W 1(μ),W 2(μ),M1(μ),M2(μ)).

Finally, we use imax(μ), which is the index of the largest task allocated to a
processor of type 1 but that would be more efficient on a processor of type 2:

imax(μ) = argmax
i:µ(i)=1 and c1i>c2i

c1i .

We can now define a dominating task j as a task such that j = imax(μ) and
λ(μ) = c1imax(µ).

The algorithm works in two passes: it first computes two allocations with
good allocation cost estimates (Algorithm 1) and then builds a complete sched-
ule using the Largest Processing Time first (LPT) rule from these allocations
(Algorithm 2).

The allocation phase (Algorithm 1) starts by putting each task on their most
favorable processor type to obtain an initial allocation μ. Without loss of general-
ity, we assume that processors of type 2 have the largest average work, otherwise
we simply switch processor types. Then, tasks are moved from processors of type
2 to processors of type 1 to get a better load balancing. During this process, we
carefully avoid task processing times from becoming arbitrarily long: whenever
some dominating task appears, it is moved back to processors of type 2. The
allocation phase produces two schedules: the one with the smallest cost estimate
(μbest) and the one corresponding to the iteration when the relative order of the
average works is inversed (μinv). We define μi (resp. μ′

i) as the allocation before
(resp. after) task i is allocated to processors of type 1 at iteration i on Line 10
(μistart = μ′

istart−1 is the initial allocation).
The scheduling phase (Algorithm 2) simply computes an LPT schedule for

each processor type for the two previous allocations. The schedule with minimum
makespan is selected as final result.

The time complexity of Algorithm 1 is O(n log(n)) (computing the allocation
cost estimate on Line 11 is the most costly operation). The time complexity of the
subsequent scheduling phase (Algorithm 2) is O(n log(n) + n log(m) + n log(k)).

236 L.-C. Canon et al.

Algorithm 1. Allocation Algorithm
Input : number m of processors of type 1; number k of processors of type 2
Input : number n of tasks; task durations cli for 1 ≤ i ≤ n, 1 ≤ l ≤ 2
Output: a set of allocations

1 for i = 1 . . . n do
2 if c1i < c2i then μ[i] ← 1 else μ[i] ← 2

3 if W 1(μ) > W 2(μ) then switch processor types
4 μbest ← μ
5 Sort tasks by non-decreasing c1i /c2i
6 istart = min{i : μ[i] = 2} /* first task on a processor of type 2 */

7 for i = istart . . . n do
8 if W 1(μ) ≤ W 2(μ) and W 1(μ) + c1i /m > W 2(μ) − c2i /k then
9 μinv ← μ /* remember μ */

10 μ[i] ← 1 /* move a task (μi → μ′
i) */

11 if λ(μ) < λ(μbest) then
12 μbest ← μ /* update best allocation so far */

13 if λ(μ) = c1imax(µ) then

14 μ[imax(μ)] ← 2 /* move back a task (μ′
i → μi+1) */

15 if μinv is not defined then μinv ← μ
16 return (μbest, μinv)

Theorem 1. BalancedEstimate (Algorithm2) is a 2-approximation for the
makespan.

We prove this result in the next section. Figure 1 provides an example showing
that this 2-approximation ratio is tight. Both BalancedEstimate and Bal-
ancedMakespan build the schedule on the left, which has a makespan of 2k−2
(initially they assign all the tasks on processors of type 2 and then move all the
small tasks on processors of type 1). The makespan of the optimal schedule (on
the right) is equal to k. The ratio is thus 2 − 2

k .
BalancedEstimate balances the average works on both processor types

during the allocation while ensuring that no single task will degrade the

Algorithm 2. BalancedEstimate

Input : number m of processors of type 1; number k of processors of type 2
Input : number n of tasks; task durations cli for 1 ≤ i ≤ n, 1 ≤ l ≤ 2
Output: schedule of the tasks on the processors

1 Compute (μbest, μinv) using Algorithm 1
2 foreach Allocation μ in (μbest, μinv) do
3 Schedule tasks {i : μ[i] = 1} on processors of type 1 using LPT
4 Schedule tasks {i : μ[i] = 2} on processors of type 2 using LPT

5 return the schedule that minimizes the global makespan

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 237

k − 1

.

.

k − 1 1

k − 1 k − 1

1 + ε 1 + ε. . .

k − 1 1

.

.

.

k − 1 1

k

k

m = 1

Schedule for μbest = μinv Optimal schedule

Fig. 1. Example with m = 1 processor of type 1, an arbitrary number k > 1 processors
of type 2 and two types of tasks: k tasks with costs c1i = 1 + ε (with ε < 1

k−1
) and

c2i = 1, and k + 1 tasks with costs c1i = k and c2i = k − 1.

makespan when scheduled. BalancedMakespan (Algorithm 3) extends this
approach by computing the LPT schedule of each allocation (μi and μ′

i) consid-
ered by BalancedEstimate (including μbest and μinv), and thus has the same
approximation ratio. It uses the makespan instead of the allocation cost estimate
to update μbest and returns the schedule with the lowest makespan. Its time com-
plexity is O(n2 log(nmk)) as it runs LPT 2n times. In Algorithm 3, L(μ) denotes
the makespan of the schedule obtained using LPT on both processor types.

4 Approximation Ratio Proof

The proof that the previous scheduling algorithm produces a makespan at most
twice the optimal one is quite long and technical (it includes seven lemmas,
one corollary and the main proof requires the study of six different cases). For
lack of space, we only present some of the key points of the proof in the present
paper. The interested reader may find the whole detailed proof in the companion
research report [9].

The proof starts by adding dummy tasks (with 0 cost on processors of type 2),
to prove that μinv is always defined by Line 9: it corresponds to the last iteration
where the relative order of the average works is inversed. We also prove that when
Algorithm 1 completes, μbest is the allocation with smallest cost estimate among
all μ′

i’s and μi’s.
Then, our proof strongly relies on a new lower bound on the optimal

makespan. Note that in the following property, μ is any allocation of the tasks to
the processor types, not necessarily an allocation encountered by the algorithm.

Proposition 1. Let μ be an allocation and i1 = max{i : μ(i) = 1} be the largest
index of tasks that are on processors of type 1 (or 0 if there is none). Then,

min(W 1(μ),W 2(μ), min
1≤i<i1,
µ(i)=2

c1i) ≤ OPT, (1)

238 L.-C. Canon et al.

Algorithm 3. BalancedMakespan

Input : number m of processors of type 1, number k of processors of type 2,
Input : number n of tasks, task durations cli for 1 ≤ i ≤ n, 1 ≤ l ≤ 2
Output: schedule of the tasks on the processors

1 for i = 1 . . . n do
2 if c1i < c2i then μ[i] ← 1 else μ[i] ← 2

3 if W 1(μ) > W 2(μ) then switch processor types
4 μbest ← μ
5 Sort tasks by non-decreasing c1i /c2i
6 istart = min{i : μ[i] = 2} /* first task on processors of type 2 */

7 for i = istart . . . n do
8 μ[i] ← 1 /* move a task */

9 if L(μ) < L(μbest) then
10 μbest ← μ /* update best allocation so far */

11 if λ(μ) = c1imax(µ) then

12 μ[imax(μ)] ← 2 /* move back a task (μ′
i → μi+1) */

13 if L(μ) < L(μbest) then
14 μbest ← μ /* update best allocation so far */

15 return the schedule of tasks using LPT on both types of processors from μbest

where OPT is the makespan of an optimal schedule.

The proof of this property proceeds as follows: we look at where the set of
tasks S = {1 ≤ i < i1 : μ(i) = 2} are processed in an optimal allocation.

(i) Either one of those tasks is allocated to a processor of type 1, and then
mini∈S c1i is a lower bound on OPT;

(ii) Or all tasks of S are on processors of type 2. We then transform μ into the
optimal allocation by exchanging tasks and, thanks to the fact that tasks
are sorted by non-decreasing c1i /c2i , we can prove that not both W 1 and W 2

can increase simultaneously. As max(W 1(OPT),W 2(OPT)) ≤ OPT, then
min(W 1(μ),W 2(μ)) ≤ OPT.

We also need a classical result for list scheduling algorithms, summarized in
the following lemma.

Lemma 1. For a given set of tasks, any list scheduling algorithm (such as LPT)
builds a schedule on p identical processors with a makespan lower than or equal
to W + (1 − 1

p)M where W is the average work and M is the maximum cost of
any task.

Algorithm 1 produces two allocations: μbest and μinv, and the final schedule
comes from one of them. The extensive proof considers a large number of special
cases, but here we restrict to two cases, which we find the most significant: one
case considers μbest while the other one considers μinv.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 239

Case 1. Assume that the cost estimate of μbest is achieved on M1 or M2

(λ(μbest) = max(M1(μbest),M2(μbest))) and that there is no dominating task
in μbest (λ(μbest) > c1imax(µbest)

). Then, we prove that λ(μbest) ≤ OPT by con-
sidering the two possible cases:

– The maximum defining λ(μbest) is achieved by M1(μbest) = maxj:µbest(j)=1 c1j .
Let j be a task achieving this maximum. Note that c1j ≤ c2j because other-
wise we would have M1(μbest) = c1imax(µbest)

, which is not possible because
λ(μbest) > c1imax(µbest)

. Consider an optimal schedule: OPT ≥ min(c1j , c
2
j) =

c1j = M1(μbest) and thus λ(μbest) ≤ OPT.
– The maximum defining λ(μbest) is achieved by M2(μbest) = maxj:µbest(j)=2 c2j .

Let j be a task achieving this maximum. This case is analogous to the previous
one by remarking that j was already allocated to processors of type 2 in the
initial allocation, and thus c1j ≥ c2j .

As λ(μbest) ≤ OPT, we know by Lemma 1 that LPT on μbest gives a schedule
with makespan at most 2OPT.

Case 2. This case reasons on μinv. By an abuse of notation we call inv the
iteration at which μinv was defined at Line 9. We recall that after adding the
task with index inv on processors of type 1, μ′

inv has an average work larger
on processors of type 1 while μinv had an average work larger on processors
of type 2. We apply Proposition 1 on μinv and μ′

inv and forget the cases where
the minimum is achieved on a c1i in Eq. (1). This gives W 1(μinv) ≤ OPT and
W 2(μ′

inv) ≤ OPT. We also forget the case where the cost estimate of either μinv

or μ′
inv is given by M1 or M2 (which can be treated as in Case 1).
We have

W 1(μ′
inv) = W 1(μinv) +

c1inv
m

.

and, since W 1(μ′
inv) ≥ M1(μ′

inv), c1inv ≤ W 1(μ′
inv). Those two relations bring

c1inv ≤ W 1(μinv)
1 − 1/m

.

Let M be the task with largest cost allocated on processors of type 1 in μinv

(c1M = M1(μinv)). We have

c1M ≤ W 1(μ′
inv) ≤ W 1(μinv) +

c1inv
m

≤ W 1(μinv) +
W 1(μinv)

m − 1
=

m

m − 1
W 1(μinv).

Consider the schedule built by Algorithm2 on allocation μinv. On processors
of type 1, we have M1(μinv) = c1M bounded as above and the average work
is W 1(μinv) ≤ OPT (by assumption). Thanks to Lemma 1, we know that the
makespan produced by LPT on this instance has a makespan bounded by:

240 L.-C. Canon et al.

C1
max ≤ W 1(μinv) +

(

1 − 1
m

)

M1(μinv) ≤ W 1(μinv) +
(

1 − 1
m

)

c1M

≤ W 1(μinv) +
(

1 − 1
m

)
m

m − 1
W 1(μinv)

≤ 2W 1(μinv) ≤ 2OPT.

We now concentrate on processors of type 2. We know that

W 2(μinv) = W 2(μ′
inv) +

c2inv
k

≤ W 2(μ′
inv) +

OPT
k

,

The above inequality comes from the fact that OPT ≥ min(c1inv, c
2
inv) = c2inv

as task inv was on processors of type 2 in the initial allocation. For the same
reason, M2(μinv) ≤ OPT. Together with W 2(μ′

inv) ≤ OPT, we finally get

W 2(μinv) ≤
(

1 +
1
k

)

OPT.

Thanks to Lemma 1, we know that the makespan of Algorithm 2 on processors
of type 2 of allocation μinv is bounded by

C2
max ≤ W 2(μinv) +

(

1 − 1
k

)

M2(μinv)

≤
(

1 +
1
k

)

OPT +
(

1 − 1
k

)

OPT ≤ 2OPT.

Thus, max(C1
max, C

2
max) ≤ 2OPT which yields the result for this case.

The whole proof with many other cases can be found in [9].

5 Lower Bound

We now present a new lower bound on the optimal makespan, which is then used
as a reference in our simulations. Note that we could have used Proposition 1 to
derive lower bounds, but this would require to first compute interesting alloca-
tions. On the contrary, we present here an analytical lower bound, which can be
expressed using a simple formula, and which is finer than the previous one in
the way it considers how the workload should be distributed.

The bound is obtained by considering the average work on all processors, as
in the W/p bound for scheduling on identical machines. To obtain this bound,
we consider the divisible load relaxation of the problem: we assume that all
tasks can be split in an arbitrary number of subtasks which can be processed
on different processors (possibly simultaneously). We are then able to show that
the optimal load distribution is obtained when tasks with smaller c1i /c2i ratio are
placed on processors of type 1, while the others are on processors of type 2, so
that the load is well balanced. This may require to split one task, denoted by i
in the theorem, among the two processor types.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 241

Theorem 2. Assume tasks are sorted so that c1i /c2i ≤ c1j/c2j for i < j, and let i
be the task such that

1
m

∑

j≤i

c1j ≥ 1
k

∑

j>i

c2j and
1
m

∑

j<i

c1j ≤ 1
k

∑

j≥i

c2j .

Then, the following quantity is a lower bound on the optimal makespan:

LB =

c2i
∑

j<i

c1j + c1i
∑

j>i

c2j + c1i c
2
i

kc1i + mc2i
.

As this bound only considers average load, it may be improved by also con-
sidering the maximum processing time over all tasks: maxi min(c1i , c

2
i) is the

equivalent of the max ci lower bound for scheduling independent tasks on iden-
tical machines.

6 Simulations

In the context of linear algebra computations, hardware is typically composed
of several CPU cores and a few GPU units to compute hundreds of tasks. The
following simulations consider 300 tasks, 20 CPU cores, and 4 GPU units. Task
processing times are randomly generated and follow a gamma distribution with
expected value 15 for the CPUs and 1 for the GPUs. These values are inspired
from the measures in [1,3]. Moreover, the gamma distribution has been advo-
cated for modeling job runtimes [11,15]. This distribution is positive and it
is possible to specify its expected value and standard deviation by adjusting its
parameters. The Coefficient of Variation (CV1) of both types of processing times
is either 0.2 (low) or 1 (high). Each combination of CV for the CPUs and the
GPUs leads to 100 instances. For each instance, the set of processing times is
given as input to all six algorithms and the obtained makespans are then divided
by the lower bound given by Theorem2. The algorithms are implemented in R
and the related code, data and analysis are available in [8].

The studied algorithms are the reference algorithms DualHP, DADA, Het-
eroPrio and CLB2C, and our two new algorithms, BalancedEstimate and
BalancedMakespan. HeteroPrio and CLB2C both start by sorting the
tasks by their acceleration ratios. In HeteroPrio, each ready processor will
then start the execution of the next best task. When all tasks are running,
ready processors will steal a running task if this reduces its completion time.
In CLB2C, at each iteration, the two tasks that are the best for each type of
processors are considered and the one that can finish the soonest is scheduled.

Figure 2 depicts the ratios of the achieved makespans by the lower bound
using boxplots in which the bold line is the median, the box shows the quartiles,
the bars show the whiskers (1.5 times the interquartile range from the box) and
additional points are outliers.
1 The Coefficient of Variation is the ratio of thestandard deviation to the mean.

242 L.-C. Canon et al.

Fig. 2. Ratios of the makespan over a lower bound for 6 algorithms over 400 hundreds
instances. For each instance, there are n = 300 tasks, m = 20 CPUs and k = 4 GPUs.
The costs follow a gamma distribution with expected value 15 for the CPUs and 1 for
the GPUs, while the coefficient of variation is either 0.2 (low) or 1 (high).

BalancedMakespan has the best median in all cases and is often below 2%
from the lower bound except when the CPU CV is low and the GPU CV is high,
for which the lower bound seems to be the furthest. This case is also the most
realistic [1,3]. BalancedEstimate and DualHP have similar performance. It
may be due to their similar mechanism: allocating the jobs to balance the average
CPU and GPU works, and then scheduling the jobs in a second step. DADA,
HeteroPrio and CLB2C, which all schedule the jobs incrementally, perform
similarly for most of the cases. There are classes of problems for which CLB2C
has median performance that is more than 20% away from the lower bound. No
other algorithms achieve so low performance.

When the CPU CV is high, BalancedEstimate is close to the lower bound
(the median is around 1%). In the opposite case, however, CPU costs are more
homogeneous and the performance degrades. The LPT scheduling step of Bal-
ancedEstimate may schedule a last large task on a single CPU whereas it
would have been better to allocate it to the GPUs. In comparison, Balanced-
Makespan, HeteroPrio, and CLB2C are not affected by this limitation
because they build the schedule step by step and adjust the allocation depending
on the actual finishing times.

Finally, we measured that BalancedMakespan provides the best makespan
among the six tested algorithms in more than 96% of the cases. Moreover, the
makespan is always within 0.6% of the best makespan achieved by the differ-
ent algorithms. By contrast, the next two best algorithms in this regard, Bal-
ancedEstimate and DualHP, both provide the best makespan in more than
36% of the cases and their makespan is always within 16% of the best makespan.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 243

7 Conclusion

With the recent rise in the popularity of hybrid platforms, efficiently schedul-
ing tasks on multiple types of processors such as CPUs and GPUs has become
critical. This paper presents BalancedEstimate, a new algorithm for the
(Pm,Pk)||Cmax problem. It balances the tasks from the most loaded proces-
sor type to the other type of processors. This algorithm is the first to achieve
an approximation ratio of 2 in all cases with a low time complexity. We also
propose BalancedMakespan, a more costly variant with the same guarantee.
Among these two algorithms, simulations showed the latter outperforms com-
peting algorithms in more than 96% of the cases, while the former is on par
with a more costly dual approximation. The performance of the algorithms was
assessed using a new lower bound on the optimal makespan.

Future developments will consist in evaluating the robustness of the algo-
rithm against incertainties in the processing time estimates and implementing
this approach in a real runtime system to see its benefits in practical situations.
Furthermore, the model could be extended to fit more closely to realistic envi-
ronments by considering precedence constraints, more than 2 types of processors
and taking into account startup times for launching tasks on GPUs.

Acknowledgments. This work was supported by the LABEX MILYON (ANR-10-
LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). This
material is also based upon research supported by the SOLHAR project operated by
the French National Research Agency (ANR).

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on Cholesky factorization. In: 2016 IEEE International Parallel
and Distributed Processing Symposium, pp. 1021–1030. IEEE (2016)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

3. Beaumont, O., Cojean, T., Eyraud-Dubois, L., Guermouche, A., Kumar, S.:
Scheduling of linear algebra kernels on multiple heterogeneous resources. In: Inter-
national Conference on High Performance Computing, Data, and Analytics (HiPC)
(2016)

4. Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Approximation proofs of a fast and
efficient list scheduling algorithm for task-based runtime systems on multicores and
GPUs (2016, to appear in IEEEIPDPS 2017). https://hal.inria.fr/hal-01386174

5. Bleuse, R., Gautier, T., Lima, J.V.F., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: a new affinity based algorithm for heterogeneous archi-
tectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS,
vol. 8632, pp. 560–571. Springer, Cham (2014). doi:10.1007/978-3-319-09873-9 47

6. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput.: Pract.
Exp. 27(6), 1625–1638 (2015)

https://hal.inria.fr/hal-01386174
http://dx.doi.org/10.1007/978-3-319-09873-9_47

244 L.-C. Canon et al.

7. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types. arXiv
preprint arXiv:1205.0974 (2012)

8. Canon, L.C.: Code for low-cost approximation algorithms for scheduling indepen-
dent tasks on hybrid platforms. https://doi.org/10.6084/m9.figshare.4674841.v1

9. Canon, L.C., Marchal, L., Vivien, F.: Low-cost approximation algorithm for
scheduling independent tasks on hybrid platforms. Research report 9029, INRIA,
February 2017. https://hal.inria.fr/INRIA/hal-01475884v1

10. Cheriere, N., Saule, E.: Considerations on distributed load balancing for fully het-
erogeneous machines: two particular cases. In: Proceedings of IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp. 6–16.
IEEE (2015)

11. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-
tion, 1st edn. Cambridge University Press, New York (2015)

12. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling unre-
lated machines of few different types. In: Freivalds, R.M., Engels, G., Catania, B.
(eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 290–301. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49192-8 24

13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

14. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(1–3), 259–271 (1990)

15. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

16. Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: IEEE International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pp.
112–119 (2014)

17. TOP500 supercomputer site, list of November 2016. http://www.top500.org

http://arxiv.org/abs/1205.0974
https://doi.org/10.6084/m9.figshare.4674841.v1
https://hal.inria.fr/INRIA/hal-01475884v1
http://dx.doi.org/10.1007/978-3-662-49192-8_24
http://www.top500.org

	Low-Cost Approximation Algorithms for Scheduling Independent Tasks on Hybrid Platforms
	1 Introduction
	2 Problem Formulation
	3 Algorithm Description
	4 Approximation Ratio Proof
	5 Lower Bound
	6 Simulations
	7 Conclusion
	References

