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Abstract. We study the problem of executing an application repre-
sented by a precedence task graph on a multi-core machine composed
of standard computing cores and accelerators. Contrary to most exist-
ing approaches, we distinguish the allocation and the scheduling phases
and we mainly focus on the allocation part of the problem: choose the
most appropriate type of computing unit for each task. We address both
off-line and on-line settings. In the first case, we establish strong lower
bounds on the worst-case performance of a known approach based on
Linear Programming for solving the allocation problem. Then, we refine
the scheduling phase and we replace the greedy list scheduling policy used
in this approach by a better ordering of the tasks. Although this modi-
fication leads to the same approximability guarantees, it performs much
better in practice. In the on-line case, we assume that the tasks arrive in
any, not known in advance, order which respects the precedence relations
and the scheduler has to take irrevocable decisions about their alloca-
tion and execution. In this setting, we propose the first online scheduling
algorithm which takes into account precedences. Our algorithm is based
on adequate rules for selecting the type of processor where to allocate
the tasks and it achieves a constant factor approximation guarantee if
the ratio of the number of CPUs over the number of GPUs is bounded.
Finally, all the previous algorithms have been experimented on a large
number of simulations built on actual libraries. These simulations assess
the good practical behavior of the algorithms with respect to the state-
of-the-art solutions whenever these exist or baseline algorithms.

1 Introduction

The parallel and distributed platforms available today become more and more
heterogeneous. Such heterogeneous architectures have a growing impact on per-
formance in high-performance computing. Hardware accelerators, such as Gen-
eral Purpose Graphical Processing Units (in short GPUs) [12], are often used in
conjunction with multiple Central Processing Units (CPUs) on the same chip
sharing the same common memory. As an instance of this, the number of plat-
forms of the TOP500 equipped with accelerators has significantly increased dur-
ing the last years [14]. In the future it is expected that the nodes of such platforms
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will be even more diverse than today: they will be composed of fast computing
nodes, hybrid computing nodes mixing general purpose units with accelerators,
I/O nodes, nodes specialized in data analytics, etc. The interconnect of a huge
number of such nodes will also lead to more heterogeneity. Using heterogeneous
platforms would lead to better performances through the use of more appropri-
ate resources depending on the computations to perform, but it has a cost in
terms of code development and more complex resource management.

In this work, we present efficient algorithms for scheduling an application
represented by a precedence task graph on hybrid computing resources. We are
interested in designing generic approaches for efficiently implementing parallel
applications where the scheduling is not explicitly part of the application. In this
way, the code is portable and can be adapted to the next generation of machines.

Underlying Architecture. We consider an hybrid multi-core node composed of
identical CPUs and GPUs. An application consists of tasks that are linked by
precedence relations. Each task is characterized by two processing times depend-
ing on which type of processors it is assigned to. We assume that an exact
estimation of both these processing times is available to the scheduler. This
assumption can be justified by several existing models to estimate the execution
times of tasks [2]. In several applications we always observe an acceleration of the
tasks if they are executed on a GPU. However, we consider the more general case
where the relation between the two processing times can differ for different tasks.
This work focuses on the analysis of the qualitative behavior induced by hetero-
geneity since it may be assumed that the computations dominate local shared
memory costs. Thus, no memory assignment or overhead for data management
are considered, nor communication times between the shared memory and the
CPUs or between CPUs and GPUs. As the application developers are mainly
looking for performance, the objective of a scheduler is usually to minimize the
completion time of the last finishing task.

Definition and Notations. We consider a parallel application which should be
scheduled on m identical CPUs and k identical GPUs. Henceforth, we assume
that m ≥ k. The application is represented by a Directed Acyclic Graph
G = (V,E) whose nodes correspond to sequential tasks and arcs correspond
to precedence relations among the tasks. We denote by T the set of all tasks.
Let pj (resp. pj) be the processing time of a task Tj if it is executed on any CPU
(resp. GPU). Given a schedule S, we denote by Cj the completion time of a task
Tj in S. In any feasible schedule, for each arc (i, j) ∈ E, the task Tj cannot be
executed before the completion of Ti. We say that Ti is a predecessor of Tj and
we denote by Γ−(Tj) the set of all predecessors of Tj . Similarly, we say that Tj

is a successor of Ti and we denote by Γ+(Ti) the set of all successors of Ti. We
call descendant of Tj each task Ti for which there is a path from j to i in G.

The objective is to create a feasible non-preemptive schedule of minimum
makespan. In other words, we seek a schedule that respects the precedence con-
straints among tasks, does not interrupt their execution and minimizes the com-
pletion time of the last task, i.e., Cmax = maxTj

{Cj}. Extending the three-fields
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notation for scheduling problems introduced by Graham, this problem can be
denoted as (CPU,GPU) | prec | Cmax.

Contributions and Outline. In this paper we study the above problem on both
off-line and on-line settings. The goal is to design algorithms through a solid
theoretical analysis that can be practically implemented in actual systems. Con-
trarily to most existing approaches (see for example [15]), we propose to address
the problem by separately focusing on the following two phases:

– allocation: each task is assigned to a type of resources, either CPU or GPU,
– scheduling : each task is assigned to a specific pair of resource and time interval

respecting the decided allocation as well as the precedence constraints.

We aim to study the two phases separately motivated by the fact that there are
strong lower bounds on the approximability of known single-phase algorithms.
For example, the approximation ratio of the well-known Heterogeneous Earli-
est Finish Time (HEFT) algorithm [15] cannot be better than Ω( m

k2 ) (Sect. 3),
while it can be easily shown that List Scheduling policies have arbitrarily large
approximation ratio, even if we consider some enhanced order of tasks, like pri-
oritizing the task of the largest acceleration. The two-phases approach has been
used by Kedad-Sidhoum et al. [11] where a linear program (which we call Het-
erogeneous Linear Program or simply HLP) in conjunction with a rounding have
been proposed for the allocation phase, while the greedy Earliest Starting Time
(EST) policy has been applied to schedule the tasks. This algorithm, henceforth
called HLP-EST, achieves an approximation ratio of 6. Surprisingly, in Sect. 3,
we show that the ratio of this algorithm is tight. In fact, our worst-case example
does not depend on the scheduling policy applied in the second phase.

Based on this negative result, we propose to revisit both phases. In Sect. 4.1,
we initially present three greedy rules which can be used to decide the allocation.
Although these rules are of low complexity, a desired property in practice, they
cannot guarantee any approximation ratio. However, a more enhanced set of
rules that takes into account the actual schedule can lead to an algorithm of
worst case ratio O(

√
m
k ), even in an on-line context where the tasks arrive in

any order that respects the precedence constraints, and the scheduler has to
take irrevocable decisions for their execution at the time of their arrival. This
is the first on-line upper-bound when precedence constraints are considered in
the hybrid context. In Sect. 4.2, we propose to replace the EST policy in HLP-
EST by a specific order of tasks which is based on both the allocation decisions
taken in the first phase and the critical path. This refined algorithm preserves
the approximation ratio of 6 and it also has a very good practical performance.

In Sect. 5, we describe the generation of the benchmark used in our exper-
iments, which is freely available in Standard Workload Format (SWF). The
experiments show that the new scheduling method based on HLP outperforms
both HEFT and HLP-EST in most of the applications, while our proposed on-line
algorithm has significantly better makespan than the baseline greedy algorithms.

Before continuing, we present in Sect. 2 the works related to our setting and,
finally, we conclude in Sect. 6. Omitted proofs can be found in [3].
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2 Related Works

Most papers of the huge existing literature about GPUs concern specific appli-
cations. There are only few papers dealing with generic scheduling in mixed
CPU/GPU architectures, and very few of them consider precedence constraints.

From a theoretical perspective, the problem of scheduling tasks on two types
of resources is more complex than the problem on parallel identical machines,
P | prec | Cmax, but it is easier than the problem on unrelated machines,
R | prec | Cmax. Moreover, if all tasks are accelerated by the same factor in
the GPU side, then (CPU,GPU) | prec | Cmax coincides with the problem
of scheduling on uniformly-related parallel machines, Q | prec | Cmax. In this
sense, we can say that the former is more general than the latter one; however,
in our problem all tasks have only two different processing times, that makes
it simpler. For P | prec | Cmax, Graham’s List Scheduling algorithm [10] is
a 2-approximation, while no algorithm can have a better approximation ratio
assuming a particular variant of the Unique Games Conjecture [13]. Chudak
and Shmoys [8] developed a polynomial-time O(log m)-approximation algorithm
for Q | prec | Cmax. For hybrid architectures, a 6-approximation algorithm has
been proposed by Kedad-Sidhoum et al. [11]. In the case of independent tasks
there is a ( 43 + 1

3k )-approximation algorithm [5]. If the tasks arrive in an on-line
order, a 4-competitive algorithm has been presented by Chen et al. [7] for hybrid
architectures without precedence relations.

On a more practical side, there exist some work about off-line scheduling, such
as the well-known algorithm HEFT introduced by Topcuoglu et al. [15], which
has been implemented on the run-time system starPU [4]. Another work stud-
ied the systematic comparison of various heuristics [6]. Specifically, the authors
examined 11 different heuristics. This study provided a good basis for compari-
son and insights on circumstances why a technique outperforms another. Finally,
Bleuse et al. [5] compared their proposed (43 + 1

3k )-approximation algorithm with
HEFT. Note that the later two approaches considered only independent tasks.

3 Preliminaries and Lower Bounds

In this section we briefly present the two basic existing approaches for scheduling
on heterogeneous/hybrid platforms and we discuss their theoretical efficiency by
presenting lower bounds on their performance.

The first approach is the scheduling-oriented algorithm HEFT [15]. According
to HEFT, the tasks are initially prioritized with respect to their precedence
relations and their average processing times. Then, following this priority, tasks
are scheduled with possible backfilling on the available pair of processor and time
interval in which they feasibly complete as early as possible. Note that HEFT is a
heuristic that works for platforms with several heterogeneous resources and also
takes into account possible communication costs. However, even for the simpler
setting which we study in this paper without communication costs, with only
two types of resources and k = 1, HEFT cannot have a worst-case approximation
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guarantee better than m
2 [5]. This result depends only on the number of CPUs,

since the example provided uses just one GPU. The following theorem, whose
proof is omitted, slightly improves the above result for the case of a single GPU.
More interestingly, it expresses the lower bound to the approximation ratio of
HEFT using both the number of CPUs and of GPUs.

Theorem 1. For any k ≤ √
m, the worst-case approximation ratio for HEFT

is at least m+k
k2

(
1 − 1

ek

)
, even in the hybrid model with independent tasks.

The second approach is proposed by Kedad-Sidhoum et al. [11] and it distin-
guishes the allocation and the scheduling decisions. For the allocation phase, an
integer linear program is proposed which decides the allocation of tasks to the
CPU or GPU side by optimizing the standard lower bounds for the makespan of
a schedule which are proposed by Graham [10], namely the critical path and the
load. To present this integer linear program, let xj be a binary variable which
is equal to 1 if a task Tj is assigned to the CPU side, and zero otherwise. Let
also Cj be a variable that indicates the completion time of Tj and λ the vari-
able that corresponds to the maximum over all lower bounds used. Then, the
Heterogeneous Linear Program (HLP) is as follows:

minimize λ

Ci + pjxj + pj(1 − xj) ≤ Cj ∀Tj ∈ T , Ti ∈ Γ−(Tj) (1)

pjxj + pj(1 − xj) ≤ Cj ∀Tj ∈ T : Γ−(Tj) = ∅ (2)

Cj ≤ λ ∀Tj ∈ T (3)

max{ 1
m

∑

Tj∈T
pjxj ,

1
k

∑

Tj∈T
pj(1 − xj)} ≤ λ (4)

xj ∈ {0, 1} ∀Tj ∈ T (5)
Cj ≥ 0 ∀Tj ∈ T

Constraints (1), (2) and (3) describe the critical path, while Constraint (4)
imposes that the makespan cannot be smaller than the load on CPU and GPU
sides. Note that the particular problem of deciding the allocation to minimize
the maximum over the three lower bounds is NP-hard, since it is a generaliza-
tion of the PARTITION problem to which reduces if all tasks are independent,
m = k, and pj = pj for each Tj .

After relaxing the integrity Constraint (5), a fractional allocation can be
found in polynomial time. To get an integral solution, the variables xj are
rounded as follows: If xj ≥ 1

2 then Tj is assigned to the CPU side, otherwise
to the GPU side. Finally, the Earliest Starting Time (EST) policy is applied
for scheduling the tasks: At each step, the ready task with the earliest possible
starting time is scheduled respecting the precedence relations and the decided
allocation. We call this algorithm HLP-EST.

HLP-EST achieves an approximation ratio of 6 [11]. Surprisingly, the follow-
ing theorem shows that this ratio is tight. In fact, the theorem implies an even



Generic Algorithms for Scheduling Applications 225

stronger result since the worst case example does not depend on the scheduling
policy which will be applied after the allocation step.

Theorem 2. Any scheduling policy which is applied after the allocation deci-
sions taken by the rounding of an optimal fractional solution of the relaxed HLP
leads to an approximation algorithm of ratio at least 6 − O( 1

m ).

Proof (sketch). Consider an hybrid system with an equal number of CPUs and
GPUs, i.e., m = k. The instance consists of 2m+3 tasks that are partitioned into
3 sets as shown in Table 1. The only precedence relations exist between tasks of
B1 and B2: for each task Tj ∈ B2 we have that Γ−(Tj) = B1, that is no task
in B2 can be executed before the completion of all tasks in B1. There are no
precedences between tasks of the same set.

Any optimal solution of the relaxed HLP for the above instance will assign
the task TA on a CPU, i.e., xA = 1. Hence, the objective value of any optimal
solution will be at least m(2m+1)

m−1 due to Constraints (2) and (3).
On the other hand, we can show that the following assignment is optimal

for the relaxed HLP: given a small constant ε > 0, set xA = 1, xj = 1
2 for

each Tj ∈ B1, xj = 1
2 − ε for each Tj ∈ Bi, and λ = m(2m+1)

m−1 . Given this
optimal fractional assignment, the algorithm will round the fractional variables
and allocate the tasks as follows: the task TA is assigned to the CPU side, each
task Tj ∈ B1 is assigned to the CPU side, and each task Tj ∈ B2 is assigned to
the GPU side. Then, assuming that m ≥ 3, there is only one meaningful family
of schedules for the tasks in B1 ∪ B2. An illustration of such a schedule is given
in Fig. 1.

The makespan of the created schedule is equal to 6(2m−1), while the optimal
fractional solution for the relaxed HLP has objective value m(2m+1)

m−1 . Hence, the
approximation ratio achieved for this instance is 6 − O

(
1
m

)
and the theorem

follows. 	


Table 1. Tasks and their processing
times for the input instance.

Sets of tasks # tasks pj pj

A 1 m(2m+1)
m−1

∞
B1 2m + 1 2m − 1 1

B2 2m + 1 1 2m − 1

GPU

B2 B2 B2

. . .

B2 B2

B2 B2

CPU

B1 B1 B1

. . .

B1 A
B1 B1 B1

0
(2m − 1)

2(2m − 1)
3(2m − 1)

4(2m − 1)
5(2m − 1)

6(2m − 1)

Fig. 1. The schedule created by the algorithm
(the gray areas correspond to idle times).
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4 Algorithms

In this section we focus separately on each of the two phases, allocation and
scheduling, and we propose algorithms for them.

4.1 Allocation Phase

In the HLP-EST algorithm, an integer linear program was used to find an efficient
allocation of each task to the CPU or GPU side. Although this program optimizes
the classical lower bounds for the makespan, and hence informally optimizes the
allocation, the resolution of its relaxation has a high complexity in practice. For
this reason, we would like to explore some greedy, low complexity, policies. In
this direction, we initially propose the following three simple greedy rules:

R1. If pj

m ≤ pj

k then assign Tj to the CPU side, else assign it to the GPU side.
R2. If pj√

m
≤ pj√

k
then assign Tj to the CPU side, else assign it to the GPU side.

R3. If pj ≤ pj then assign Tj to the CPU side, else assign it to the GPU side.

However, these rules do not take into account neither the critical path nor the
actual schedule and they cannot guarantee a bounded approximation ratio.

In what follows, we propose to use a more enhanced set of rules which com-
bines R2 with a rule based on the structure of the actual schedule, in a similar
way as in the 4-competitive algorithm proposed by Chen et al. [7] for the on-line
problem with independent tasks. Our algorithm works also in the on-line setting.

To describe the new rule, we define τG to be the earliest time when at least
one GPU is idle. Let also RG

j = max{τG,maxi∈Γ−(j){Ci}} be the ready time of
task Tj , i.e., the earliest time at which Tj can be executed on a GPU. Then, the
new enhanced set of rules is defined as follows:

Step 1: If pj ≥ RG
j + pj then assign Tj to the GPU side.

Step 2: Otherwise apply R2.

This set of rules can be combined with a greedy List Scheduling policy that
schedules each task as early as possible on the CPU or GPU side already decided
by the rules. We call the algorithm obtained by this combination as ER-LS
(Enhanced Rules - List Scheduling). Note that both the allocation policy based
on rules and the List Scheduling policy can be applied in an on-line context, by
considering the tasks one by one and taking irrevocable decisions for them.

Theorem 3. ER-LS is a (4
√

m
k )-competitive algorithm.

4.2 Scheduling Phase

We propose here a new scheduling policy which prioritizes the tasks based on the
solution obtained for HLP. The motivation of assigning priorities to the tasks is
for taking into account the precedence relations between them. More specifically,
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we want to prioritize the scheduling of critical tasks, i.e., the tasks on the critical
path, before the remaining (less critical) tasks.

To do this, we define for each task Tj a rank Rank(Tj) in the same sense
as in the HEFT algorithm. However, in our case, the rank of each task depends
on HLP, while in HEFT it depends on the average processing time of the task.
Specifically, the rank of each task Tj is computed after the rounding operation
of the assignment variable xj and corresponds to the length, in the sense of
processing time, of the longest path between this task and its last descendant
in the precedence graph. Thus, each task will have a larger rank than all its
descendants. The rank of the task Tj is recursively defined as follows:

Rank(Tj) = pjxj + pj(1 − xj) + max
i∈Γ+(Tj)

{Rank(Ti)}

After ordering the tasks in non-increasing order with respect to their ranks, we
apply the standard List Scheduling algorithm adapted to two types of resources
and taking into account the rounding of the assignment variables xj . We call the
above described policy Ordered List Scheduling (OLS), while the newly defined
algorithm (including the allocation) is denoted by HLP-OLS.

Although this policy performs well in practice, as we will see in the experi-
ments in the following section, its approximation ratio cannot be better than 6
due to the lower bound presented in Theorem2. On the other hand, it is quite
easy to see that HLP-EST and HLP-OLS have the same approximation ratio.

5 Experiments

In this section, we compare the performance of various scheduling algorithms by
a simulation campaign using a benchmark composed of 6 parallel applications.

5.1 Benchmark

The benchmark is composed of five applications generated by Chameleon, a
dense linear algebra software [1], and a more irregular application (fork-join)
generated using GGen, a library for generating directed acyclic graphs [9].

The applications of Chameleon, named getrf nopiv, posv, potrs, potri and
potrs, are composed of multiple sequential basic tasks of linear algebra. Different
number, denoted by nb blocks, and sizes, denoted by block size, of sub-matrices
have been used for the applications; specifically, nb blocks ∈ {5, 10, 20} and
block size ∈ {64, 128, 320, 512, 768, 960}. The applications were executed with
the runtime StarPU [4] on a Dual core Xeon E7 v2 machine with a total of
20 physical cores with hyper-threading of 3 GHz and 256 GB of RAM. This
machine had 4 GPUs NVIDIA Tesla K20 with 4 GB of global memory, 200 GB/s
of bandwidth and 2,496 cores divided in 13 multiprocessors.

The fork-join application corresponds to a real situation where the execution
starts sequentially and then forks to width parallel tasks. The results are aggre-
gated by performing a join operation, completing a phase. For our experiments,
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we used p ∈ {2, 5, 10} phases and width ∈ {100, 200, 300, 400, 500}. The run-
ning time of each task on CPU was computed using a Gaussian distribution with
center p and standard deviation p

4 . We established various acceleration factors
for the running time on GPU. In all configurations, there are five parallel tasks
in each phase with an acceleration factor in [0.1, 0.5] while the remaining tasks
have an acceleration factor in [0.5, 50]. The data set and other information are
available under Creative Commons Public License1.

5.2 Environment and Algorithms

We compare the performance, in terms of makespan, of HLP-EST and HLP-OLS
with HEFT. We also compare in on-line mode, where tasks arrive over a list, the
algorithm ER-LS with two greedy algorithms: GreedyOn which allocates a task
on the processor type which has the smallest processing time for that task, and
RandomOn which randomly assigns a task to the CPU or GPU side.

The algorithms are implemented in Python (v. 2.7.6). The command-line
glpsol (v. 4.52) solver of the GLPK package is used for the linear program. The
number of tasks of the six applications range from 30 to 5011. Moreover, we
test different machine configurations, combining 16, 32, 64 or 128 CPUs with 2,
4, 8 or 16 GPUs. Each combination of application and machine configuration is
executed only once since all algorithms, except for the random greedy algorithm,
are deterministic. For each run, we store the optimal objective solution of the
linear program, denoted by LP ∗, and the makespan of the six algorithms.

5.3 Analysis of Results

Off-Line Algorithms. To study the performance of the 3 off-line algorithms we
computed the ratio between each makespan and LP ∗, which corresponds to a
good lower bound of the optimal makespan. Figure 2a shows the ratio of each
instance of application and configuration. Notice that the red/bigger dot repre-
sents the mean value of the ratio for each application. We can see that HLP-EST
is outperformed, on average, by the two other algorithms. The performances of
HLP-OLS and HEFT are quite similar, on average, but we observe that HEFT
does create more outlier makespans.

Figure 3 compares more specifically the two HLP-based algorithms and the
algorithms HLP-OLS and HEFT, respectively, by showing the ratio between the
makespans of the two algorithms. We can see that HLP-OLS clearly outperforms
HLP-EST, except for a few instances with the application potri, with an improve-
ment close to 10% on average. We also notice that, even if the two algorithms
have similar performances, HEFT is on average outperformed by HLP-OLS by
5%. Moreover, HEFT has a significantly worse performance than HLP-OLS in
strongly heterogeneous applications where there is a bigger perturbation in the
(dis-)acceleration of the tasks on the GPU side, like forkJoin, since in these
irregular cases the allocation problem becomes more critical.

1 Hosted at: https://github.com/marcosamaris/heterogeneous-SWF.

https://github.com/marcosamaris/heterogeneous-SWF
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(b) On-line algorithms.

Fig. 2. Ratios over LP ∗ for each instance, grouped by application. (Color figure online)

On-Line Algorithms. The ratios between the makespan of each of the 3 on-line
algorithms and LP ∗ are compared in Fig. 2b which shows that, except for a few
number of instances, RandomOn is significantly outperformed by ER-LS and
GreedyOn. Figure 4a presents a more detailed comparison between GreedyOn
and ER-LS, and shows that the ratio of their performance is on average greater
than 1, meaning that GreedyOn is outperformed by ER-LS. The mean value of
the ratio per application is between 1 and 1.5. For some instances, ER-LS can
even perform up to 12.5 times better than GreedyOn. We also study the per-
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Fig. 3. Ratio between the makespans of HLP-EST and HLP-OLS (left) and HEFT
and HLP-OLS (right) for each instance, grouped by application.
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formance of ER-LS and GreedyOn with respect to the theoretical upper bound
given in Sect. 4.1. Figure 4b shows the mean competitive ratio of ER-LS and
GreedyOn along with the standard error in function of

√
m
k associated to each

instance. To simplify the lecture, we only present the applications potri and
fork-join. The competitive ratio is smaller than

√
m
k and far from the theoreti-

cal upper bound of 4
√

m
k .
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Fig. 4. Comparison of on-line algorithms.

6 Conclusions

We studied the problem of scheduling parallel applications, represented by a
precedence task graph, on hybrid multi-core machines. We focused on generic
approaches, non depending on the particular application, by distinguishing the
allocation and the scheduling phases and we proposed efficient algorithms with
worst-case performance guarantees. In the off-line case, motivated by new lower
bounds on the performance of existing algorithms, we refined the scheduling
phase of the best known approximation algorithm and we presented a new algo-
rithm that preserves the approximation ratio and performs better in our experi-
ments. In the on-line case, we presented a O(

√
m
k )-competitive algorithm based

on adequate rules, which can be considered as constant-factor since, practically,
the ratio m

k is bounded.
From the practical point of view, an extensive simulation campaign on repre-

sentative benchmarks constructed by real applications showed that it is possible
to outperform the classical HEFT algorithm keeping reasonable running times.
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Moreover, the on-line algorithm based on rules is a good trade-off since it deliv-
ers a solution close to the optimal. We aim to implement it on a real run-time
system (such as StarPU [4]) which currently uses HEFT on successive sets of
independent tasks.

In this work we assumed that the communications between CPUs, GPUs and
the shared memory are neglected. Our next step is to introduce communication
costs in the algorithms, which should not be too hard in both integer program
and greedy rules.
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Research Foundation, grant #2012/23300-7) and ANR Moebus Project.
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