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Abstract. A growing disparity between supercomputer computation
speeds and I/O rates makes it increasingly infeasible for applications to
save all results for offline analysis. Instead, applications must analyze and
reduce data online so as to output only those results needed to answer
target scientific question(s). This change in focus complicates application
and experiment design and introduces algorithmic, implementation, and
programming model challenges that are unfamiliar to many scientists
and that have major implications for the design of various elements of
supercomputer systems. We review these challenges and describe meth-
ods and tools that we are developing to enable experimental exploration
of algorithmic, software, and system design alternatives.

1 Introduction

Technology trends are creating a crisis in high performance computing. Com-
puter speeds are increasing much faster than are storage technology capaci-
ties and I/O rates. For example, the Mira supercomputer installed at Argonne
National Laboratory in 2012 has a peak compute rate of 10 petaflop/s (1016

op/s) and disk write rate of 500 GB/s (5×1011 bytes/s). By 2024, computers are
projected to compute at 1018 ops/sec but write to disk only at 1012 bytes/sec:
a compute-to-output ratio 50 times worse. Figure 1 provides another perspec-
tive on this trend. We can no longer output every piece of information that we
might ever possibly want. Instead, we need to output just the information that
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we need to answer some question(s). This new goal requires new thinking about
the design and implementation of both applications and system software.

Fig. 1. Total filesystem throughput of
leadership class facilities vs. total float-
ing point operations per second [25,32,
40]. I/O throughput scales more slowly
than computational speed.

In both purely computational and cou-
pled experimental–computational studies,
these growing disparities between com-
putational speeds and I/O rates demand
new application structures that link previ-
ously disjoint activities: experiment, sim-
ulation, data analysis, data reduction. Yet
while many algorithms and tools exist
to treat separate pieces of such prob-
lems, these capabilities are often inoper-
able or inaccessible to the research scien-
tist. Scientists need new tools for coupling
components and new methods for co-
optimizing the resulting workflows. These
tasks introduce algorithmic, implementa-
tion, and programming model challenges
that are unfamiliar to many scientists and
that have major implications for the design of various elements of high perfor-
mance systems.

The emerging exascale landscape offers many opportunities to address these
problems. Additional storage features such as non-volatile random access mem-
ory (NVRAM) will provide powerful caching and aggregation capabilities. A vari-
ety of operating systems, runtime, scheduling, and fault tolerance features may
become available to applications and middleware developers. Advanced workflow
systems, I/O frameworks, and data reduction techniques can be integrated to
construct efficient data processing pipelines. These features will be adopted by a
range of exascale-ready applications, so there is a unique window of opportunity
to develop solutions that are widely applicable, reusable, and beneficial.

The Co-design center for Online Data Analysis and Reduction (CODAR)
engages scientists at three national laboratories and five partner universities,
to address these challenges. Working closely with applications teams, CODAR
is undertaking a co-design process that targets both common data analysis
and reduction methods (e.g., feature and outlier detection, and compression)
and methods specific to particular data types and domains (e.g., particle and
structured finite-element methods). Our goal is to understand and guide trade-
offs in the development of computer systems, applications, and software frame-
works, given constraints relating to application development costs and fidelity,
performance portability, scalability, and power efficiency, and to answer these
questions:

Q1: What are the best data analysis and reduction algorithms for different appli-
cation classes, in terms of speed, accuracy, and resource needs? How can we
implement those algorithms for scalability and performance portability?
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Q2: What are the tradeoffs in data analysis accuracy, resource needs, and overall
performance between online reduction and offline analysis vs. online analy-
sis? How do these tradeoffs vary with hardware and software choices?

Q3: How do we effectively orchestrate online data analysis and reduction to
reduce associated overheads? How can hardware and software help?

2 Related Work and Context

We are not the first to observe that both the growing disparity between com-
pute and I/O rates and the need for near-real-time feedback requires online
data analysis and reduction. Much work has been performed on “in-situ” and
“in-transit” analysis methods [4,9], motivated by a desire to conserve I/O band-
width, storage, and/or power; increase accuracy of data analysis results; and/or
make optimal use of parallel platforms [31], among other factors [2]. The need
to reduce output data volumes has also spurred various science teams to create
custom online data analysis and reduction techniques [16,22,26,27,34,36] and
also stimulated work on general-purpose methods [8,10,21].

Such work reveals complex relationships between application design, data
analysis and reduction methods, programming models, system software, hard-
ware, and other elements of extreme-scale systems, particularly given constraints
such as applicability, fidelity, performance portability, and power efficiency.

The community is far from completely understanding the many co-design
issues posed by online data analysis and reduction. For the broader community
to leverage and expand the knowledge gained by early adopters, they will require
an effective, usable and sustainable software infrastructure that allows scientists
to use the best techniques to extract the right information that can then be
pushed through the straw to the parallel file system. It is in this context that
we established the CODAR co-design project.

3 Example Applications

We use examples from climate, fusion, and materials science to motivate the
need for online data analysis and reduction.

3.1 Climate Science

Climate scientists want to run large ensembles of high-fidelity 1 km× 1 km sim-
ulations on exascale systems, with each instance simulating 15 years of climate
in 24 h of computing time. They estimate that outputting the full model state
for each ensemble member once per simulated day would generate 260 TB every
16 s across the ensemble, approximately 16× what can be written to the parallel
file system at the expected peak output rate of 1 TB/sec. (Currently, climate
models achieve much lower I/O rates, due to their relatively small model grids.)
Furthermore, even following data reduction to 1 TB/sec, such runs would output
85 PB per day, posing major storage and offline data analysis challenges.
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While 85 PB is a lot of data to output in a day’s computing, this quantity
represents just a small subset of the total data to be produced by the ensemble.
Outputting state just once per simulated day represents a highly lossy reduction,
given that the climate model time step may be just 100 simulated seconds, and
indeed some analyses may require access to the full state at higher frequency. For
example, feature detection (e.g., tracking cyclones, detecting areas of extreme
heat) may require access to model state once per simulated five minutes, a rate
24 × 12 = 288 times greater. Clearly, climate models need new online data
analysis and reduction methods that can both preserve more information than
once-per-day snapshots and produce considerably less data.

3.2 Fusion Science

Fig. 2. XGC fusion simulation results near
the plasma edge illustrates the need for
fidelity preserving data reduction. The full
data for the magnetic field ||B|| and the
scalar potential φ both show close approx-
imation to the full solution. However, in
the case of the derived fluid velocity ∇φ×B

‖B‖ ,
the adaptive method retains the four major
features from the full data; the uniform
method does not.

Fusion scientists are developing a
high-fidelity whole device model for
magnetically confined fusion plasmas,
for use in planning experiments on the
ITER facility and simulating future
experimental fusion devices [6]. The
X-point included Gyrokinetics Code
(XGC) [24], one potential compo-
nent of a whole device model, mod-
els the plasma edge. A single XGC
simulation can produce hundreds of
petabytes of data describing particle
positions and the state of the field
within which the particles move.

We use this example to illustrate
the need for application-aware data
reduction methods. To reduce this
data to manageable sizes, ultimately
allowing 100 PB to be reduced to
100 TB, a 1000:1 reduction, fusion sci-
entists and CODAR participants col-
laborated to devise a multistep data
reduction process. The first step was
to simply decrease output frequency.
However, this approach cannot be
taken beyond physically relevant time
scales; important information would be lost by decreasing the frequency further.
The second step was to use application knowledge to further reduce the data
without losing essential information. The XGC particles are assumed to follow
a Maxwellian distribution. Therefore, we fitted a distribution to the data and
saved the parameters for the distribution and the particles falling outside that
distribution (the “outliers”). For the field data, adaptive data reduction methods
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were used to preserve features (see Fig. 2). Finally, generic compression meth-
ods were applied to achieve further data reduction. The reduced data was then
output and used for offline data analysis.

3.3 Materials Science

Materials scientists regularly run billion-atom atomistic simulations with fem-
tosecond time steps on leadership-class machines [33,37]. In order to understand
phenomena such as the structural properties of lignin-based macromolecules,
information essential for improving biofuel production, measurable vibrational
responses that arise at the tens of femtoseconds must be studied, requiring per-
time step data access. Yet folding and bonding properties arise only on the scale
of seconds. Saving the full state to simultaneously study both quantities would
generate exabytes on exascale computers. Intelligent, statistically valid spatial
and temporal data analyses and/or reductions that can be applied online are
needed to achieve accurate scientific characterizations with reduced data.

3.4 Real-Time Decisions and Data Assimilation

Increasing use of supercomputers for near-real-time decision making is another
factor motivating new thinking about application and system software design [1].
For example, both experimental fusion energy experiments and next-generation
light sources are moving to a new frontier where data must be processed rapidly
to enable near-real-time decisions.

In light source science, high-fidelity simulation models are used to fit para-
meters that describe sample structure [11]. Coupling emerging high-frame-rate,
high-resolution detectors with high-performance computing and networks allows
these models to be calibrated by streaming data from the experiment hall. Future
experiments may also be guided by active learning methods that prioritize obser-
vations that reduce error and uncertainty in the model. Due to the growth in
detector and simulation capabilities, it is no longer feasible to input experimen-
tal data, perform some computation (e.g., simulation of the experiment’s future
trajectory), and store results for later analysis. Data must be transmitted and
assimilated immediately to maximize the quality of the simulated model, process
significant events, and/or permit rapid feedback to the experiment.

International experimental fusion energy experiments are moving to a new
frontier where data needs to be processed as soon as possible to make near-real-
time decisions. Data sizes, rates, and durations are increasing faster than Moore’s
Law, and new software technologies are needed to cope with their ability to do
their science quickly and accurately. One critical challenges is to understand
which data need to be processed immediately (in near real rime), and we need
the ability to express this during the data generation, and to compose a work-
flow that can help scientist get the best out of their data with a given amount
of work.
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4 A High-Performance Co-design Architecture

Some science teams have already developed application-specific online data
analysis and/or reduction methods on petascale systems, methods they now need
to scale for exascale. Others face the prospect of having to integrate such meth-
ods from scratch as part of their preparation for exascale. In both cases, we want
to make it easy for them to integrate a variety of scalable online data analysis
and reduction methods into their existing infrastructure, so that they can easily
experiment with co-design alternatives and achieve performance portability.

4.1 The Need for Modular Implementations

A first key to achieving this goal of easy co-design, we argue, is to modularize
implementations so that analysis and reduction methods, resource allocations,
and coupling methods can be varied with little or no changes to an application. In
this way we facilitate experimentation with design alternatives and investigation
of co-design and performance portability questions.

The key to modular integration of applications with online data analysis
and reduction methods is access to both the application data of interest and
metadata describing that data’s structure. Once this access is enabled, it becomes
straightforward to access and exchange the data to be analyzed and/or reduced.
Our team has much experience in instrumenting applications to provide and
use such information, particularly in the context of the Adaptable IO System
(ADIOS) [17,43], the Swift [3,42] system, and in earlier work [12,44]. In many
cases, this instrumentation involves adding simple procedure calls, for example
via the ADIOS application program interface (API) [28], to the application to
indicate the data structures in question. A runtime system can then extract
the specified data and pass it to specified data analysis and reduction services.
Only the runtime implementation, not the application, needs to be modified to
explore alternative implementation strategies, such as processing on the same
or different nodes, using NVRAM, varying clock speeds for power efficiency, or
varying the number of data analysis nodes.

The characteristics of data in extreme scale simulations will be highly
dynamic with respect to volume and relative importance. For example, the
detection of a rare event in a simulation could trigger analysis of additional
complexity, or even require a different analysis routine to be loaded and exe-
cuted. Thus, the runtime must be highly reconfigurable. It must enable the user
to programmatically branch into new analysis pipelines or rebalance resources
among components. This will require a novel integration of high-level directives
and hints with low-level I/O reconfiguration features to allow the overall work-
flow to adapt to conditions that emerge during execution.

4.2 CODAR System Components

These considerations lead us to identify three major classes of CODAR co-
designed technologies. Figure 3 shows how they fit together.
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First, the CODAR Data API allows applications to specify the data
to be analyzed and/or reduced, and its structure. We leverage the ADIOS
API [23], which has been integrated into more than thirty science applica-
tions [17,30,38,43]. One co-design question will be how to extend this API so
that applications can convey actionable information for exascale optimizations
relating to performance and power efficiency.

Second, CODAR Data Services provide scalable implementations of data
analysis and reduction methods, plus ancillary monitoring methods, all pack-
aged to permit their use by any application. The data reduction methods will
provide effective reduction of the simulation outputs, both the application state
and the results of online data analyses applied to that state, while retaining
simulation fidelity. Data monitoring is needed to verify that a particular data
reduction method is retaining the necessary information and to provide feedback
when the data reduction is either too aggressive or not aggressive enough (see
Fig. 2). These services will include a mix of those developed by us and those
imported from other sources. We are developing only a modest number of such
implementations ourselves, but our methods and co-design knowledge will be
broadly applicable. Anyone will be able to add generic or application-specific
data services. An important co-design question here concerns the methods and
support required for efficient execution of a broad range of such services.

Third, the CODAR Runtime provides methods for the deployment, config-
uration, execution, and computational monitoring of applications and associated
data analysis and reduction pipelines on exascale platforms. Given a specified
set of data analysis, reduction, and monitoring services, it will enable their effi-
cient composition and configuration; their deployment to appropriate nodes and
cores; efficient communication among them; computational monitoring of both
individual services and the complete computation; and adaptation of service
configurations and parameters.

We intend that these three co-designed technologies allow application teams
to instantiate versions of the Fig. 3 pipeline to address their specific science

Fig. 3. Prototypical data analysis and reduction pipeline, showing how a simulation
communicates to our services through an API that conveys data and their structure.
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goals. Lessons learned from experiments with diverse applications, methods, and
platforms will in turn feed back to ECP application projects, software projects,
vendors, and other stakeholders.

5 CODAR Data Services

We show in Fig. 3 a prototypical application pipeline in which an online data
analysis service consumes simulation data and produces extracted information
that is communicated back to the simulation and/or sent to a data reduction
service for further processing prior to storage on a parallel file system. A moni-
toring service can also be engaged to evaluate the quality of the data reduction
results. More generally, data analysis methods may extract information from
several states—for example, a sliding window of time—and use results from pre-
vious data analyses. We review some of the analysis, reduction, and monitoring
methods that we are studying in the CODAR project.

5.1 Analysis Services

Our initial catalog of data analysis methods concentrates on multidimensional
statistical and image analysis and outlier detection and extraction. We develop
this set based on application requirements and their relevance to important
co-design questions, such as the following. When should a data analysis be per-
formed online versus offline? How frequently can data analyses be performed
online, given a specified computational budget? How can data analyses make
use of increased CPU on-node concurrency? When do we use burst buffers to
stage and extend memory for online data analysis? How do we take advantage
of deep memory hierarchies for tracking changes over time?

Multidimensional Statistical Analysis. Application scientists frequently find it
useful to extract multidimensional statistics and geometrical characteristics from
simulations, since these analyses reflect properties on a larger scale than do point-
wise and time-instant measurements, and carry information about structures,
aggregated quantities, and statistical measurements.

We plan to build on our stochastic flow map [15], which provides understand-
ing of uncertain transport behavior. This map has been successfully applied to
climate [15,35] and weather [14] applications. We are further developing our
data analysis methods to model multivariate and multiscale features in statis-
tical ensembles using the concepts of specific mutual information between vari-
ables [5] and information flows based on association rules [29]. These methods
all have a wide range of applications including climate and combustion.

As an example, climate model ensembles produce a distribution of veloci-
ties, instead of a single velocity at each grid point. These distributions allow cli-
mate scientists to quantify the uncertainty in convergent and divergent transport
behaviors and in derived features such as eddies, flow segmentation, and large-
scale teleconnections. Tracking these features via stochastic flow maps enables
scientists to understand their evolution and advance their scientific mission.
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Outlier Detection and Extraction. Outliers and rare events are the needles that
application scientists frequently seek in the massive haystack of exascale data.
We are developing semi-supervised machine learning techniques that incorpo-
rate existing prior knowledge (such as a Bayes classifier) within an unsupervised
learning algorithm to select the most relevant targets for later inspection and
addition to a corpus of information. We are integrating the iForest [20] unsuper-
vised machine learning algorithm to project data into a subspace where outliers
deviate sharply from the remaining data, and applying kernel-based signatures
to detect outliers [18–20]. This combination is particularly effective in the case
of complex data with extremely high dimensionality [19,20].

5.2 Reduction Services

As illustrated in Sect. 3, the communication, analysis and storage of data from
exascale simulations will only be possible through aggressive data reduction
capable of shrinking datasets by one or more orders of magnitude. Such data
reduction level is not feasible with lossless data reduction (e.g., lossless compres-
sion) that only typically achieve reduction factors of 2 (initial size/reduced size)
on scientific data. Only lossy data reduction has the potential to reach reduction
factors of orders of magnitude.

As shown in Fig. 3, online data reduction services consume both simulation
outputs and the results from online data analyses and prepare data to be written
to a file system. A crude but commonly used data reduction technique is to save
data only periodically (e.g., every n-th time step) and use linear interpolation
to approximate the missing values for offline data analysis. This technique can
achieve arbitrary reduction ratios, but it lacks control over the errors. While
we support this technique, our data reduction goal is to preserve the essential
information in the reduced output while satisfying resource constraints on I/O
bandwidth. Thus, we need reduction methods that provide control over errors.

The consumer big data domain is in advance of science in the systematic use
of lossy data reduction. Most photos taken on a smartphone are stored in lossy
compressed form, as are audio and video files. The projection made by CISCO
about the Internet traffic is striking: in 2025, 80% of the Internet traffic will be
video streaming; which means that more than 80% of the data transiting on the
Internet will be lossy compressed. Microsoft has already deployed FPGAs into
its data centers to accelerate JPEG compression (among other operations). An
important distinction between the scientific and consumer big data domains is
the specificity of the data reduction techniques. The consumer big data domain
relies on generic lossy compressors (e.g., JPEG for images, MP3 for audio and
MPEG4 for video). Many scientific applications at extreme scale already need
aggressive data reduction. Spatial sampling and decimation in time are used
to reduce data but these techniques also reduce significantly the quality of the
data analytics performed on the sampled or decimated datasets. Advanced lossy
compression techniques provide a solution to this problem by allowing the user
to better control the data reduction error. However, the adoption of lossy data
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reduction techniques in the scientific domain is still limited because of the lack of
comprehensive understanding of the errors introduced by lossy data reduction.

Although lossy data reduction is critical to evolve many scientific domains
to the next step, the technology of scientific data reduction and the under-
standing on how to use it are still in their infancy. The first evidence is the
lack of results in this domain: over the 26 years of the prestigious IEEE Data
Compression Conferences, only 12 papers identify an aspect of scientific data
in their title (floating-point data, data from simulation, numerical data, scien-
tific data). The second evidence is the poor data lossy reduction performance
on some datasets. Beyond the research on data reduction techniques, scientists
also need to understand how to use lossy data reduction. The classic features
of compressors (integer data compression, floating-point data compression, fast
compression and decompression, error bounds for lossy compressors) do not char-
acterize data reduction algorithms specifically with respect to their integration
into a high-performance computing and data analytics workflow.

The CODAR co-design project is addressing these two gaps by collecting
data reduction need from exascale application, investigating and developing new
lossy data reduction algorithms, collecting error assessment needs from appli-
cations and developing a tool, called Z-checker, to assess comprehensively the
error introduced by lossy data reduction.

One approach to lossy scientific data reduction is for application and system
developers to design application-specific lossy data reduction technique. This
approach is used, for example, at the Large Hadron Collider, where experiments
use specialized hardware and software to extract only “interesting” events from
TB/s data streams. An alternative approach is to design and use generic lossy
compressors for scientific data. Several teams have worked and are still working
on this problem. The difficulty here is to develop lossy compressors that provide
excellent data reduction performance for a large variety of scientific applications:
regular mesh, irregular mesh, particle simulation, instrument, etc.

Appropriately chosen reduction methods can improve the information con-
tent of output data. For example, the FLASH hydrodynamics simulation
code [13] is widely used to perform extremely large simulations. Convention-
ally, data are not output every time step, the remaining data are discarded. An
alternative curve-fitting technique exploits the fact that hydrodynamic flows are
mostly smooth and thus can be greatly reduced by lossy compressors that nev-
ertheless provide error bounds. Our SZ compressor [8], for example, can achieve
100:1 reduction for the BLAST2 hydrodynamics data [7].

Currently, the two leading lossy compressors for scientific data are SZ [8,39]
and ZFP [41]. They are error-bounded lossy compressors, meaning that they
respect user-specified error constraints. Each uses a completely different com-
pression strategy. One is based on a prediction method and the other one is
transform based. One is better than the other, depending on the application
and the dataset. Research in this domain aims to reach compression factors of
10 for hard to compress datasets and >100 for easy to compress ones. These
two lossy compressors as well as other generic lossy compressors for scientific
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data work well for smooth datasets. They are less effective when the datasets
are very irregular and presents large variations. One important aspect of the
CODAR project is to understand what compression algorithm (or sequence of
algorithms) to use according to the characteristics of the datasets. We return to
this question in the next section.

5.3 Monitoring Services

Scientific and consumer big data are distinguished by their quite different qual-
ity requirements for reduced datasets. JPEG, MP3 and MPEG4 are not only
generic but universal: all users have the same perception of images and sound.
Thus, compression quality criteria can be defined that meet the needs of a large
population of users. In science, on the other hand, each combination of applica-
tion and data may involve different quality requirements. One open question is
the relevant set of quality criteria for scientific datasets. As illustrated in Fig. 2,
blindly applying a reduction method can result in a failure to capture features
that are essential for subsequent analysis. Users have already expressed needs
to assess spectral alteration, correlation alteration, the statistical properties of
the compression error, the alteration of first and second order derivatives, and
more. As the domain of lossy data reduction for scientific datasets grows, the
community will learn what metrics are relevant and needed.

Another open question is how to express quality requirements, in partic-
ular when there are many such requirements with interdependencies. Perhaps
the most important open question is the comprehensive assessment of the error
introduced by lossy data reduction. The classic lossy compressor assessment
metrics, PSNR (peak signal to noise ratio) and its extension, the rate distortion
diagram, are not enough to represent the potential impact of the error on scien-
tific datasets and the analyses that may be performed on them. Users may also
be interested in other distortions (spectral, derivative, distribution) and other
characterization of the error (autocorrelation, distribution).

To address these concerns, we are developing data monitoring services for
estimating data reduction errors and providing (1) feedback to the reduction
methods so that their tolerances can be adjusted and (2) reduction error maps for
the application scientist. These maps can be imported into offline data analysis
routines or visualized to observe the evolution of reduction errors.

Our first step is a simple monitoring service, Z-checker, that applies an exten-
sible set of metrics to assess both initial dataset properties and the alterations
introduced by lossy data reduction. The Z-checker is designed to permit the
integration of a wide range of analysis modules, in C, C++, Fortran, and R.
An initial set allow its use to characterize critical properties (such as entropy,
distribution, power spectrum, principle component analysis, auto-correlation)
of any dataset to improve compression strategies, detect the compression qual-
ity (compression ratio, bit-rate), and provide global distortion analysis compar-
ing the original data with the decompressed data (peak signal-to-noise ratio,
normalized mean square error, rate-distortion, rate-compression error, spectral,
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distribution, derivatives) and statistical analysis of the compression error (max-
imum/minimum/average error, autocorrelation, distribution of errors). Our ini-
tial Z-checker runs offline; it will evolve into an online application that can be
configured to run multiple user-specified analyses concurrently, either for the
purpose of online steering of data reduction or to produce assessment reports
that can be used to evaluate reduction performance under different settings.

As we gain experience with online use of Z-checker, important questions
to be answered include the following. How frequently should we estimate the
reduction error? What data analysis methods and metrics should we use for
this estimation? How quickly can we provide the refinement hints so that the
information provided is actionable? How effective are the refinement hints at
influencing the reduction error?

6 The CODAR Runtime

The CODAR Runtime provides methods for controlling the placement and con-
figuration of CODAR Data Services for purposes of co-design exploration and
performance optimization. The initial focus is on simple manual configuration
of service delivery choices; in later stages of the project, we will also provide
for automated configuration, once co-design strategies are better understood.
Figure 4 shows the initial set of components.

Savannah: Swift workflows coupled with ADIOS

Z-Check

dup

Multi-node workflow components communicate over ADIOS.

Application data

Cheetah
Experiment 

configuration 
and dispatch

User monitoring and  
control of multiple 
pipeline instances

Co-design data

Store 
experiment 
metadata

Chimbuko
captures co-design 
performance data

Other co-design 
output 
(e.g., Z-Checker)

CODAR 
campaign 
definition

Analysis

ADIOS output

Job launch

Science
App

Reduce

Fig. 4. The CODAR co-design system, showing in particular the Cheetah experiment
management component and the Savannah runtime.

The Cheetah experiment management framework defines a set of conven-
tions and re-usable scripts for conducting parameter sweep experiments on dif-
ferent science applications. Such experiments are intended to be run on super-
computers, particularly on existing machines, but may also be run on local work-
stations for debugging. An ‘application’ may be a single science code or, more
typically, one or more science codes plus a set of online analysis and reduction



Computing Just What You Need: Online Data Analysis and Reduction 15

codes that are coupled with the science codes and each other. The goal of such
parameter sweep experiments is to determine the best set of parameters to use
to run the application as efficiently as possible on different target machines. This
‘best’ set of parameters usually varies over different machines.

The Savannah in situ runtime serves three purposes. It provides a tested
deployment framework for any application (or software technology) project to
use online data analysis and reduction; provides the infrastructure needed to
create a testing framework (Cheetah) to evaluate reduction and analysis func-
tions for performance on a variety of levels (application and platform); and
provides a reference approach for teams that have specialized needs that exceed
the infrastructure design constraints

Savannah is not intended to be the only possible way of deploying CODAR-
developed or vetted analytics and reduction functions; multiple cooperating
ecosystems are needed to make the total system thrive. However, Savannah offers
a convenient and straight-forward approach, making it easier for applications to
focus on the science, rather than the details of advanced scheduler settings,
RDMA network transfers, and other technical details that tend to interfere with
the deployment of online techniques.

Finally, the Chimbuko performance data capture suite captures, analyzes
and visualizes performance metrics for complex scientific workflows and relates
these metrics to the context of their execution on extreme-scale machines to
enable empirical performance studies. Because capturing performance metrics
can quickly escalate in volume and provenance can be highly verbose, Chimbuko
interfaces with (lossy) data compression modules specialized for high-velocity
performance data.

To quantify co-design tradeoffs involved in online data analysis and reduc-
tion for a particular application, an ensemble of executions would be run using
Cheetah and Savannah, each involving an application X plus an analysis A and
a reduction R (e.g., from Z-checker) with different specifications of the infor-
mation that needs to be saved when (e.g., different data reduction mechanisms
and parameters) and what work is to be placed where (e.g., different numbers of
nodes allocated to X, A, and R; X, A, and R allocated to the same or different
nodes; and different mechanisms used to transfer data between components).
Chimbuko would capture the performance information for each member of the
ensemble and enable analysis across the ensemble to answer co-design questions.

7 Conclusion

We have presented the rationale, technical approach, and some initial results for
the new Co-design center for Online Data Analysis and Reduction (CODAR).
This project is motivated by the growing disparity between compute and I/O
speeds on high-performance computers, and the consequent need to perform
data analyses and reductions increasingly online, while an application is running,
rather than offline. Such new computational structures in turn lead to new co-
design questions, such as which analysis and reduction methods to use in different
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contexts, how to construct such application–analysis–reduction computations,
and how to map and configure different components. CODAR is developing new
methods that will allow the principled investigation of such questions.
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